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Abstract

The success of neural network models often comes at a cost of interpretability. This
thesis addresses the problem by providing justifications behind the model’s structure
and predictions.

In the first part of this thesis, we present a class of sequence operations for text
processing. The proposed component generalizes from convolution operations and
gated aggregations. As justifications, we relate this component to string kernels,
i.e. functions measuring the similarity between sequences, and demonstrate how it
encodes the efficient kernel computing algorithm into its structure. The proposed
model achieves state-of-the-art or competitive results compared to alternative archi-
tectures (such as LSTMs and CNNs) across several NLP applications.

In the second part, we learn rationales behind the model’s prediction by extracting
input pieces as supporting evidence. Rationales are tailored to be short and coherent,
yet sufficient for making the same prediction. Our approach combines two modular
components, generator and encoder, which are trained to operate well together. The
generator specifies a distribution over text fragments as candidate rationales and these
are passed through the encoder for prediction. Rationales are never given during
training. Instead, the model is regularized by the desiderata for rationales. We
demonstrate the effectiveness of this learning framework in applications such multi-
aspect sentiment analysis. Our method achieves a performance over 90% evaluated
against manual annotated rationales.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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1
Introduction

Deep learning and neural networks have become de facto top performing techniques

in the field of natural language processing, computer vision, and machine learning.

As methods, they require only limited domain knowledge to reach respectable per-

formance with increasing data and computation, yet permit easy architectural and

operational variations to explore and to tune for top performance. In natural language

processing (NLP) for instance, neural network models have been applied to applica-

tions such as sentiment classification, parsing, and machine translation among many

others, where carefully-chosen neural components such as long short-term memory

networks (LSTMs) [42] were shown to achieve state-of-the-art performance.

The improvement in performance, however, comes at the cost of interpretability

since complex neural models offer little transparency concerning their inner work-

ings. Consider text classification for example. A typical neural network model would

take the word vectors from the input text and apply non-linear transformations over

the vectors. The transformation process can be further repeated via recurrence or

recursion of the network, before reaching the final classification prediction. As a con-

sequence of this complicated procedure, the model often lacks a good explanation

or understanding of its computation. This could be problematic for developing new

methods to real-world applications. For example, researchers need understanding of

the computation and architecture in order to extend and improve the methods. In

addition, ordinary users often require justifications for the model’s prediction in many

application scenarios. Ideally, powerful neural models would not only yield improved

15



This beer pours ridiculously clear with tons of carbonation that 
forms a rather impressive rocky head that settles slowly into a 
fairly dense layer of foam. This is a real good lookin' beer, 
unfortunately it gets worse from here ... First, the aroma is kind 

of bubblegum-like and grainy. Next, the taste is sweet and 
grainy with an unpleasant bitterness in the finish. … … Overall, 
the fat weasel is good for a fairly cheap buzz, but only if you like 
your beer grainy and bitter.

Ratings

Look:    5 stars

Aroma:  2 stars

review with rationales

Figure 1-1: An example of product review and associated aspect ratings. Rationales
for each aspect rating are highlighted in the text.

performance, but also provide some interpretability in two regards:

∙ Intepretable Component: One kind of interpretability is being able to un-

derstand the fundamentals of certain neural models, including the architecture

and the inner computation. This is important since the success of neural meth-

ods is often contingent on specific operational and architectural choices of the

neural model. While it is possible to apply heuristic search over such choices

for good performance [7, 48, 5, 123], the procedure is extremely inefficient and

provide no experience on the applicability of the model. Hence, the expensive

search procedure has to repeat for every new application. In contrast, if a model

and the associated computation is better understood, we can effectively explore

the choices since the insight of the model would reveal whether the component

can work, and if not, what variations can work. Despite some recent efforts,

most understanding of neural NLP models is empirical, focusing on performance

analysis and visualization [33, 16, 51, 70]. To facilitate the development of NLP

models, it is necessary to design interpretable neural components that can be

both intuitively and theoretically justified.

∙ Interpretable Prediction: Another form of interpretability is being able to

provide human-readable justifications – rationales – that support the model’s

prediction. In many applications, such as medicine, predictions are used to drive

critical decisions, including treatment options. It is necessary in such cases to be

16



able to verify and understand the underlying basis for the decisions. In product

review analysis, for instance, users often want to know the reasons a product

gets a positive or negative rating. Figure 1-1 illustrates a product review along

with ratings on two categories or aspects. If a model in this case predicts such

ratings for the two aspects, it could also identify the three highlighted text

pieces as supporting rationales underlying the decisions. For example, the first

two pieces, “pours ridiculously clear with tons of carbonation” and “this is a real

good lookin’ beer”, explains the 5-star rating on the appearance aspect.

In this dissertation, I present several deep learning techniques to address the above

interpretability challenges. First, I present and analyze a new class of neural oper-

ations that is specifically designed for sequential data such as text. The operation

builds on traditional convolution operation [62], but incorporates two modifications

that improve empirical performance on several NLP tasks. Further more, this compo-

nent can be theoretically interpreted as a parameterized function in the reproducing

kernel Hilbert space (RKHS) of string kernels. This connection provides deeper un-

derstanding of the network and explains its effectiveness on sequential modeling tasks.

Secondly, with such operational component as the building block, I design a novel

model framework and the associated learning method for prediction interpretability.

The framework incorporates rationale generation as an integral part of the overall

learning problem. The learning method optimizes the model so as to produce accu-

rate predictions and concise rationales from the input.

I briefly describe these techniques and the evaluation below.

17



1.1 Interpretable Neural Component

Recurrent Convolution Our proposed interpretable component extends tradi-

tional convolutional neural networks to better adapt it to text processing. CNNs

for text applications make use of temporal convolution operators or filters. Simi-

lar to image processing, they are applied at multiple resolutions, interspersed with

non-linearities and pooling. The convolution operation itself is a linear mapping over

“n-gram vectors” obtained by concatenating consecutive word (or character) represen-

tations. We argue that this basic building block can be improved in two important

respects. First, many useful patterns are expressed as non-consecutive phrases, such

as semantically close multi-word expressions (e.g., “not that good”, “not nearly as

good”). In typical CNNs, such expressions would have to come together and emerge

as useful patterns after several layers of processing. Secondly, the power of n-grams

derives precisely from multi-way interactions and these are clearly missed (initially)

with linear operations on stacked n-gram vectors. Hence, a non-linear mapping could

potentially capture more interaction between n-grams, and improve the performance

in the target task [78, 52, 97].

We propose to apply feature extraction and aggregation over all n-grams that

are not necessarily contiguous in the sequence. This operation, which we call recur-

rent convolution, can be performed efficiently in a recurrent manner via a dynamic

programming-style implementation. In addition, we employ a feature extraction op-

eration based on tensor products over word vectors, which enables us to directly

tap into non-linear interactions between adjacent words. Figure 1-2 illustrates and

compares the traditional convolutions and the modified version.

