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Abstract. We present a novel variational approach to top-down image
segmentation, which accounts for significant projective transformations
between a single prior image and the image to be segmented. The pro-
posed segmentation process is coupled with reliable estimation of the
transformation parameters, without using point correspondences. The
prior shape is represented by a generalized cone that is based on the con-
tour of the reference object. Its unlevel sections correspond to possible
instances of the visible contour under perspective distortion and scaling.
We extend the Chan-Vese energy functional by adding a shape term.
This term measures the distance between the currently estimated sec-
tion of the generalized cone and the region bounded by the zero-crossing
of the evolving level set function. Promising segmentation results are ob-
tained for images of rotated, translated, corrupted and partly occluded
objects. The recovered transformation parameters are compatible with
the ground truth.

1 Introduction

Classical methods for object segmentation and boundary determination rely on
local image features such as gray level values or image gradients. However, when
the image to segment is noisy or taken under poor illumination conditions, purely
local algorithms are inadequate. Global features, such as contour length and
piecewise smoothness [16], can be incorporated using a variational segmentation
framework, see [1] and references therein. The handling of contours is facilitated
by the level set approach [17]. In the presence of occlusion, shadows and low
image contrast, prior knowledge on the shape of interest is necessary [20]. The
recovered object boundary should then be compatible with the expected con-
tour, in addition to being constrained by length, smoothness and fidelity to the
observed image.
The main difficulty in the integration of prior information into the variational

segmentation process is the need to account for possible pose transformations
between the known contour of the given object instance and the boundary in the
image to be segmented. Many algorithms [4, 6, 5, 14, 19, 13] use a comprehensive
training set to account for small deformations. These methods employ various
statistical approaches to characterize the probability distribution of the shapes.
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They then measure the similarity between the evolving object boundary (or level
set function) and representatives of the training data. The performance of these
methods depends on the size and coverage of the training set. Furthermore, none
of the existing methods accommodates perspective transformations in measur-
ing the distance between the known instance of the object and the currently
segmented image.
We suggest a new method which employs a single prior image and accounts for

significant projective transformations within a variational segmentation frame-
work. This is made possible by two main novelties: the special form of the shape
prior, and the integration of the projective transformations via unleveled sec-
tions. These allow concurrent segmentation and explicit recovery of projective
transformation in a reliable way. Neither point correspondence nor direct meth-
ods [12] are used. The prior knowledge is represented by a generalized cone,
which is constructed based on the known instance of the object contour. When
the center of projection of a camera coincides with the vertex of the generalized
cone, we are able to model the effects of the scene geometry.
We use an extension of the Chan-Vese functional [3] to integrate image data

constraints with geometric shape knowledge. The level set function and the pro-
jective transformation parameters are estimated in alternation by minimization
of the energy functional. The additional energy term that accounts for prior
knowledge is a distance measure between a planar (not necessarily horizontal)
section of the generalized cone and the zero-crossing of the evolving level set func-
tion. Correct segmentation of partly occluded and corrupted images is demon-
strated based on a prior image taken with different perspective distortion. The
transformation parameters are recovered as well and are in good agreement with
the ground truth.

2 Unlevel-Sets

2.1 Previous framework

Mumford and Shah [16] proposed to segment an input image f :Ω → R by
minimizing the functional

E(u,C) =
1

2

∫

Ω

(f − u)2dxdy + λ
1

2

∫

Ω−C

|∇u|2dxdy + ν|C| , (1)

simultaneously with respect to the segmenting boundary C and the piecewise
smooth approximation u, of the input image f .
When the weight λ of the smoothness term tends to infinity, u becomes a

piecewise constant approximation, u = {ui}, of f . We proceed with

E(u,C) =
1

2

∑

i

∫

Ωi

(f − ui)
2dxdy + ν|C| ∪iΩi = Ω, Ωi ∩Ωj = ∅ (2)

In the two phase case, Chan and Vese [3] used a level-set function φ ∈ R3

to embed the contour C = {x ∈ Ω| φ(x) = 0}, and introduced the Heaviside
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function H(φ) into the energy functional:

ECV (φ, u+, u−)=

∫

Ω

[

(f − u+)
2H(φ)+ (f − u−)

2(1−H(φ))+ ν|∇H(φ)|
]

dxdy

(3)
where

H(φ) =

{

1 φ ≥ 0
0 otherwise

(4)

Using Euler-Lagrange equations for the functional (3), the following gradient
descent equation for the evolution of φ is obtained:

∂φ

∂t
= δ(φ)

[

ν div (
∇φ

|∇φ|
)− (f − u+)

2 + (f − u−)
2

]

