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Our Goal

Dependency Parsing

• Dependency parsing as maximization problem:

𝑦∗ = argmax
y∈𝑇(𝑥)

𝑆 𝑥, 𝑦; 𝜃

• Key aspects of a parsing system:

1. Accurate scoring function 𝑆(𝑥, 𝑦; 𝜃)

2. Efficient decoding procedure argmax

I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT
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Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates
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1 0 1 1 0 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿

I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT

…  …

Feature Template:

head POS, modifier POS and length

Feature Example:

“VB⨁NN⨁2”



Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates
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1 0 1 1 0 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿

I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT

…  …

Feature Template:

head word and modifier word

Feature Example:

“ate⨁cake”



Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates

1 0 2 1 2 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿

I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT

0.1 0.3 2.2 1.1 0 0.1 0.9 0

Parameter vector 𝜃 ∈ ℝ𝐿 ⋅

𝑆𝜃 𝑥, 𝑦 = 𝜃, 𝜙 𝑥, 𝑦

…  …

…  …
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Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁

Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach 
Length?

Yes

No

⨁

HW_MW_LEN: ate⨁cake⨁2

Arc Features:
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• Features and templates are manually-selected concatenations of atomic 
features, in traditional vector-based scoring:

I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT



Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁

Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach 
Length?

Yes

No

⨁

HW_MW_LEN: ate⨁cake⨁2

HW_MW: ate⨁cake

Arc Features:
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I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT

• Features and templates are manually-selected concatenations of atomic 
features, in traditional vector-based scoring:



Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁

Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach 
Length?

Yes

No

⨁

HW_MW_LEN: ate⨁cake⨁2

HW_MW: ate⨁cake

HP_MP_LEN: VB⨁NN⨁2

HP_MP: VB⨁NN

… …

Arc Features:
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I ate cake with a fork today
PRON VB NN IN DT NN NN

ROOT

• Features and templates are manually-selected concatenations of atomic 
features, in traditional vector-based scoring:



Traditional Scoring Revisited
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• Problem: very difficult to pick the best subset of concatenations

Too few templates Lose performance

Too many templates Too many parameters to estimate

Searching the best set?
Features are correlated

Choices are exponential

• Our approach: use low-rank tensor (i.e. multi-way array)

 Capture a whole range of feature combinations

 Keep the parameter estimation problem in control



Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

Head

ate

VB

VB+ate

PRON

NN

Modifier

cake

NN

NN+cake

VB

IN

Attach 
Length?

Yes

No

𝜙ℎ 𝜙𝑚 𝜙ℎ,𝑚

atomic head 
feature vector

atomic modifier
feature vector

atomic arc
feature vector
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Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

𝜙ℎ 𝜙𝑚 𝜙ℎ,𝑚⊗ ⊗

atomic head 
feature vector

atomic modifier
feature vector

atomic arc
feature vector

∈ ℝ𝑛×𝑛×𝑑

𝑥⨂𝑦⨂𝑧 𝑖𝑗𝑘 = 𝑥𝑖𝑦𝑗𝑧𝑘

tensor product

Each entry indicates 
the occurrence of one 
feature concatenation
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Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

• Formulate the parameters as a tensor as well

(vector-based)𝑆𝜃 ℎ → 𝑚 = 𝜃, 𝜙ℎ→𝑚

(tensor-based)𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 = 𝐴, 𝜙ℎ ⊗𝜙𝑚 ⊗𝜙ℎ,𝑚

𝜃 ∈ ℝ𝐿:

𝐴 ∈ ℝ𝑛×𝑛×𝑑:

𝜙ℎ 𝜙𝑚⊗ ⊗

atomic head 
feature vector

atomic modifier
feature vector

∈ ℝ𝑛×𝑛×𝑑

12

𝜙ℎ,𝑚

atomic arc
feature vector

Can be huge. On English:
𝑛 × 𝑛 × 𝑑 ≈ 1011

Involves features not in 𝜃



• Formulate the parameters as a low-rank tensor

Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

(vector-based)𝑆𝜃 ℎ → 𝑚 = 𝜃, 𝜙ℎ→𝑚

(tensor-based)𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 = 𝐴, 𝜙ℎ ⊗𝜙𝑚 ⊗𝜙ℎ,𝑚

𝜃 ∈ ℝ𝐿:

𝐴 ∈ ℝ𝑛×𝑛×𝑑:

𝜙ℎ 𝜙𝑚⊗ ⊗

atomic head 
feature vector

atomic modifier
feature vector

∈ ℝ𝑛×𝑛×𝑑

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)

