
From Natural Language Specifications to
Program Input Parsers

Tao Lei,

Fan Long, Regina Barzilay, Martin Rinard

CSAIL, MIT

1

Translating Natural Language to Input Parser

2

Input Specification:

Input Parser:

Defines the format of input data

- The input starts with a line
containing two integers n and r.

- This is followed by n lines,
each containing two integers xi,
yi, giving the coordinates of the
polygon vertices.

Part of a program that reads and stores data

Two Input Examples:

 3 6
 0 4
 0 0
 5 1

 4 10
 -8 2
 8 14
 0 14
 0 6

 int n, r, x[], y[];

 Scanner scanner = new
 Scanner(new File(“input.txt”));

 n = scanner.nextInt();
 r = scanner.nextInt();

 x = new int[n];
 y = new int[n];
 for (int i = 0; i < n; i++) {
 x[i] = scanner.nextInt();
 y[i] = scanner.nextInt();
 }

Translating Natural Language to Input Parser

3

Input Specification:

Input Parser:

Defines the format of input data

- The input starts with a line
containing two integers n and r.

- This is followed by n lines,
each containing two integers xi,
yi, giving the coordinates of the
polygon vertices.

Part of a program that reads and stores data

Two Input Examples:

 3 6
 0 4
 0 0
 5 1

 4 10
 -8 2
 8 14
 0 14
 0 6

 int n, r, x[], y[];

 Scanner scanner = new
 Scanner(new File(“input.txt”));

 n = scanner.nextInt();
 r = scanner.nextInt();

 x = new int[n];
 y = new int[n];
 for (int i = 0; i < n; i++) {
 x[i] = scanner.nextInt();
 y[i] = scanner.nextInt();
 }

Goal: generating input parser by reading natural language

Motivation

4

• Reading and processing data is a common task

• Writing input parsers is mechanical, tedious and time-consuming

John ate an apple
 NN VB DT NN
 SUBJ ROOT MOD OBJ
 2 0 4 2

 The dog barks
 DT NN VB
 MOD SUBJ ROOT
 2 3 0

MST dependency
data format

This DT
is VBZ
a DT
short JJ
sentence NN
. .

So RB
is VBZ
this DT

1 Cathy Cathy N N … 2 su
2 zag zie V V … 0 ROOT
3 hen hen Pron Pron … 2 obj1
4 wild wild Adj Adj … 5 mod
5 zwaaien zwaai N N … 2 vc
6 . . Punc Punc … 5 punct

…

POS tagger
data format

CONLL dependency
data format

Motivation

5

• Reading and processing data is a common task

• Writing input parsers is mechanical, tedious and time-consuming

Parser Generator
(our model)

Input Parser
(in C++, Java, …)

Input Example:

10
abc xyz uvw
efg …

Input Specification:

“The input is one integer
followed by a list of strings.”

Allows natural language as
the interface to specify input

Motivation

6

• Reading and processing data is a common task

• Writing input parsers is mechanical, tedious and time-consuming

Parser Generator
(our model)

Input Parser
(in C++, Java, …)

Input Example:

10
abc xyz uvw
efg …

Input Specification:

“The input is one integer
followed by a list of strings.”

Allows natural language as
the interface to specify input

Advantage: reducing programming effort and the chance of
making code mistakes

How to Translate NL to Input Parser?

7

• Need an abstraction that connects NL and input parser

Input Specification:

The input consists of multiple sentences.

• The first line of each sentence is the list of

words in the sentence;
• The second line of each sentence contains

the POS tokens;
• The third line are dependency labels;
• The last line are integers representing the

positions of each word’s parent.

Input Parser:

sentence = [];
with open(“input.txt”) as fin:
 line = fin.readline().strip();
 while line:
 if line != “”:
 word = line.split();
 pos = fin.readline().split();
 label = fin.readline().split();
 parent = fin.readline().split();
 parent = [int(x) for x in parent];

 sentence.append((word, pos,
 label, parent));
 line = fin.readline().strip();

?