We evaluate models built from recurrent convolution components on several NLP

tasks such as sentiment prediction and language modeling. Our model obtains state-

of-the-art performance over many competitive baselines such as CNNs, GRUs and

LSTMs [42, 16, 50, 55, 105, 97].

Theoretical Interpretation In addition to the intuitive justification and empir-

ical evaluation, we also theoretically relate the inner working (computation) of the

18



not that goodthe movie is

not that goodthe movie is not that goodthe movie is

Traditional convolutions

• sliding window from left to right
• extract n-gram patterns
• n-gram has to be consecutive
• convolution operation is linear

Modified for sequential data

convolution operation applies to all n-grams that are not necessarily 
contiguous and the operation can be non-linear

Figure 1-2: An illustration of traditional convolution operation and the recurrent
convolution. The former uses a fixed-size sliding window that moves from left to right,
and extracts features within the window (i.e. local context). The recurrent version
works in a recurrent manner to pull n-gram features that may not be consecutive. In
addition, the feature mapping could be non-linear.
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recurrent convolution module to traditional kernel methods such as string kernel [71].

This result follows recent work that shows the connection between kernels and feed-

forward neural networks [35, 120]. In particular, we show that prediction functions

constructed by recurrent convolutions lie in the reproducing kernel Hilbert space

(RKHS) of string kernel (or its composition with other kernel functions when non-

linear activation is involved). Training the neural model of this kind thus can be

understood as seeking a good predictor in the space introduced by a kernel, while

posing additional dimension-reduction constraint (due to fixed hidden dimension size

and number of parameters). This explains the empirical effectiveness of our compo-

nent for sequential model since string kernels are naturally functions measuring the

similarity between sequences. Dimension reduction also explains the better general-

ization of the model – it is a regularization technique that was shown useful in many

previous work [63, 99, 100, 27, 65].

20



1.2 Interpretable Prediction

Extractive Rationale Generation Prediction without justification has limited

applicability. As a remedy, we propose a novel approach that learns to provide

human-readable rationales as the basis of the model prediction. We formulate ra-

tionale generation as an integral part of the overall learning problem. We limit our-

selves to extractive (as opposed to abstractive) rationales. From this perspective, our

rationales are simply subsets of the words from the input text that satisfy two key

properties. First, the selected words represent short and coherent pieces of text (e.g.,

phrases) and, second, the selected words must alone suffice for prediction as a sub-

stitute of the original text. In most practical applications, rationale generation must

be learned entirely in an unsupervised manner. We therefore assume that our model

with rationales is trained on the same data as the original neural models, without

access to additional rationale annotations. In other words, target rationales are never

provided during training; the intermediate step of rationale generation is guided only

by the two desiderata discussed above.

Encoder-Generator Framework As shown in Figure 1-3, our model is composed

of two modular components that we call the generator and the encoder. Our generator

specifies a distribution over possible rationales (extracted text) and the encoder maps

any such text to task specific target values. They are trained jointly to minimize a

cost function that favors short, concise rationales while enforcing that the rationales

alone suffice for accurate prediction.

The framework is evaluated on several real-world applications and datasets such

as multi-aspect sentiment analysis on beer reviews [74]. Our approach outperforms

attention-based baseline and others by a significant margin. For instance, the beer

review corpus contains human annotation which identifies, for each aspect, the sen-

tence(s) that relate to this aspect. We can therefore directly evaluate our extracted

rationales using such annotation. Our model achieves extraction accuracy of 96%,

as compared to 38% and 81% obtained by the bigram SVM and a neural attention

baseline.
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z

Generator gen(x)

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

Input x

Encoder enc(z)

positivenegative neutral

Prediction y

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

Distribution over possible rationales P(z|x)

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.8

0.02

0.1

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.01

…

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.05

Figure 1-3: An overview of the model framework for learning rationales. The genera-
tor module takes the original input and produces a distribution of possible rationales,
e.g. possible word segments to extract. The encoder module takes the selected ratio-
nale and makes the prediction for the target task. The two components are optimized
jointly during training.
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1.3 Contributions

The primary contributions of this work are:

∙ Designing neural components for text We propose a class of sequence com-

ponent for text processing, i.e. mapping texts into vector representations. The

component generalizes from convolution operations and gated aggregations. Its

empirical performance is competitive or superior compared to other convolu-

tional or recurrent alternatives across a range of NLP tasks.

∙ Theoretically justifying the component We provide theoretical justifica-

tions that support the empirical success of the proposed architecture. Specifi-

cally, we relate this component to string kernels, i.e., functions measuring the

similarity between sequences, and demonstrate how it encodes the efficient ker-

nel computing algorithm into its structure.

∙ Rationalizing neural predictions We present a prototype framework that

learns to provide supporting evidence (as rationales) for the model’s prediction.

The framework is modular and flexible for the choice of neural networks and

the target applications. The model can be trained in unsupervised fashion, in

the sense that no additional rationale annotations are required. We demon-

strate both quantitatively and qualitatively the feasibility and effectiveness of

the framework in various NLP applications.

We believe our work would benefit neural network-based applications and future re-

search. The idea of incorporating specific algorithms and computations (e.g. kernel

and dynamic programming) into the NN structure would help develop new compo-

nents with known interpretation, therefore provide guidance of its applicability. The

rationale framework would help researchers and even ordinary users to better under-

stand, verify and communicate with advanced neural models.
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1.4 Outline

The rest of this thesis is organized as follows:

∙ Chapter 2 describes our novel neural component for sequence modeling, and

presents theoretical and empirical studies of this neural component.

∙ Chapter 3 presents our rationale generation framework and the associated

training algorithm for learning the supporting evidence of a model’s prediction.

∙ Chapter 4 concludes the thesis, and discusses a few directions of future work.

We include algorithm derivations, theorem proofs and experimental details in the

appendices.

24



2
From Kernels to Neural Models

In this chapter, we present a class of neural operation designed for text and sequen-

tial data in general. After briefly introducing traditional convolution operation, we

tailor this operator for sequential data. We then provide theoretical interpretation

of the new component by relating it to sequence kernel. Finally we demonstrate the

empirical performance of the component in various NLP applications.

2.1 Introduction

The success of deep learning (and neural networks) often derives from well-chosen

neural components as the building blocks. In applications where the data is sequential,

the most fundamental blocks (and the associated operations) are perhaps feature

extraction and aggregation. Considering CNNs as the example, the two operations

are performed via temporal convolutions, which typically consist of feature mapping

(filters) and poolings such as max-pooling and average-pooling. Similarly, RNNs

utilize neural gates as the building block for feature aggregation, which adaptively

learn to store or discard features. Indeed, many well-adopted RNN variants such as

LSTMs and GRUs employ gatings in their internal architecture.