. (5)

A smooth approximation of H(φ) (and δ(φ)) must be used in practice [3]. The
scalars u+ and u− are updated in alternation with the level set evolution to take
the mean value of the input image f in the regions φ ≥ 0 and φ < 0, respectively:

u+ =

∫

f(x, y)H(φ)dxdy
∫

H(φ)dxdy
u− =

∫

f(x, y)(1−H(φ))dxdy
∫

(1−H(φ))dxdy
(6)

2.2 Shape prior

The energetic formulation (3) can be extended by adding a prior shape term [7]:

E(φ, u+, u−) = ECV (φ, u+, u−) + µEshape(φ), µ ≥ 0. (7)

We present two novel contributions to this framework. One is a reformulation
of the distance measure between the prior and the evolving level-set function,
outlined, in a preliminary form, in the rest of this subsection and finalized in
subsection 2.5. The other is our unique way of embedding the prior contour
within the energy functional, motivated in subsections 2.3-2.4, and formulated
in subsection 2.5.
Initially, the shape-term we incorporate in the energy functional measures

the non-overlapping areas between the prior shape and the evolving shape. Let
φ̃ be the level set function embedding a prior shape contour. Then

Eshape(φ) =

∫

Ω

(

H(φ(x, y))−H(φ̃(x, y))
)2

dxdy (8)

Note that we do not enforce the evolving level set function φ to resemble φ̃,
instead we demand similarity of the regions within the respective contours. Min-
imizing this functional with respect to φ leads to the following evolution equation:

∂φ

∂t
= δ(φ)

[

ν div (
∇φ

|∇φ|
)− (f − u+)

2 + (f − u−)
2 − 2µ

(

H(φ)−H(φ̃)
)

]

(9)

This shape-term is adequate when the prior and segmented shapes are not sub-
ject to different perspective distortions. Otherwise, the shape-term should incor-
porate the projective transformation, as detailed in subsections 2.5-2.6. However,
a few key concepts should be introduced first.
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Fig. 1. The cone of rays with vertex at the camera center. An image is obtained by
intersection of this cone with a plane. A ray between a 3D scene point P and the
camera center CC pierces the plane in the image points p ∈ f and p′ ∈ f . All such
image points are related by planar homography, p′ = Hpp. See [11].

2.3 Plane to plane projectivity

An object in a 3D space and a camera center define a set of rays, and an image
is obtained by intersecting these rays with a plane. Often this set is referred
to as a cone of rays, even though it is not a cone in the classical sense. Now,
suppose that this cone of rays is intersected by two planes, as shown in Fig. 1.
Then, there exists a perspective transformation H mapping one image onto the
other. This means that the images obtained by the same camera center may be
mapped to one another by a plane projective transformation [8, 11, 9].
Let f and f ′ be the first and the second image planes, respectively. Let K

denote a 3 × 3 internal calibration matrix. Consider two corresponding points,
p ∈ f and p′ ∈ f ′, expressed in homogeneous coordinates, which are two distinct
images of the 3D object point P = (X,Y, Z), taken with the same camera. Their
relation can be described by p′ = KRK−1p+ 1

Z
Kt. R is a 3× 3 rotation matrix

and t = [tx, ty, tz] is a translation vector. Thus, for any givenK, the homography
matrix Hp, such that p

′ = Hpp, can be recovered simply by estimating the values
of R and t. Since only the plane transformation is important for the segmentation
process, when the camera internal parameters are not known, K can be set to
the identity matrix, implying that the optical axis is normal to the image plane
f and the focal length is 1.

2.4 Generalized cone

A generalized cone3 or a conical surface, is a ruled surface generated by a moving
line (the generator) that passes through a fixed point (the vertex) and contin-
ually intersects a fixed planar curve (the directrix). Let Pv = (Xv, Yv, Zvertex)
denote the cone vertex, and let pv = (xv, yv) be the projection of the vertex on
the directrix plane. We set, without loss of generality, Xv = xv and Yv = yv.

3 The concept of generalized cone (or cylinder) in computer vision has been intro-
duced to model 3D objects [2, 15]. Its geometrical properties have been intensively
investigated, see [10, 18] and references therein.
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Now, consider a directrix, C = p(s) = (x(s), y(s)) which is a closed contour,
parameterized by arc-length s, of an object shape in the plane Z = Zplane = 0.
The generalized cone surface is the ruled surface defined by:

Φ(r, s) = Φ((1− r)p(s) + rpv) = (1− r)Zplane + rZvertex (10)

where r varies smoothly from 1, that corresponds to the vertex, via 0, the direc-
trix, to some convenient negative value.
When the vertex of the generalized cone is located at the camera center,

the definition of the generalized cone coincides with that of the cone of rays,
presented in subsection 2.3. It follows that by planar slicing of the generalized
cone, one can generate new image views as though they had been taken with a
camera under the perspective model. There is, however, one exception to this
analogy. The intersection of a cone and a plane is either a closed curve, an open
curve or a point. In projective geometry terminology, the latter two correspond to
projection of finite points in the first image plane to infinity. We do not consider
ideal points and planes at infinity. Phrasing it explicitly, our only concern is the
mapping of a given closed curve to another closed curve.

