Low-Rank Tensors for Scoring Dependency
Structures

Tao Lei
Yu Xin, Yuan Zhang, Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

1"l
| 1

Dependency Parsing

ate cake with a fork
PRON VB NN IN

DT NN

today
NN

* Dependency parsing as maximization problem:

» Key aspects of a parsing system:

1.

2.

y* = argmax S(x,y;0)

YET (x)

Accurate scoring function

Efficient decoding procedure

S(x,y;0)

argmax

—> QOur Goal

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

ROOT

I ate cake with a fork today
PRON VB NN IN DT NN NN

2

High-dim. sparse vector ¢(x,y) € RL

1 0 1 0 0 0 | oo e 0

A
/ N\

Feature Template: Feature Example:

head POS, modifier POS and length “VBEONND2”

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

ROOT
I ate cake with a fork today
PRON VB NN IN DT NN NN
High-dim. sparse vector ¢(x,y) € RL
1 0 1 0 0 O | e e 0

z
\

Feature Template:

head word and modifier word

Feature Example:

“ate@®cake”

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

ROOT

I/\atmway

PRON VB NN IN DT NN NN

High-dim. sparse vector ¢(x,y) € RL

1 0 2 1 2 0 0 | oo e 0

Parameter vector @ € RL .

01{03,22/11| 0 {0109 - - 0

SG(-X' }’) — (Q, gb(x, y))

Traditional Scoring Revisited

* Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

4)
ROOT
I ate cake with a fork today
PRON VB NN IN DT NN NN
Head Modifier Attach Arc Features:
Length?
Word: ate \ / cake \ / HW MW _LEN: ate®cake®?2
S
POS: VB \\ / \ _~ Yes
-~
POS+Word: VB+ate D NN+cake D
Left POS: PRON VB No
Right POS: NN IN

Traditional Scoring Revisited

* Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

Word:
POS:
POS+Word:
Left POS:

Right POS:

Vs

ROOT
I ate cake with a fork today
PRON VB NN IN DT NN NN
Head Modifier Attach Arc Features:
Length?
ate \ / cake \ HW MW _LEN: ate®cake®?2
VB \\ / \ Yes HW_MW: ate®cake
VB+ate D NN+cake D /
PRON VB \ No /
NN IN

Traditional Scoring Revisited

* Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

Word:
POS:
POS+Word:
Left POS:

Right POS:

Vs

ROOT
I ate cake with a fork today
PRON VB NN IN DT NN NN
Head Modifier Zé\ttaizp Arc Features:
ength:
ate / cake HW MW _LEN: ate®cake®?2
VB ~ @é/ NN \>€B</v Yes HW_ MW ate@®cake
VB+ate \NN+cake g \ HP_MP_LEN: VB@ONN®2
PRON VB No
HP_MP: VBONN
NN IN

Traditional Scoring Revisited

* Problem: very difficult to pick the best subset of concatenations

Too few templates = Lose performance

Too many templates —> Too many parameters to estimate

Features are correlated

Searching the best set? =) _ _
Choices are exponential

e Our approach: use low-rank tensor (i.e. multi-way array)

= (Capture a whole range of feature combinations

= Keep the parameter estimation problem in control

Low-Rank Tensor Scoring: Formulation

* Formulate ALL possible concatenations as a rank-1 tensor

¢h ¢m ¢h,m

atomic head atomic modifier atomic arc
feature vector feature vector feature vector
Head Modifier Attach
Length?

ate cake
VB NN Yes

VB+ate NN+cake

PRON VB No
NN IN

Low-Rank Tensor Scoring: Formulation

* Formulate ALL possible concatenations as a rank-1 tensor

¢h X ¢m ® ¢h,m € Rnand

atomic head atomic modifier atomic arc
feature vector feature vector feature vector

(x®y®z);jr = XYz
tensor product

Each entry indicates
the occurrence of one
feature concatenation

11

Low-Rank Tensor Scoring: Formulation

* Formulate ALL possible concatenations as a rank-1 tensor

¢h X ¢m ® Qbh,m € Rnand

atomic head atomic modifier atomic arc
feature vector feature vector feature vector

* Formulate the parameters as a tensor as well

6 € RE: Sg(h »>m) =(0, Pp_m) (vector-based)

2

AERV™M: Sionsor(h > m) = (A; dn ® o & (ph,m) (tensor-based)

Involves features not in 6

Can be huge. On English:
nxnxd= 10

12

Low-Rank Tensor Scoring: Formulation

* Formulate ALL possible concatenations as a rank-1 tensor

¢h X ¢m ® ¢h,m € Rnand

atomic head atomic modifier atomic arc
feature vector feature vector feature vector