Despite the great empirical success in text and speech applications, there is little

(theoretical) understanding of such sequential models and components. Most of the

prior work has focused on intuitive explanation and empirical evaluation of the model,

while theoretical interpretations and justifications are rarely provided. In contrast,
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feed-forward neural nets have been successfully analyzed [80, 35, 53, 83]. For instance,

the expressive power and classification margin of deep rectifier networks have been

studied [1]. More recently, Zhang et al. [120] showed that feed-forward nets with

certain activations belong to the space (reproducing kernel Hilbert space) of kernel

functions. Not surprisingly, such discovery leads to the development of new promising

neural components or models [2, 119].

We aim to fill the gap for neural sequential models by introducing an operational

component called recurrent convolution that can be both empirically and theoreti-

cally justified. Derived from traditional convolutions, the component is tailored for

text and other sequential data, coupling feature mapping and sequential aggrega-

tion together. Specifically, the feature mapping is applied over all n-grams in the

sequence, including those that are not contiguous. The intuition behind this is that

many sequential patterns are non-consecutive expressions, such as semantically close

multi-word phrases (e.g. “not that good”, “not nearly as good”). Feature aggregation

is performed (by summing) over all possible n-grams with a exponentially decaying

weight depending on the length of the n-gram span. The decaying factor can be either

constant (as in string kernel) or adaptive controlled by a neural gate (as in RNNs).

Owing to a dynamic programming-style implementation, this aggregation can run

efficiently in a recurrent manner, linear to the length of the sequence.

We relate recurrent convolution to kernel methods (in particular, string ker-

nels [71]), therefore providing a theoretical basis for its empirical effectiveness. We

show that the predictor constructed by one or multiple layers of recurrent convolu-

tions (with constant decay) lie in the reproducing kernel Hilbert space (RKHS) of

string kernel (and/or its composition with other kernel functions when non-linear ac-

tivation is involved). Training a neural model of this kind hence can be viewed as

seeking a good predictor in the space introduced by a kernel, while posing additional

dimension-reduction constraint (due to fixed hidden dimension and number of param-

eters). The results follow and reinforce recent work that demonstrate the connection

between feed-forward networks and kernels [35, 120].

We empirically demonstrate the effectiveness of our neural component in several
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NLP applications. In the first application, we train neural language models by ap-

plying recurrent convolution similarly to other RNN models such as LSTMs. On the

Penn Tree Bank (PTB) dataset, our model variants achieve 69∼77 perplexities, being

competitive or better compared to state-of-the-art neural language models. In the

seond application, we evaluate our model on text classification tasks. On the Stan-

ford Sentiment Treebank dataset, our model obtains the best performance among a

variety of neural networks. For example, our best model achieves 53.2% accuracy on

fine-grained classification and 89.9% on binary classification, outperforming the deep

recursive model [103] and convolutional model [55]. Finally, in the third application,

we compare our model with other alternatives on text retrieval task. In particular,

all neural models are used as encoders to assess the similarity between text pieces

(after being encoded as vectors using the neural nets). The models are compared on

the testbed constructed from AskUbuntu question-answering forum. Our full model

achieves a MRR of 75.6% and P@1 of 62.0%, yielding 8% absolute improvement over

a standard IR baseline, and 4% over standard neural network architectures (including

CNNs, LSTMs and GRUs).

The remainder of this chapter is organized as follows. We first describe related

prior work on deep learning in Section 2.2. In Section 2.3 we detail the proposed op-

erational component with background, intuitive explanation and formula derivation.

Section 2.4 further establishes the theoretical interpretation of the component. We

describe applications and accompanied evaluations in Section 2.5.
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2.2 Related Work

2.2.1 Neural Networks for NLP

Deep neural networks have recently brought about significant advancements in nat-

ural language processing, such as language modeling [8, 76], sentiment analysis [97,

45, 60], syntactic parsing [18, 94, 10] and machine translation [4, 24, 102] among

many others. Models applied in these tasks exhibit significant architectural differ-

ences. Broadly speaking, the neural architectures range from convolutional neural

nets (CNNs) [18, 19, 114, 93, 118], recurrent neural networks (RNNs) [76, 49] and

also recursive networks [85, 58]. Of course, the distinctions are not clear-cut since

various architectures can be integrated into a single model and combined with other

operational blocks such as neural attention. Nevertheless, we summarize various prior

work based on this division in the following paragraphs.

Convolutional neural nets Our work most closely relates to convolutional net-

works. Originally been developed for computer vision [62], CNNs make use of convo-

lution operations (filters) with pooling and layer-stacking to learn features at different

levels of abstraction. To adopt CNNs in NLP applications, a number of modifications

have been explored. For instance, Collobert et al. [19] use the max-over-time pool-

ing operation to aggregate the features over the input sequence. This variant has

been successfully applied to semantic parsing [114] and information retrieval [93, 31].

Kalchbrenner et al. [50] instead propose (dynamic) k-max pooling operation for mod-

eling sentences. In addition, Kim [55] combines CNNs of different filter widths and

either static or fine-tuned word vectors. In contrast to the traditional CNN models,

the recurrent convolution component we proposed considers non-consecutive n-grams

thereby expanding the representation capacity of the model. We also consider non-

linear interactions within n-gram snippets through the use of tensors, moving beyond

direct linear projection operator used in standard CNNs. As our experiments demon-

strate these advancements result in improved performance.
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Recurrent neural nets While traditional CNNs decouples feature extraction and

aggregation operations (i.e. convolution and pooling) as separate procedures, recur-

rent neural networks perform both jointly by successively transforming each input

token and updating the internal feature representation (i.e. hidden states). To this

end, RNN unit is a parameterized function that produces new state values given the

old ones and the current input. In early work, the choice of RNN function is simply

a linear transformation followed by element-wise activation, such as in RNN-based

neural language model [76]. However, the simple unit often fail to produce competi-

tive performance. More complicated and advanced architectures have therefore been

adopted recently, including long short-term memory unit (LSTM) [42] and gated re-

current unit (GRU) [14, 16] for example. LSTMs and GRUs have become successful

sequence modeling components in a wide range of NLP applications, such as clas-

sification [9, 21, 89], tagging [44], language generation and translation [4, 91]. Our

sequence component relates to standard recurrent units in twofold. First, our recur-

rent convolution component (RCNN) performs feature aggregation similarly in the

sense that it maintains feature representations as hidden state values and updates

them after each input token. Second, the decaying factor for feature aggregation can

be controlled by neural gates, similar to LSTMs and GRUs.