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

8

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

Input

9

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

10

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

Words

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

11

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

Words
POS

Tokens

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

12

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

Words
POS

Tokens
Labels

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

13

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

Words
POS

Tokens
Labels

Position
Integers

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

14

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

Sentences

Input

Words
POS

Tokens
Labels

Position
Integers

Specification Tree

 Input Example:

 John ate an apple

 NN VB DT NN

 SUBJ ROOT MOD OBJ

 2 0 4 2

The dog barks

 DT NN VB

 MOD SUBJ ROOT

 2 3 0

 …

15

How to Translate NL to Input Parser?

• Need an abstraction that connects NL and input parser

• Specification tree of nested input formats

16

How to Translate NL to Input Parser?

Specification Tree

Input Specification

Input Parser

 The input parser is deterministically
generated from the specification tree.

• Need an abstraction that connects NL and input parser

• Specification tree of nested input formats

17

How to Translate NL to Input Parser?

 The input parser is deterministically
generated from the specification tree.

Focus: translating input specifications into specification trees

• Need an abstraction that connects NL and input parser

• Specification tree of nested input formats

Specification Tree

Input Specification

Input Parser

How to Translate NL to Specification Tree?

18

Specification Tree

Input Specification
 Specification tree is a dependency tree

over noun phrases in the NL specification.

Input Specification:

The input consists of multiple sentences.

• The first line of each parse is the list of
words in the sentence;

• The second line of each parse contains
the POS tokens;

• The third line are dependency labels;
• The last line are integers representing

the positions of each word’s parent.

Sentences

Input

Words
POS

Tokens
Labels

Position
Integers

Task: translation as an NLP problem

Learning Scenario

19

N input specifications
𝒘 = 𝑤1,… , 𝑤𝑁

Input

The input consists of a single test case. A
test case consists of two lines. The first
line contains an integer n indicating the
number of molecule types. The second
line contains n eight-character strings,
each describing a single type of molecule,
separated by single spaces. Each string
consists of four two-character connector
labels

some input examples
for each specification

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

specification trees
𝒕 = 𝑡1,… , 𝑡𝑁

No human annotation

corresponding input parsers

𝒕 ~ 𝑃 𝒕 𝒘

Learning Scenario

20

N input specifications
𝒘 = 𝑤1,… , 𝑤𝑁

Input

The input consists of a single test case. A
test case consists of two lines. The first
line contains an integer n indicating the
number of molecule types. The second
line contains n eight-character strings,
each describing a single type of molecule,
separated by single spaces. Each string
consists of four two-character connector
labels

some input examples
for each specification

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

Input Example:

3
A+00A+A+ 00B+D+A- B-C+00C+

specification trees
𝒕 = 𝑡1,… , 𝑡𝑁

No human annotation

corresponding input parsers

𝒕 ~ 𝑃 𝒕 𝒘
Idea: learning from feedback -- testing input parser on input examples

Key Intuitions

21

a correct tree should read all
input examples successfully

 5
 -8
 8
 0
 0
 -8

a list of integers?

a list of strings?

a list of integer pairs?

…

Input Example Possible Interpretations

• Necessary but NOT sufficient condition
• False-positive parsers

Many input parsers can read the same input

Key Intuitions

22

the correct trees should
share common features

The input contains an integer

Test case contains several strings

Each line starts with two numbers

X contains Y

X starts with Y

a correct tree should read all
input examples successfully

the input

an integer

test case

several strings

Patterns Example Sentences Tree Structures

Bayesian Generative Model

𝑃 𝜃 ⋅ 𝑃 𝑡𝑖 ⋅ 𝑃 𝑤𝑖 𝑡𝑖; 𝜃
𝑖

 (i) Generating Parameters

𝜃⋅~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝜶

(ii) Generating Specification Trees

 𝑃 𝑡𝑖 ∝

1

𝜖

parser of t i read input
examples successfully

otherwise

(iii) Generating Feature Observations

𝑃 𝑤 𝑖 𝑡 𝑖;𝜃 = 𝜃𝑓
𝑓∈𝜙 𝑤𝑖 ,𝑡𝑖

 𝜙 𝑤 𝑖, 𝑡 𝑖 : set of features over (w i, t i)