Low-rank tensor

𝑈, 𝑉 ∈ ℝ𝑟×𝑛,𝑊 ∈ ℝ𝑟×𝑑:
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𝜙ℎ,𝑚

atomic arc
feature vector

r rank-1 tensors 



Low-Rank Tensor Scoring: Formulation

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)
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𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 𝐴,𝜙ℎ⨂𝜙𝑚⨂𝜙ℎ,𝑚

 

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖

=

=

Dense low-dim representations: 

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖
∈ ℝ𝑟

⟹

= ×

dense dense sparse



Low-Rank Tensor Scoring: Formulation
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𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 𝐴,𝜙ℎ⨂𝜙𝑚⨂𝜙ℎ,𝑚

 

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖

=

=

Dense low-dim representations: 

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖
∈ ℝ𝑟

⟹

Element-wise products:  

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ 𝑚 𝑖,

Sum over these products:  

𝑖=1

𝑟

𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ 𝑚 𝑖,

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)



Intuition and Explanations

Example: Collaborative Filtering Approximate user-ratings via low-rank

user-rating sparse matrix A

??

 Ratings not completely independent
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“price”

“quality”
𝑉2×𝑚:  properties

“price”

“quality”
𝑈2×𝑛:  preferences

 Users have hidden preferences over properties

 Items share hidden properties (“price” and “quality”)



Intuition and Explanations

Example: Collaborative Filtering Approximate user-ratings via low-rank

≈

V(1)

U(1)

+ ⋯ +

V(r)

U(r)

Intuition: Data and parameters can be approximately 

characterized by a small number of  hidden factors

“price” “quality”

17

𝐴 = 𝑈T𝑉 = ∑𝑈 𝑖 ⊗ 𝑉(𝑖)

user-rating sparse matrix A

??

# of parameters: 𝑛 × 𝑚 𝑛 + 𝑚 𝑟



Intuition and Explanations
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 Hidden properties associated with each word

Our Case: Approximate parameters (feature weights) via low-rank

≈ + ⋯ +

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …
similar values because 

“apple” and “banana” have 
similar syntactic behavior

 Share parameter values via the hidden properties

𝐴 = ∑𝑈 𝑖 ⊗ 𝑉 𝑖 ⊗𝑊 𝑖

parameter tensor A



Low-Rank Tensor Scoring: Summary

• Easily add and utilize new, auxiliary features 

• Naturally captures full feature expansion (concatenations) 
-- Without mannually specifying a bunch of feature templates

-- Simply append them as atomic features

Head Atomic

ate

VB

VB+ate

PRON

NN

person:I

number:singular

Emb[1]: -0.0128

Emb[2]: 0.5392

• Controlled feature expansion by low-rank (small r)
-- better feature tuning and optimization
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Combined Scoring

• Combining traditional and tensor scoring in 𝑆𝛾(𝑥, 𝑦):

𝛾 ⋅ 𝑆𝜃 𝑥, 𝑦 + 1 − 𝛾 ⋅ 𝑆𝑡𝑒𝑛𝑠𝑜𝑟 𝑥, 𝑦

Set of manual 
selected features

Full feature expansion 
controlled by low-rank 

Similar “sparse+low-rank” idea for matrix decomposition:
Tao and Yuan, 2011; Zhou and Tao, 2011;
Waters et al., 2011; Chandrasekaran et al., 2011

• Final maximization problem given parameters 𝜃, 𝑈, 𝑉,𝑊:

𝑦∗ = argmax
y∈𝑇(𝑥)

𝑆𝛾 𝑥, 𝑦; 𝜃, 𝑈, 𝑉,𝑊

𝛾 ∈ [0,1]
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Learning Problem

• Given training set D =  𝑥𝑖 ,  𝑦𝑖 𝑖=1
𝑁

• Search for parameter values that score the gold trees higher than others:

• The training objective:

∀𝑦 ∈ 𝐓𝐫𝐞𝐞 𝑥𝑖 : 𝑆  𝑥𝑖 ,  𝑦𝑖 ≥ 𝑆  𝑥𝑖 , 𝑦 +  𝑦𝑖 − 𝑦 − 𝜉𝑖

unsatisfied constraints 
are penalized against

Non-negative loss

min
𝜃,𝑈,𝑉,𝑊,𝜉𝑖≥0

𝐶 

𝑖

𝜉𝑖 + 𝑈 2 + 𝑉 2 + 𝑊 2 + 𝜃 2

Training loss Regularization

Calculating the loss requires to solve the expensive maximization problem;