Recursive neural nets Sometimes it is necessary to learn distributed representa-

tions of structures, such as syntax trees and logic forms. Recursive neural networks

are introduced to explicitly model structures. In recursive nets, the representations of

nodes (e.g. tokens in the tree) are transformed into the representation of the parent,

following the topological order (e.g. bottom-up order in the tree). Example appli-

cations of recursive neural networks includes syntactic parsing [94, 96], sentiment

analysis [97, 38, 103], image retrieval [98] and question answering [44]. Li et al. [69]

compare recurrent models and recursive models in various applications in order to

better understand in which cases the latter is more applicable. Our proposed com-

ponent is motivated by sequence-based techniques such as string kernel, and hence

is more similar to recurrent architecture. However, we note that the idea can be

29



naturally extended beyond sequential structures, for instance trees, by incorporating

tree kernel into the NN structure.

2.2.2 Understanding Neural Networks

The empirical success of deep learning has motivated a great deal of research to better

understand neural networks. The focus of this research direction is mostly twofold.

First, parameterized functions represented as neural networks are neither convex nor

concave. Optimizing such functions, in general, is believed to be computationally

quite challenging. Nevertheless, training neural networks with randomly initialized

parameters seems stable and delivers superior performance in practice. As a result,

many recent work has been dedicated to better explain the phenomena. Secondly, a

lot of empirical results have suggested that neural architectures, especially deeper net-

works, possess much more expressive power compared to traditional (perhaps simpler)

methods. Hence, to justify the empirical success, the expressive capability of neural

networks has been separately addressed, despite their own optimization challenge.

We discuss some related work of the two categories in subsequent paragraphs.

Difficulty of Learning Gradient-based methods [26, 57, 117, 113] has been the

dominant method of choice for optimizing neural networks. While these methods

are known to converge to local optima, they turned to perform surprisingly well in

practice. Recent work attempts to provide answers for such observations by analyzing

the loss surface of deep neural networks [22, 15]. Based on results from random

matrix theory and empirical evidence, they conjectured that the major difficulty of the

optimization originates from saddle points (critical points) rather than local minima.

That is, local minima are close enough to the global minimum, and the optimization

method has to escape saddle points in order to reach those minima. In fact, recent

work has proved this conjecture under simplified conditions. For example, Kawaguchi

[53] showed that any local optimum is global optimum in deep linear networks. Hardt

and Ma [34] proved that there are no saddle points for deep residual linear networks

under similar circumstances.
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Another practical challenge of optimizing neural models is gradient vanishing, es-

pecially for recurrent neural networks [82]. During backward propagation of the train-

ing error [90], the scale of the gradient tends to decrease (and vanish) after each layer.

Hence, a sequence model can fail to capture long-term dependencies, since training

signals are not even propagated for a long range at the first place. To this end, neu-

ral gates have been adopted and shown to alleviate this issue, such as in LSTMs and

GRUs. With an identity connection (scaled by the neural gate) to the previous states,

gradient weights are passed more directly during back-propagation. In our proposed

recurrent convolution component, the state values (i.e. feature representations) are

aggregated and updated through the decaying factor, which is architecturally similar

to those neural gates. In this sense, learning of our component is no harder than that

of other alternative structures.

Expressive Power of Neural Nets In addition to the learning problem, a lot of

work has focused on understanding the expressive capability of neural networks. For

example, the decision boundary (e.g. classification regions) of deep feed-forward net-

works can grow exponentially with the number of the layers [80, 83]. As a conjecture,

functions that can be represented by deeper networks are not easily represented by

shallow models [23]. For instance, Cohen et al. [17] proved this result for a specific

CNN variant (SimNets) using matrix algebra and measure theory. Another line of

research demonstrates the connection between neural nets and kernels [35, 120]. For

instance, Zhang et al. [120] showed that predictor functions represented as deep feed-

forward networks belong to the reproducing kernel Hilbert space (RKHS) of recursive

kernels, under practical assumptions.

Theoretical understanding of existing models often lead to the development of new

(neural) methods [1, 2, 119]. Our work in this sense is motivated by kernel methods,

and share similar spirit with the recent progress on neural networks [104, 120]. For

instance, Tamar et al. [104] encodes value iteration algorithm into the proposed neural

component, while our component integrates the dynamic programming implementa-

tion of string kernels, therefore expanding the computational and expressive power of
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traditional convolutional networks. In addition, following Zhang et al. [120], we also

show that our component indeed learns a function from the RKHS of string kernels,

and/or the RKHS of generalized (resursive) string kernels when a deeper architecture

is employed.
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2.3 Model

In this section, we present our recurrent convolution component (RCNN) for sequence

modeling. We begin by briefly describing traditional convolution operation in the

context of text processing, and then introduce recurrent convolution to encode non-

consecutive n-gram features. Thereafter, we proceed to derive an efficient way to

compute feature mappings via dynamic programming.

2.3.1 Background

Let x1, · · · ,x𝐿 ∈ R𝑑 be the input sequence such as a document or sentence. Here 𝐿

is the length of the sequence and each x𝑖 is a vector representing the 𝑖𝑡ℎ word. The

(consecutive) n-gram vector ending at position 𝑗 is obtained by simply concatenating

the corresponding word vectors i.e., v𝑗 := [x𝑗−𝑛+1;x𝑗−𝑛+2; · · · ;x𝑗]. Note here, out-

of-index words are simply set to all zeros.

The traditional convolution operator is parameterized by filter matrix W ∈ Rℎ×𝑛𝑑

which can be thought of as 𝑛 smaller filter matrices, i.e. W(𝑖) ∈ Rℎ×𝑑, 𝑖 ∈ {1, .., 𝑛}.

These smaller matrices are applied to each x𝑖 in vector v𝑗 to obtain a (linearly)

transformed representation Wv𝑗 ∈ Rℎ:

Wv𝑗 :=
𝑛∑︁

𝑖=1

W(𝑖)x𝑗−𝑛+𝑖

For the entire sequence level, the operator maps each n-gram vector v𝑗 in the input

sequence to Wv𝑗 ∈ Rℎ so that the input sequence x is transformed into a sequence

of feature representations,

[Wv1, · · · ,Wv𝐿] ∈ R𝐿×ℎ

The resulting feature values are often passed through non-linearities such as the

hyper-tangent (element-wise) as well as aggregated or reduced by “sum-over” or “max-

pooling” operations for later (similar stages) of processing.

33



The overall architecture can be easily modified by replacing the basic n-gram vec-

tors and the convolution operation with other feature mappings. Indeed, we introduce

two possible modifications which we believe can better capture feature interaction

within a sequence. These two modifications are detailed in the next two sub-sections.