2.5 Reformulation of the energy functional

The shape-term in the energy functional (7) is now extended to account for pro-
jective transformations. The evolution of the level-set function, given the prior
contour and an estimate of the pose parameters, is considered in this subsec-
tion. The recovery of the pose parameters, given the prior contour and the curve
generated by the zero-crossing of the estimated level-set function, is described
in subsection 2.6.
Following subsection 2.2, φ̃ embeds the prior contour. For reasons that will

soon be explained, it is referred to as the unlevel-set function and will take the
form of a generalized cone. Let C̃ = {x, y|φ̃(x, y) = 0} be the prior contour in f ,
and let Tp be a pose transformation applied to the unlevel-set function φ̃:

(x′, y′, Tp(φ̃) )
T = R(x, y, φ̃)T + t . (11)

The evolving contour in the image to be segmented f ′ is iteratively compared
with C̃ ′ = {x′, y′|Tp(φ̃) = 0} which is the zero-crossing of the transformed
unlevel-set function. Note, that instead of changing the pose of the intersecting
plane and maintaining the generalized cone fixed, we rotate the generalized cone
around its vertex and translate it, while keeping the intersecting plane fixed.
Next, we apply the Heaviside function to the transformed unlevel-set function.
Thus, the shape-term of the energy functional (7) becomes

Eshape(φ) =

∫

Ω

(

H(φ)−H(Tp(φ̃))
)2

dxdy (12)

and the gradient descent equation, derived similarly to (9), is

∂φ

∂t
= δ(φ)

[

ν div (
∇φ

|∇φ|
)− (f − u+)

2 + (f − u−)
2 − 2µ

(

H(φ)−H(Tp(φ̃))
)

]

(13)
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(a) (b) (c) (d)

Fig. 2. (a) A generalized cone is sliced by three planes, at Z = 0.3, Z = 0 and
Z = −0.3.(b) The resulting intersections. (c) A generalized cone is intersected by
an inclined plane: ax+ by + cz + d = 0. (d) The resulting contour.

2.6 Recovery of the transformation parameters

In order to solve (13), one has to evaluate φ simultaneously with the recovery of
the transformation Tp of the unlevel-set function φ̃. The transformation param-
eters are evaluated via the gradient descent equations obtained by minimizing
the energy functional (12) with respect to each parameter. We demonstrate this
for the special cases of pure translation and rotation.

Translation Translation of an image plane along the principal axis tz results
in scaling: As the planar section of the generalized cone is closer to the vertex,
the cross-section shape is smaller, see Figs. 2a-b. Thus, a scale factor can be in-
corporated into the energy functional, in compatibility with the scene geometry,
simply by translation. Equivalently, one can move the generalized cone along
the principal axis, while the plane remains stationary at Z = 0. In the case of
pure scaling, Tp(φ̃) is reduced to φ̃ + tz. Substituting this expression into the
shape-term (12) of the energy functional, and minimizing with respect to tz,
gives the following equation:

∂tz
∂t
= 2µ

∫

Ω

δ(φ̃+ tz)(H(φ)−H(φ̃+ tz))dxdy (14)

To account for general translation t = (tx, ty, tz)
T , we can substitute the ex-

pression for Tp(φ̃) (11) in (12), with R = I, where I is the identity matrix. The
shape term takes the form

Eshape(φ) =

∫

Ω

(H(φ)(x, y)−H(φ̃(x+ tx, y + ty) + tz))
2dxdy

and the translation parameters tx and ty can be recovered similarly to tz.