Idea: encode both intuitions in our model
23

the correct trees should
share common features

a correct tree should read all
input examples successfully

Inference: Gibbs Sampling

24

𝑡1 𝑡2 ⋯ 𝑡𝑖 ⋯ 𝑡𝑁

update specification tree t i
for the i-th input specification

Sample from conditional probability:

𝑡𝑖 ~ 𝑃 𝑡𝑖|𝒘, 𝒕−𝑖 Intractable

𝒕 ~ 𝑃 𝒕 𝒘 = 𝑃 𝒕,𝜃 𝒘
𝜃

Inference: Gibbs Sampling

25

𝑡1 𝑡2 ⋯ 𝑡𝑖 ⋯ 𝑡𝑁

(i) Estimate current parameters

(ii) Sample a new tree

(iii) Apply Metropolis-Hastings rule

 𝜃∗ = 𝐸 𝜃|𝒘, 𝒕−𝑖

𝑡′~ 𝑄 𝑡′ ∝ 𝑃 𝑤 𝑖|𝑡′; 𝜃∗

𝑡𝑖 ≔ 𝑡′ with probability:

min 1,
𝑃(𝑡𝑖)𝑄(𝑡′)

𝑃 𝑡′ 𝑄 𝑡𝑖

𝒕 ~ 𝑃 𝒕 𝒘 = 𝑃 𝒕,𝜃 𝒘
𝜃

update specification tree t i
for the i-th input specification

Experiments

26

Sentences: 424

Vocabulary: 781

of Sent. in Document 1 ~ 8

Avg. Sent. Length 17.3

Text Statistics:

Domain:

Programming contest (ACM-ICPC)

Training Data:
 106 input specifications
 100 input examples for each

relative clauses in sentences

Evaluation Metrics

27

Recall:

Precision:

F-Score:

correct specification trees

positive specification trees

correct specification trees

input specifications

2 × Precision × Recall

Precision + Recall

Baseline Models

28

Aggressive (Clarke et al. 2010)

 Trains a discriminative structure learner (SVMStruct) using all
“positive” specification trees obtained in previous iteration; uses
the learner to find the most plausible trees in the next iteration

No Learning

 Does not learn feature parameters; randomly samples the
specification tree until successfully reads all input examples

Full Model - Oracle

 An “oracle” feedback tells our full model whether the specification
tree is correct or not

Aggressive - Oracle

 Trains SVM using perfect oracle supervision signal

Overall Performance

80.00%

66.70%

54.50%

0% 20% 40% 60% 80% 100%

Full Model

Aggressive

No Learning

29

F-Score

• Search space is exponential, and is large on difficult specifications
• Cannot distinguish between correct parsers and false-positive parsers

Overall Performance

80.00%

66.70%

54.50%

0% 20% 40% 60% 80% 100%

Full Model

Aggressive

No Learning

30

F-Score

• Using false-positive parsers to train SVM will hurt the performance

Overall Performance

80.00%

66.70%

54.50%

0% 20% 40% 60% 80% 100%

Full Model

Aggressive

No Learning

31

F-Score

• Learns from feedback and feature observations in a joint, complementary fashion

Comparison with Oracles

89.00%

84.10%

80.00%

50% 60% 70% 80% 90% 100%

Aggressive-Oracle

Full Model-Oracle

Full Model

32

F-Score

Comparison with Oracles

89.00%

84.10%

80.00%

50% 60% 70% 80% 90% 100%

Aggressive-Oracle

Full Model-Oracle

Full Model

33

• Discriminative model is better at learning from strong supervision
• Generative model is itself much more constrained

F-Score

Learning Curve as a Function of # Input Examples

34

• May not be possible to obtain so many input examples
• Retains high performance when just one example is available

totally unsupervised
generative model

Conclusion

• A new problem in addition to generating database
queries or regular expressions from natural language

• Our method can learn to ground natural language
descriptions of input data formats

 Code and data available at:

 http://groups.csail.mit.edu/rbg/code/nl2p

35

36

37

38

39