2.3.2 Non-consecutive N-gram Features

Traditional convolution uses consecutive n-grams in the feature map. Non-consecutive

n-grams may nevertheless be helpful since phrases such as “not good”, “not so good”

and “not nearly as good” express similar sentiments but involve variable spacings

between the key words. Variable spacings are not effectively captured by fixed n-

grams.

We apply the feature-mapping in a weighted manner to all n-grams thereby gaining

access to patterns such as “not ... good”. For example, let z[𝑖, 𝑗, 𝑘] ∈ Rℎ denote the

feature representation corresponding to a 3-gram (x𝑖,x𝑗,x𝑘) of words in positions 𝑖,

𝑗, and 𝑘 along the sequence. This vector is calculated as,

z[𝑖, 𝑗, 𝑘] = W(1)x𝑖 + W(2)x𝑗 + W(3)x𝑘

We will aggregate these vectors into an ℎ−dimensional feature representation at each

position in the sequence. The idea is similar to neural bag-of-words models where

the feature representation for a document or sentence is obtained by averaging (or

summing) of all the word vectors. In our case, we define the aggregate representation

z3[𝑡] in position 𝑡 as the weighted sum of all 3-gram feature representations ending

exactly at position 𝑡, i.e.,

z3[𝑡] =
∑︁

𝑖<𝑗<𝑘=𝑡

z[𝑖, 𝑗, 𝑘] · 𝜆(𝑘−𝑗−1)+(𝑗−𝑖−1)

=
∑︁

𝑖<𝑗<𝑘=𝑡

z[𝑖, 𝑗, 𝑘] · 𝜆𝑘−𝑖−2 (2.1)

where 𝜆 ∈ [0, 1) is a decay factor that down-weights 3-grams with longer spans (i.e.,
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3-grams that skip more in-between words). The way of feature aggregation is not

unique. For instance, we can alternatively sum over 3-gram features up to position

𝑡, including those in previous positions. We denote this aggregate representation as

c3[𝑡], and compute it similarly with the decay factor 𝜆,

c3[𝑘] =
∑︁

𝑖<𝑗<𝑘≤𝑡

z[𝑖, 𝑗, 𝑘] · 𝜆(𝑡−𝑘)+(𝑘−𝑗−1)+(𝑗−𝑖−1)

=
∑︁

𝑖<𝑗<𝑘≤

z[𝑖, 𝑗, 𝑘] · 𝜆𝑡−𝑖−2 (2.2)

where an extra term 𝜆(𝑡−𝑘) is introduced to penalize 3-grams which end before the

target position 𝑡 (hence skipping words after).

Notice that, as 𝜆 → 0 all non-consecutive 3-grams are omitted, c3[𝑡] = z3[𝑡] =

z[𝑡−2, 𝑡−1, 𝑡], and the model acts like a traditional convolution with only consecutive

n-grams. When 𝜆 > 0, however, c3[𝑡] and z3[𝑡] are weighted averages of many 3-grams

with variable spans.

2.3.3 Non-linear Feature Mapping

Typical 𝑛−gram feature mappings (Sec 2.3.1) where concatenated word vectors are

mapped linearly to feature coordinates may be insufficient to directly capture relevant

information in the 𝑛−gram. As a remedy, we replace concatenation with a tensor

product. Consider again a 3-gram (x1,x2,x3) and the corresponding tensor product

x1⊗x2⊗x3. The result of the tensor product is a 3-way array of coordinate interactions

such that each 𝑖𝑗𝑘 entry of the tensor is given by the product of the corresponding

coordinates of the word vectors

(x1 ⊗ x2 ⊗ x3)𝑖𝑗𝑘 = 𝑥1𝑖 · 𝑥2𝑗 · 𝑥3𝑘

Here ⊗ denotes the tensor product operator. The tensor product of a 2-gram analo-

gously gives a two-way array or matrix x1 ⊗ x2 ∈ R𝑑×𝑑. The n-gram tensor can be
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seen as a direct generalization of the typical concatenated vector1.

Tensor-based non-linear mapping Since each n-gram in the sequence is now

expanded into a high-dimensional tensor using tensor products, the set of filters are

analogously maintained as high-order tensors. In other words, our filters are linear

mappings over the higher dimensional interaction terms rather than the original word

coordinates.

Consider mapping the 3-gram (x1,x2,x3) into a feature representation. Each filter

is a 3-way tensor with dimensions 𝑑 × 𝑑 × 𝑑. The set of ℎ filters, denoted as 𝑇 , is a

4-way tensor of dimension 𝑑× 𝑑× 𝑑× ℎ, where each 𝑑3 slice of 𝑇 represents a single

filter and ℎ is the number of such filters, i.e., the feature dimension. The resulting

ℎ−dimensional feature representation z ∈ Rℎ for the 3-gram (x1,x2,x3) is obtained

by multiplying the filter T and the 3-gram tensor as follows. The 𝑙𝑡ℎ coordinate of z

is given by

𝑧𝑙 =
∑︁
𝑖𝑗𝑘

T𝑖𝑗𝑘𝑙 · (x1 ⊗ x2 ⊗ x3)𝑖𝑗𝑘

=
∑︁
𝑖𝑗𝑘

T𝑖𝑗𝑘𝑙 · 𝑥1𝑖 · 𝑥2𝑗 · 𝑥3𝑘 (2.3)

The formula is equivalent to summing over all the third-order polynomial interaction

terms where tensor T stores the coefficients.

Directly maintaining the filters as full tensors leads to parametric explosion. In-

deed, the size of the tensor T (i.e. 𝑑𝑛 × ℎ) would be too large even for typical

low-dimensional word vectors where, e.g., 𝑑 = 300. To this end, we assume a low-

rank factorization of the tensor T, represented in the Kruskal form. Specifically, T is

decomposed into a sum of ℎ rank-1 tensors

T =
ℎ∑︁

𝑟=1

W(1)
𝑟 ⊗W(2)

𝑟 ⊗W(3)
𝑟 ⊗O𝑟

1To see this, consider word vectors with a “bias” term x𝑖
′ = [x𝑖; 1]. The tensor product of n such

vectors includes the concatenated vector as a subset of tensor entries but, in addition, contains all
up to 𝑛th-order interaction terms.
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where W(𝑖) ∈ Rℎ×𝑑, 𝑖 = 1, .., 3 are smaller parameter matrices similar to those used in

a linear filter (shown later), and O ∈ Rℎ×ℎ is an output matrix (with respect to the

last mode of our tensor T). W
(𝑖)
𝑟 (and O𝑟) denotes the 𝑟𝑡ℎ row of the matrix. Note

that, for simplicity, we have assumed that the number of rank-1 components in the

decomposition is equal to the feature dimension ℎ. We could optionally set O = I

(i.e. the identity matrix) for simplicity as well. These assumptions would not affect

subsequent algorithm derivations or analyses. Plugging the low-rank factorization

into Eq.(2.3), the feature-mapping can be rewritten in a vector form as

z = O⊤ (︀W(1)x1 ⊙W(2)x2 ⊙W(3)x3

)︀
(2.4)

= W(1)x1 ⊙W(2)x2 ⊙W(3)x3 (when O set to I)

where ⊙ is the element-wise product such that, e.g., (a ⊙ b)𝑘 = 𝑎𝑘𝑏𝑘 for a,b ∈ R𝑚.