* Formulate the parameters as a low-rank tensor

6 € RE: Sg(h »>m) =(0, Pp_m) (vector-based)

4

AERV™M: Sonsor(h &> m) = (A; dn ® om & (ph,m) (tensor-based)

UV eR™>™ W e R"™™4;
A=) UDBVHBW()

Low-rank tensor

r rank-1 tensors 13

Low-Rank Tensor Scoring: Formulation

Stensor(h > m) = (A' ¢h®¢m®¢h'm>
A=) UOSVORW() = -
= Z [U¢h]i[V¢m]i[W¢h,m]i

i=1

Dense low-dim representations: ~ U¢y, V¢,, Wy, € R"

/
/
/
/
/
/
/
/

dense dense sparse

14

Low-Rank Tensor Scoring: Formulation

Stensor(h > m) = (A' ¢h®¢m®¢h'm>
A=) UOSVORW() = -
= Z [Uth]i[Vme]i[W‘ph,m]i

i=1

Dense low-dim representations: ~ U¢p, V¢, Wepm, € RT
Element-wise products: [Udn]ilVomlilW dpn mli

T
Sum over these products: z U] [Vl [W¢h,m]i
=1

Intuition and Explanations

[

Example: Collaborative Filtering

5 3

’ 3

4 L

13

-0.1

2.2

0.2

-0.6

23

11

0.9

5 X
L] !- ﬁ “price” 01
& b3 Q ﬁ # ”quality” 0.2
NG
L& || S
4 ¢ s
d & | & 8

user-rating sparse matrix A

Approximate user-ratings via low-rank

U™ preferences

V2X™M. properties

Ratings not completely independent

Users have hidden preferences over properties

ltems share hidden properties (“price” and “quality”)

16

Intuition and Explanations

/

Example: Collaborative Filtering

Approximate user-ratings via low-rank

a2 ¥ [V(1) V(r)

L i | & | &

L s | § | 0§ N N

L s | ¥ 27 ~ »

V| rice ualit
L% & P quatity
d | i | s e
U(1) u(r)

user-rating sparse matrix A

of parameters:

Intuition:

A=UTV =3U@\) Q V(i)

nxm (n+m)r

Data and parameters can be approximately

characterized by a small number of hidden factorls7

Intuition and Explanations

Our Case: Approximate parameters (feature weights) via low-rank

parameter tensor A

o | o ~ I + -+
1 0.9
o1l o similar values because

| | “apple” and “banana” have
similar syntactic behavior

A=3U0) Q V() Q W(i)

= Hidden properties associated with each word

= Share parameter values via the hidden properties
18

Low-Rank Tensor Scoring: Summary

* Naturally captures full feature expansion (concatenations)

-- Without mannually specifying a bunch of feature templates

e Controlled feature expansion by low-rank (small r)

-- better feature tuning and optimization

* Easily add and utilize new, auxiliary features
-- Simply append them as atomic features

Head Atomic
ate
VB
VB+ate
PRON
NN

1 §

person:|
number:singular
Emb[1]:-0.0128
Emb[2]: 0.5392

19

Combined Scoring

* Combining traditional and tensor scoring in S, (x, y):

|4 59(%3’) +(1-v)- Stensor(xry)

Set of manual Full feature expansion
selected features controlled by low-rank

Similar “sparse+low-rank” idea for matrix decomposition:
Tao and Yuan, 2011; Zhou and Tao, 2011;
Waters et al., 2011; Chandrasekaran et al., 2011

* Final maximization problem given parameters 6,U,V, W'

y* = argmax S,(x,y;0,U,V,W)
YET (x)

y €10,1]

20

Learning Problem

* Given training set D = {(&;, §,)},

* Search for parameter values that score the gold trees higher than others:

Vy € Tree (x;): SEuyi) =2 SGEuy) + 13—yl =4

Non-negative loss

* The training objective: unsatisfied constraints

are penalized against

. C : U 2 V 2 % 2 0 2
0.U T 50 E § A+ NUNE+ VIS + W= + 116l
l

Training loss Regularization

Calculating the loss requires to solve the expensive maximization problem;

Following common practices, adopt online learning framework.