Following common practices, adopt online learning framework.
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∑𝑖=1
𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖

is not linear nor convex
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(ii) choose to update a pair of sets 𝜃, 𝑈 ,  𝜃, 𝑉 or 𝜃,𝑊 :

min
∆𝜃,∆𝑈

1

2
∆𝜃 2 +

1

2
∆𝑈 2 + 𝐶𝜉𝑖

𝜃(𝑡+1) = 𝜃(𝑡) + ∆𝜃, 𝑈(𝑡+1) = 𝑈(𝑡) + ∆𝑈Increments:

Sub-problem:

Online Learning

• Use passive-aggressive algorithm (Crammer et al. 2006) tailored to our tensor 

setting

⋯  𝑥𝑖 ,  𝑦𝑖 ⋯ 𝑥1,  𝑦1  𝑥𝑁,  𝑦𝑁

(i) Iterate over training samples successively:

⋯

revise parameter values
for i-th training sample

Efficient parameter update via closed-form solution



Experiment Setup
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Datasets

 14 languages in CoNLL 2006 & 2008 shared tasks

Features

 Only 16 atomic word features for tensor

 Combine with 1st-order (single arc) and up to 3rd-order 
(three arcs) features used in MST/Turbo parsers

h m

h m s

g h m

g h m s

h m s t
… …



Experiment Setup
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 By default, rank of the tensor r=50

Implementation

 Train 10 iterations for all 14 languages

 3-way tensor captures only 1st-order arc-based features

Datasets

 14 languages in CoNLL 2006 & 2008 shared tasks

Features

 Only 16 atomic word features for tensor

 Combine with 1st-order (single arc) and up to 3rd-order 
(three arcs) features used in MST/Turbo parsers



Baselines and Evaluation Measure

MST and Turbo Parsers

representative graph-based parsers; 
use similar set of features

NT-1st and NT-3rd

variants of our model by removing the tensor component;
reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations
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Overall 1st-order Results

• > 0.7% average improvement 

• Outperforms on 11 out of 14 languages

87.76%

87.05%

86.50%

86.83%

85.5% 86.0% 86.5% 87.0% 87.5% 88.0%

Our Model

NT-1st

MST

Turbo
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Impact of Tensor Component

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor    (γ = 1)
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# Iterations



Impact of Tensor Component

• Tensor component achieves better generalization on test data

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor    (γ = 1)

• Tensor only (γ = 0)
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# Iterations



Impact of Tensor Component

• Tensor component achieves better generalization on test data

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor    (γ = 1)

• Tensor only (γ = 0)

• Combined   (γ = 0.3)

• Combined scoring outperforms single components
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# Iterations



Overall 3rd-order Results

89.08%

88.73%

88.66%

88.2% 88.5% 88.8% 89.1% 89.4%

Our Model

Turbo

NT-3rd
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• Our traditional scoring component is just as good as the state-of-the-art 
system



Overall 3rd-order Results

• The 1st-order tensor component remains useful on high-order parsing

• Outperforms state-of-the-art single system

• Achieves best published results on 5 languages

89.08%

88.73%

88.66%

88.2% 88.5% 88.8% 89.1% 89.4%

Our Model

Turbo

NT-3rd
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Leveraging Auxiliary Features

• Unsupervised word embeddings publicly available*

• Append the embeddings of current, previous and next words into 𝜙ℎ, 𝜙𝑚

English, German and Swedish have word embeddings in this dataset

𝜙ℎ ⊗𝜙𝑚 involves more than 50 × 3 2 values for 50-dimensional embeddings!

0

0.1

0.2

0.3

0.4

0.5

0.6

1st-order 3rd-order

Swedish German English

Abs. UAS improvement by adding embeddings

32* https://github.com/wolet/sprml13-word-embeddings

https://github.com/wolet/sprml13-word-embeddings


Conclusion

• Modeling: we introduced a low-rank tensor factorization 
model for scoring dependency arcs

• Learning: we proposed an online learning method that 
directly optimizes the low-rank factorization for parsing 
performance, achieving state-of-the-art results

• Opportunities & Challenges: we hope to apply this idea to 
other structures and NLP problems.

Source code available at:
https://github.com/taolei87/RBGParser
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Rank of the Tensor
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80.0

83.0

86.0

89.0

92.0

95.0

0 10 20 30 40 50 60 70

Japanese English Chinese Slovene



Choices of Gamma
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