Note that while W(1)x1 (similarly W(2)x2 and W(3)x3) is a linear mapping from each

word x1 (similarly x2 and x3) into a ℎ-dimensional feature space, higher-order terms

and non-linearity arise from the element-wise products.

Table 2.1 summarizes the proposed operations (modifications) for recurrent convo-

lutions. Those equations are presented in the case of 3-grams for ease of reading, but

can be extended to in general to any case of n-grams. We also present the normalized

version of feature aggregation, in which the factors 𝑍3[𝑡] and 𝐶3[𝑡] are introduced so

the weights of z[𝑖, 𝑗, 𝑘] terms sum to one.

2.3.4 Recurrent Computation via Dynamic Programming

Directly calculating z3[·] and c3[·] shown in Table 2.1 by enumerating all 3-grams

would require 𝑂(𝐿2) and 𝑂(𝐿3) feature-mapping operations respectively. In general,

directly enumerating all n-grams would require 𝑂(𝐿𝑛) operations. We can, however,

evaluate the features more efficiently by relying on the associative and distributive

properties of the feature operation.

The efficient way of computing z3[·] and c3[·] can be derived and implemented

via dynamic programming (i.e. breaking the problem into a series of smaller sub-
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Feature mapping:

z[𝑖, 𝑗, 𝑘] = W(1)x𝑖 + W(2)x𝑗 + W(3)x𝑘 (additive)

z[𝑖, 𝑗, 𝑘] = W(1)x𝑖 ⊙W(2)x𝑗 ⊙W(3)x𝑘 (multiplicative)

z[𝑖, 𝑗, 𝑘] = O⊤ (︀W(1)x𝑖 ⊙W(2)x𝑗 ⊙W(3)x𝑘

)︀
(multiplicative, with O)

Aggregation:

z3[𝑡] =
∑︁
𝑖<𝑗<𝑡

z[𝑖, 𝑗, 𝑡] · 𝜆𝑡−𝑖−2 (exactly at position t)

c3[𝑡] =
∑︁

𝑖<𝑗<𝑘≤𝑡

z[𝑖, 𝑗, 𝑘] · 𝜆𝑡−𝑖−2 (up to position t)

Normalized Aggregation:

z3[𝑡] =
∑︁
𝑖<𝑗<𝑡

z[𝑖, 𝑗, 𝑡] · 𝜆
𝑡−𝑖−2

𝑍3[𝑡]
(exactly at position t)

𝑍3[𝑡] =
∑︁
𝑖<𝑗<𝑡

𝜆𝑡−𝑖−2

c3[𝑡] =
∑︁

𝑖<𝑗<𝑘≤𝑡

z[𝑖, 𝑗, 𝑘] · 𝜆
𝑡−𝑖−2

𝐶3[𝑡]
(up to position t)

𝐶3[𝑡] =
∑︁

𝑖<𝑗<𝑘≤𝑡

𝜆𝑡−𝑖−2

Table 2.1: A summarization of proposed operations in RCNN for 3-grams. Compared
to the traditional convolution, the feature mapping operation can be multiplicative
(and hence non-linear) to model interactions between (x𝑖,x𝑗,x𝑘), and feature aggre-
gation is performed over all n-gram combinations. 𝑍3[𝑡] and 𝐶3[𝑡] are normalization
factors that eliminate the bias introduced by sequence length.
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problems). Specifically, consider computing z3[𝑡] and c3[𝑡] for the multiplicative map-

ping (Table 2.1, second equation). Plugging the feature mapping equation into the

aggregation equation, we obtain,

z3[𝑡] =
∑︁
𝑖<𝑗<𝑡

𝜆𝑡−𝑖−2 ·
(︀
W(1)x𝑖 ⊙W(2)x𝑗 ⊙W(3)x𝑡

)︀
c3[𝑡] =

∑︁
𝑖<𝑗<𝑘≤𝑡

𝜆𝑡−𝑖−2 ·
(︀
W(1)x𝑖 ⊙W(2)x𝑗 ⊙W(3)x𝑘

)︀
As auxiliary dynamic programming tables (sub-problems), we can analogously define

z1[𝑡] and z2[𝑡] (similarly c1[𝑡] and c2[𝑡]) for 1-grams and 2-grams respectively,

z1[𝑡] = W(1)x𝑡

c1[𝑡] =
∑︁
𝑖≤𝑡

𝜆𝑡−𝑖 ·W(1)x𝑖

z2[𝑡] =
∑︁
𝑖<𝑡

𝜆𝑡−𝑖−1 ·
(︀
W(1)x𝑖 ⊙W(2)x𝑡

)︀
c2[𝑡] =

∑︁
𝑖<𝑗≤𝑡

𝜆𝑡−𝑖−1 ·
(︀
W(1)x𝑖 ⊙W(2)x𝑗

)︀
These dynamic programming tables can be computed in a recurrent manner , ac-

cording to the following formulas:

z1[𝑡] = W(1)x𝑡

c1[𝑡] = 𝜆 · c1[𝑡− 1] + z1[𝑡]

z2[𝑡] = c1[𝑡− 1]⊙W(2)x𝑡

c2[𝑡] = 𝜆 · c2[𝑡− 1] + z2[𝑡]

z3[𝑡] = c2[𝑡− 1]⊙W(3)x𝑡

c3[𝑡] = 𝜆 · c3[𝑡− 1] + z3[𝑡]

The derivation of this DP algorithm for any n-grams is presented in Appendix A.1.
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Note for c𝑖[𝑡] terms, we can substitute z𝑖[𝑡] with the corresponding right hand side

term to remove the dependence on z𝑖[𝑡]. That is,

c1[𝑡] = 𝜆 · c1[𝑡− 1] + W(1)x𝑡

c2[𝑡] = 𝜆 · c2[𝑡− 1] +
(︀
c1[𝑡− 1]⊙W(2)x𝑡

)︀
c3[𝑡] = 𝜆 · c3[𝑡− 1] +

(︀
c2[𝑡− 1]⊙W(3)x𝑡

)︀
As we can see, the above formulas are structurally similar to those recurrent formulas

used in RNNs. As a final refinement, we will apply element-wise activations after

each representation, similar to standard CNNs and RNNs, i.e. h[𝑡] = 𝑔 (c3[𝑡])
2 for a

selected activation function 𝑔() such as tanh() and ReLU().