21

Online Learning

» Use passive-aggressive algorithm (Crammer et al. 2006) tailored to our tensor
setting

(i) Iterate over training samples successively:

v |

(X1, 91) =+ — & P) —— - — -+ (Zpn,In)

r
revise parameter values i=1[U¢h]i[V¢m]i[W¢h,m]i
for i-th training sample is not linear nor convex

(ii) choose to update a pair of sets (0,U), (6,V) or (6,W):

Increments: Q1+t = g® 4 Ag, U+t = y® 4 AU

1 1
Sub-problem: in — 24— : '
ub-p fin 5 186117 + S IAUNI” + €4

N

Efficient parameter update via closed-form solution

Experiment Setup

Datasets
= 14 languages in CoNLL 2006 & 2008 shared tasks

Features

= Only 16 atomic word features for tensor

= Combine with 1st-order (single arc) and up to 3-order
(three arcs) features used in MST/Turbo parsers

Unigram features: /’\

form form-p form-n h m
lemma | lemma-p | lemma-n
pos pos-p pos-n

morph | bias
Bigram features: /\/\ m
g h m h m s t

pos-p, pos
pOs, pos-n

pos, lemma
morph, lemma m
Trigram features: h m S g m S

POS-p, Pos, pos-n

23

Experiment Setup

Datasets
= 14 languages in CoNLL 2006 & 2008 shared tasks

Features

= Only 16 atomic word features for tensor

= Combine with 1st-order (single arc) and up to 3-order
(three arcs) features used in MST/Turbo parsers

Implementation
= By default, rank of the tensor r=50
= 3-way tensor captures only 15t-order arc-based features

= Train 10 iterations for all 14 languages

24

Baselines and Evaluation Measure

MST and Turbo Parsers

representative graph-based parsers;
use similar set of features

NT-1st and NT-3rd

variants of our model by removing the tensor component;
reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations

25

Overall 1st-order Results

Turbo 86.83%
MST
NT-1st 87.05%
Our Model 87.76%

[T T T T |

855% 86.0% 86.5% 8/.0% 8/5% 88.0%

* >0.7% average improvement

e QOutperforms on 11 out of 14 languages

88.0%
87.5%
87.0%
86.5%
86.0%
85.5%
85.0%
84.5%
84.0%

Impact of Tensor Component

3 4 5 6

Iterations

No tensor

(y=1)

27

Impact of Tensor Component

* Tensor component achieves better generalization on test data

88.0%
8/7.5% |

(@)

87.0%
86.5%
86.0%
85.5%

* Notensor (y=1)

 Tensoronly (y = 0)

85.0%
84.5% -

84‘0% | | | | | | | |
12 3 4 5 6 7 &8 9 10

Iterations

28

Impact of Tensor Component

* Tensor component achieves better generalization on test data

 Combined scoring outperforms single components

88.0%
87.5%
87.0%
86.5%
86.0%
85.5%
85.0%
84.5%
84.0%

)

(@)

3 4 5 6

Iterations

No tensor (y = 1)
Tensor only (y = 0)
Combined (y = 0.3)

29

Overall 3-order Results

NT-3rd 88.66%

Turbo 88.73%
Our Model
88.2% 88.5% 88.8% 89.1% 89.4%

* Our traditional scoring component is just as good as the state-of-the-art

system

30

Overall 3-order Results

NT-3rd 88.66%

Turbo 88.73%
Our Model 89.08%
88.2% 88.5% 88.8% 89.1% 89.4%

* The 1st-order tensor component remains useful on high-order parsing
e Qutperforms state-of-the-art single system

* Achieves best published results on 5 languages
31

Leveraging Auxiliary Features

* Unsupervised word embeddings publicly available*

English, German and Swedish have word embeddings in this dataset

* Append the embeddings of current, previous and next words into ¢y, o

¢ & ¢, involves more than (50 X 3)? values for 50-dimensional embeddings!

"° [Abs. UAS improvement by adding embeddings
05 r

04 |

03 |

0.2 r

1l
0

1st-order 3rd-order

B Swedish W German M English

32

* https://github.com/wolet/sprml13-word-embeddings

https://github.com/wolet/sprml13-word-embeddings

Conclusion

* Modeling: we introduced a low-rank tensor factorization
model for scoring dependency arcs

* Learning: we proposed an online learning method that
directly optimizes the low-rank factorization for parsing
performance, achieving state-of-the-art results

* Opportunities & Challenges: we hope to apply this idea to
other structures and NLP problems.

Source code available at:
https://qgithub.com/taolei87/RBGParser

33

34

95.0

92.0

89.0

86.0

83.0

80.0

Rank of the Tensor

./.' o —— — e
—9 I
Kﬂf/—'
0 10 20 30 40 50 60 /0
—e—Japanese —e—English —e—Chinese Slovene

35

Choices of Gamma

e e

88.0% .
- ‘_______._.——C
87.5%¢ 7
87.0% - = - a £
86.5% i
86.0%+ i
1.
85.5%, ——v=0.0 ||
——y=0.2
85.0%/ 03 |
o ——v=0.4
84.5% e NTAst
84.0% éll 5 3

36