Rotation Consider a tilted planar cut of the generalized cone, as shown in
Figs. 2c,d. The resulting contour is perspectively deformed, as a function of
the inclination of the intersecting plane and its proximity to the vertex of the
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cone. Equivalently, one may rotate the generalized cone around its vertex, and
zero-cross to get the same perspective transformation.
Any rotation can be decomposed to rotations about the three axes (Euler’s

rotation theorem), and can be represented by a matrix R=RX(α)RY (β)RZ(γ)
operating on a vector (x, y, z)T :





x′

y′

z′



 =





1 0 0
0 cosα sinα
0 −sinα cosα









cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ









cosγ sinγ 0
−sinγ cosγ 0
0 0 1









x
y
z





Let η be some rotation angle corresponding to any of the angles α, β or γ. The
general gradient descent equation for a rotation angle is of the form:

∂η

∂t
= 2µ

∫

Ω

δ(Tp(φ̃))
(

H(φ)−H(Tp(φ̃))
)

[

∂z′

∂x′
∂x′

∂η
+
∂z′

∂y′
∂y′

∂η
+
∂z′

∂η

]

dxdy

(15)
Note that z = φ̃(x, y) and z′ = Tp(φ̃). The partial derivatives for η = β, for
example, are

∂x′

∂β
= −x cosβ sinγ − y sinβ sinγ − z cosβ

∂y′

∂β
= x sinα cosβ cosγ + y sinα cosβ sinγ − z sinα (16)

∂z′

∂β
= x cosα cosβ cosγ + y cosα cosβ sinγ − z cosα

and similarly for η = α and η = γ. The values of ∂z′/∂x′ and ∂z′/∂y′ are derived
numerically from the cone surface values.

2.7 The unlevel-set algorithm

We summarize the proposed algorithm, for concurrent image segmentation given
a prior contour, and recovery of the projective transformation between the cur-
rent and prior object instances.

1. The inputs are two images f and f ′ of the same object, taken with the
same camera, but under different viewing conditions. The boundary C̃ of
the object in f is known. The image f ′ has to be segmented. The image
plane of the first image f is assumed to be perpendicular to the principal
axis, at distance 1 from the camera center. The second image plane, of f ′, is
tilted and shifted relative to the first one.

2. Given the contour C̃, construct a generalized cone, using the expression in
(10) with Zvertex = 1.

3. Choose some initial level-set function φ, for example a standard right cone.
4. Set initial values (e.g. zero) for α, β , γ , tx, ty and tz.
5. Compute the average gray level values of the object and background pixels,

u+ and u−, using equation (6).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Synthetic example. (a) Prior image. The contour is known (not shown). (b)
Successful segmentation: the final contour is shown (black) on the transformed and
corrupted image. (c) The final contour C̃′ obtained in (b). (d) Generalized cone φ̃, based
on the prior contour C̃. (e) Final level set function φ. (f) Wrong segmentation: prior
knowledge was not used. (g) The final contour obtained in (f). (h) Wrong segmentation:
the prior is used without incorporated the projective transformation.

6. Compute the values of Tp(φ̃) according to equation (11), for the currently
estimated transformation parameters.

7. Update φ according to the gradient descent equation (13).
8. Update t, using (14) for tz and similar equations for tx and ty, and (15) for

α, β and γ, until convergence.
9. Repeat steps 5-8 until convergence.

3 Experimental Results

To demonstrate our model, we present segmentation results on various synthetic
and real images. Relative scale and pose parameters between the image of the
known contour and the image to be segmented have been estimated and com-
pared to the ground-truth, where available. The strength of this algorithm is
expressed by its weak sensitivity with respect to the parameters of the func-
tional. We use ν = 50, µ = 25 unless otherwise stated. Exclusion of the shape
prior knowledge from the functional means setting µ to zero.
Consider the synthetic images shown in Figs. 3a,b. Only the contour of the

object in Fig. 3a (not drawn) was known in advance and used as prior. The
object in Fig. 3b was generated from Fig. 3a by rotation and translation with
the following parameters: RX(α) = 0.3

0, RY (β) = −0.3
0 and RZ(γ) = 60

0 with
scale factor of 0.9. It has also been broken and lightened. Note the significant
perspective distortion despite the fairly small rotations around the X and Y
axes. The black contour in Fig. 3b is the result of the segmentation process. For
clarity, the final contour is presented by itself in Fig. 3c. The generalized cone
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Real image with synthetic transformation. (a) Prior image. The contour is
known (not shown). (b) Successful segmentation: the final contour (black) on the trans-
formed image. (c) The final contour C̃′ obtained in (b). (d) Generalized cone φ̃, based
on the prior contour C̃. (e) The final level set function φ. (f) Wrong segmentation:
prior knowledge was not used. (g) The final contours obtained in (f). (h) Wrong seg-
mentation: the prior is used without incorporating the projective transformation.