The recurrent computation for other choices of feature mapping and aggregation

listed in Table 2.1 can be derived similarly, and only differs from the above version

very slightly. We present various implementations in Table 2.2. Overall, the n-

gram feature aggregation can be performed in 𝑂(𝐿𝑛) matrix multiplication/addition

operations, and remains linear in the sequence length.

2.3.5 Extensions

We discuss a few extensions of RCNNs in this section. One is a gated version which

uses neural gates to learn adaptive decay weights from the context. Another one uses

max-pooling instead of weighted average-pooling for feature aggregation.

Adaptive Gated Decay We refine RCNNs by learning context dependent decay

weights. For example, if the current input word provides no relevant information (e.g.,

symbols, functional words), the model should ignore it by incorporating the token

with a vanishing weight. In contrast, important content words (such as sentiment

words “good” and “bad” for sentiment analysis) should be included with much larger

weights. To achieve this effect we introduce neural gates similar to LSTMs to specify

2We can alternatively use z[𝑡] instead of c[𝑡] as the input to the activation function, when we are
only interested in n-gram features exactly ends at position 𝑡.
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Recurrent computation of RCNN:

(a) Multiplicative mapping, aggregation un-normalized:

c1[𝑡] = 𝜆 · c1[𝑡− 1] +W(1)x𝑡 z1[𝑡] = W(1)x𝑡

c2[𝑡] = 𝜆 · c2[𝑡− 1] +
(︁
c1[𝑡− 1]⊙W(2)x𝑡

)︁
z2[𝑡] = c1[𝑡− 1]⊙W(2)x𝑡

c3[𝑡] = 𝜆 · c3[𝑡− 1] +
(︁
c2[𝑡− 1]⊙W(3)x𝑡

)︁
z3[𝑡] = c2[𝑡− 1]⊙W(3)x𝑡

(b) Multiplicative mapping, aggregation normalized:

c1[𝑡] = 𝜆 · c1[𝑡− 1] + (1− 𝜆) ·W(1)x𝑡 z1[𝑡] = W(1)x𝑡

c2[𝑡] = 𝜆 · c2[𝑡− 1] + (1− 𝜆) ·
(︁
c1[𝑡− 1]⊙W(2)x𝑡

)︁
z2[𝑡] = c1[𝑡− 1]⊙W(2)x𝑡

c3[𝑡] = 𝜆 · c3[𝑡− 1] + (1− 𝜆) ·
(︁
c2[𝑡− 1]⊙W(3)x𝑡

)︁
z3[𝑡] = c2[𝑡− 1]⊙W(3)x𝑡

(c) Additive mapping, aggregation normalized:

c1[𝑡] = 𝜆 · c1[𝑡− 1] + (1− 𝜆) ·W(1)x𝑡 z1[𝑡] = W(1)x𝑡

c2[𝑡] = 𝜆 · c2[𝑡− 1] + (1− 𝜆) ·
(︁
c1[𝑡− 1] +W(2)x𝑡

)︁
z2[𝑡] = c1[𝑡− 1] +W(2)x𝑡

c3[𝑡] = 𝜆 · c3[𝑡− 1] + (1− 𝜆) ·
(︁
c2[𝑡− 1] +W(3)x𝑡

)︁
z3[𝑡] = c2[𝑡− 1] +W(3)x𝑡

Final activation:

h[𝑡] = 𝑔 (c3[𝑡]) or h[𝑡] = 𝑔 (z3[𝑡])

h[𝑡] = 𝑔
(︁
O⊤c3[𝑡]

)︁
or h[𝑡] = 𝑔

(︁
O⊤z3[𝑡]

)︁
(with output matrix O)

Table 2.2: An summarization of RCNN variants and associated equations. Again we
present these equations in the context of 3-grams, but they can be easily generalized
to any n-gram cases.
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when and how to average the observed signals.

Consider the additive and normalized RCNN in Table 2.2 (c) as the example, the

resulting adaptive version is,

c1[𝑡] = 𝜆𝑡 ⊙ c1[𝑡− 1] + (1− 𝜆𝑡)⊙
(︀
W(1)x𝑡

)︀
c2[𝑡] = 𝜆𝑡 ⊙ c2[𝑡− 1] + (1− 𝜆𝑡)⊙

(︀
c1[𝑡− 1] + W(2)x𝑡

)︀
c3[𝑡] = 𝜆𝑡 ⊙ c3[𝑡− 1] + (1− 𝜆𝑡)⊙

(︀
c2[𝑡− 1] + W(3)x𝑡

)︀
𝜆𝑡 = 𝜎(W𝜆x𝑡 + U𝜆h[𝑡− 1] + b𝜆)

where 𝜎(·) is the sigmoid function and h[𝑡 − 1] is the representation at the previous

position 𝑡 − 1 after applying the non-linear activation (see Table 2.2). W𝜆, U𝜆 and

b𝜆 are additional parameters associated with the neural gate. The difference between

the adaptive version and the original version is the choice of 𝜆 at each input. The

decay value 𝜆𝑡 is controlled and parametrized by a neural gate and responds directly

to the previous state h[𝑡− 1] and the input token.

The adaptive version can still be seen as a generalization of traditional CNNs by

incorporating similar mechanism from recent recurrent structures. When the gate

𝜆𝑡 = 0 (vector) for all 𝑡, the model computes traditional convolution operations, i.e.

c3[𝑡] = W(1)x𝑡−2 +W(2)x𝑡−1 +W(3)x𝑡. As 𝜆𝑡 > 0, however, c𝑛[𝑡] becomes the sum of

an exponential number of terms, enumerating all possible 𝑛-grams within x1, · · · ,x𝑡

(seen by expanding the formulas).

In the evaluation section, we demonstrate that learning context-dependent decay

values indeed improve the model’s performance.

Max-pooling over Non-consecutive N-grams The RCNN component we pre-

sented so far aggregate features in a weighted manner. In traditional CNNs however,

it is also quite common to use max-pooling (instead of average-pooling). To this

end, the second extension of the component considers max-pooling in the context of

non-consecutive n-grams.