φ that was constructed, based on the known image contour, using Eq. (10), is
shown in Fig. 3d. Fig. 3e shows the final evolving level-set function φ. It is worth
emphasizing that φ and Tp(φ̃) resemble in terms of their Heaviside functions -
that is by their zero-crossings (the final contour), but not in their entire shapes.
The estimated transformation parameters are: R̂X(α) = 0.38

0, R̂Y (β) = −0.4
0,

R̂Z(γ) = 56.6
0 and t̂z = −0.107 - which corresponds to scaling of 0.893. When

no shape prior is used, each part of the broken heart is segmented separately
(Figs. 3f-g). Segmentation fails when the prior is enforced without recovery of
the transformation parameters, as shown in figure 3h.

We next consider real images, Figs. 4a-b, where the black contour around the
object in figure 4b is again the segmentation result. The final contour itself is
shown in Fig. 4c. The transformation between the images was synthetic, so that
the calculated parameters could be compared with the ground-truth. The trans-
formation parameters are: RX(α) = −0.075

0, RY (β) = 0.075
0 and RZ(γ) = 9

0

with scaling factor of 0.8 . Compare with the recovered transformation parame-
ters: R̂X(α) = −0.063

0, R̂Y (β) = 0.074
0, R̂Z(γ) = 7.9

0 and scaling of 0.81. The
generalized cone φ̃, based on the given jar contour, and the final level set func-
tion φ are shown in Figs. 4d-e respectively. The jar shown is black with white
background. Thus, without using the prior, the bright specular reflection spots
spoil the segmentation, as shown in Figs. 4f-g. Again, when the prior is enforced,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Real image with synthetic noise. (a) Prior image. The contour is known (not
shown). (b) Successful segmentation: the final contour (black) on the transformed im-
age. (c) The final contour C̃′ obtained in (b). (d) Generalized cone φ̃, based on the prior
contour C̃. (e) Final level set function φ. (f) Wrong segmentation: prior knowledge was
not used. (g) The final contours obtained in (f). (h) Wrong segmentation: the prior is
used without incorporating the projective transformation.

but the transformation parameters are not recovered, segmentation fails as seen
in Fig. 4h.

To check simultaneous translations along the X, Y and Z axes we applied
our algorithm to the images shown in Figs. 5a-b. The noisy Fig. 5b is segmented
correctly (black contour) in spite of the significant translation with respect to
the prior. No preprocessing alignment has been performed. The functional pa-
rameters in this case were µ = 13 and ν = 40. The recovered transformation
parameters are: tx = 19.54, ty = −18.8, tz = 0.08.

Finally, we demonstrate the method using a real object (mannequin head),
which has actually been rotated, moved and occluded, as seen in Figs. 6a-c.
The algorithm is able to segment the head precisely, in spite of the covering
hat which has color similar to that of the mannequin. The segmenting contour
accurately traces the profile of the mannequin, despite the significant trans-
formation. Since the actual transformation was not measured, then in order to
confirm the recovered transformation parameters, Fig. 6e shows the zero-crossing
of the transformed generalized cone together with the final segmenting contour
(Fig. 6d).

Translation and rotation of non-planar objects may reveal previously hidden
points and hide others. Therefore, the visible contour in a new instance of the
object might be significantly different from the reference. However, as seen in the
jar and mannequin examples, for moderate transformations of these non-planar
objects, promising segmentation results are obtained.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Real example. (a) Reference image (mannequin head). The contour is known
(not shown). (b) New instance of the mannequin head, rotated and translated. (c) Suc-
cessful segmentation: the final contour (black) on the transformed mannequin head.
The segmentation is precise despite the covering hat. (d) The final contour C̃′ ob-
tained in (b). (e) The final contour as in (d), drawn on the Heaviside function of the
transformed generalized cone: H(Tp(φ̃)). This shows the compatibility between the cal-
culated and actual transformation parameters. (f) Final shape of the evolving level set
function φ. (g) Final contour obtained without using a shape prior. (h) Final contour
obtained using the prior but without recovery of the transformation parameters.

4 Discussion

Detection of an object in a corrupted image, based on a reference image taken
with from a different view-point, is a classical challenge in computer vision.
This paper presents a novel approach that makes substantial progress towards
this goal. The key to this accomplishment is the unique integration of scene
geometry with the variational approach to segmentation. The reference shape is
the foundation of a generalized cone. In principle, the zero level set of an evolving
function, related to the image features, is matched with unlevel sections of the
generalized cone that correspond to projectively deformed views of the shape.
The suggested algorithm successfully accounts for scale and pose variations

under the perspective model, including rotation outside the image plane, without
using point correspondence. The algorithm converges empirically even for fairly
large transformations and significantly corrupted images. Promising segmenta-
tion results and accurate numerical estimation of the transformation parameters,
suggest this model as an efficient tool for segmentation and image alignment.
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