Specifically, let 𝑧3[𝑡][𝑙] be the 𝑙th entry of vector z3[𝑡] (and also 𝑐3[𝑡][𝑙] and 𝑧[𝑖, 𝑗, 𝑘][𝑙]
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for vectors c3[𝑡] and z[𝑖, 𝑗, 𝑘] respectively). The max-pooling operation when applied

over all n-grams can be defined as

𝑧3[𝑡][𝑙] = max
𝑖<𝑗<𝑡

{︀
𝑧[𝑖, 𝑗, 𝑡][𝑙] · 𝜆𝑡−𝑖−2

}︀
= max

𝑖<𝑗<𝑡

{︀ (︀
W(1)x𝑖 + W(2)x𝑗 + W(3)x𝑡

)︀
[𝑙] · 𝜆𝑡−𝑖−2

}︀
(additive)

or, = max
𝑖<𝑗<𝑡

{︀ (︀
W(1)x𝑖 ⊙W(2)x𝑗 ⊙W(3)x𝑡

)︀
[𝑙] · 𝜆𝑡−𝑖−2

}︀
(multiplicative)

The operations for 𝑧𝑛[𝑡][𝑙] (and 𝑐𝑛[𝑡][𝑙]) for n-grams can be defined analogously. Again,

these values can be calculated efficiently using dynamic programming3. This variant

have been adopted in recent work [81]. We refer readers to Nguyen and Grishman

[81] for more discussion and evaluation.

3However, it becomes difficult when the output matrix O is introduced in multiplicative mapping.
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2.4 Theoretical Interpretation

In the previous section, we have presented the recurrent convolution (RCNN) as a

sequence modeling component, and discussed about the intuition behind its con-

struction. In this section, we give more theoretical justifications for it – why RCNN

would be good sequence model. When the decay factor 𝜆 is a constant, we show

that RCNN encodes sequence kernels (a.k.a string kernels), i.e. functions measuring

sequence similarity, as the central part of its computation. As a result, we show that

any classification function built from one or several RCNN layers belongs to the re-

producing kernel Hilbert space (RKHS) introduced by sequence kernels. Finally we

discuss the generalized case when the decay factor becomes adaptive (controlled by

neural gates).

2.4.1 Background

Notations We define a sequence (or a string) of tokens (e.g. a sentence) as x1:𝐿 =

{x𝑖}𝐿𝑖=1 where x𝑖 ∈ R𝑑 represents its 𝑖th element and |x| = 𝐿 denotes the length.

Whenever it is clear from the context, we will omit the subscript and directly use

x (and y) to denote a sequence. For a pair of vectors (or matrices) u,v, we denote

⟨u,v⟩ =
∑︀

𝑘 𝑢𝑘𝑣𝑘 as their inner product. For a kernel function 𝒦𝑖(·, ·) with subscript

𝑖, we use 𝜑𝑖(·) to denote its underlying mapping, i.e. 𝒦𝑖(x,y) = ⟨𝜑𝑖(x), 𝜑𝑖(y)⟩ =

𝜑𝑖(x)⊤𝜑𝑖(y).

Sequence Kernels A family of functions called string kernels measures the sim-

ilarity between two strings (sequences) by counting shared subsequences (see Lodhi

et al. [71]). For example, let x and y be two strings, a 2-gram string kernel 𝒦2(x,y)

counts the number of 2-grams x𝑖x𝑗 and y𝑘y𝑙 such that x𝑖x𝑗 = y𝑘y𝑙,

𝒦2(x,y) =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆𝑗−𝑖−1𝜆𝑙−𝑘−1 [1(x𝑖 = y𝑘) · 1(x𝑗 = y𝑙)] (2.5)

where 𝜆 ∈ [0, 1) is a decay factor penalizing non-contiguous substrings.
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The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

𝒦2(x,y) =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1𝜆|y|−𝑘−1 [1(x𝑖 = y𝑘) · 1(x𝑗 = y𝑙)] (2.6)

where the decay weights 𝜆|x|−𝑖−1 and 𝜆|y|−𝑘−1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when 𝑛 ̸= 2. For simplicity, we use 2-gram (𝑛 = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match 1(u = v) by the inner

product ⟨u,v⟩. To this end, the kernel function (2.6) can be rewritten as,

𝒦2(x,y) =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1𝜆|y|−𝑘−1 ⟨x𝑖,y𝑘⟩ ⟨x𝑗,y𝑙⟩

=
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1𝜆|y|−𝑘−1 ⟨x𝑖 ⊗ x𝑗,y𝑘 ⊗ y𝑙⟩

=

⟨ ∑︁
1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1x𝑖 ⊗ x𝑗,
∑︁

1≤𝑘<𝑙≤|y|

𝜆|y|−𝑘−1y𝑘 ⊗ y𝑙

⟩
(2.7)

where x𝑖⊗x𝑗 ∈ R𝑑×𝑑 (and similarly y𝑘⊗y𝑙) is the outer-product. The above equality

uses the fact that ⟨x𝑖,y𝑘⟩·⟨x𝑗,y𝑙⟩ = ⟨x𝑖 ⊗ x𝑗,y𝑘 ⊗ y𝑙⟩. In other words, the underlying

mapping of kernel 𝒦2() defined above is 𝜑2(x) =
∑︀

1≤𝑖<𝑗≤|x| 𝜆
|x|−𝑖−1x𝑖 ⊗ x𝑗.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

⟨x𝑖,y𝑘⟩ + ⟨x𝑗,y𝑙⟩ instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).
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2.4.2 One-layer RCNN as Kernel Computation

We now proceed to present our theoretical results. Consider an n-gram RCNN with

multiplicative and un-normalized features (see Table 2.2 (a)), the internal feature

states are computed via the recurrent formulas,

c1[𝑡] = 𝜆 · c1[𝑡− 1] +
(︀
W(1)x𝑡

)︀
c2[𝑡] = 𝜆 · c2[𝑡− 1] +

(︀
c1[𝑡− 1]⊙W(2)x𝑡

)︀
...

c𝑛[𝑡] = 𝜆 · c𝑛[𝑡− 1] +
(︀
c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

)︀
For 𝑗 ∈ {1, .., 𝑛}, let 𝑐𝑗[𝑡][𝑖] be the i-th entry of state vector c𝑗[𝑡], w

(𝑗)
𝑖 represents

the i-th row of filter matrix W(𝑗). Define w𝑖,𝑗 = {w(1)
𝑖 ,w

(2)
𝑖 , ...,w

(𝑗)
𝑖 } as the string

constructed by taking the i-th row from each matrix W(1), ..,W(𝑗).

Theorem 1. Let x1:𝑡 be the prefix of x consisting of first 𝑡 tokens, and 𝒦𝑗 be the
string kernel of 𝑗-gram shown in Eq.(2.7). The RCNN state values satisfy,

𝑐𝑗[𝑡][𝑖] = 𝒦𝑗 (x1:𝑡,w𝑖,𝑗) = ⟨𝜑𝑗(x1:𝑡), 𝜑𝑗(w𝑖,𝑗)⟩

for any 𝑗 ∈ {1, .., 𝑛}, 𝑡 ∈ {1, .., |x|}.

See Appendix A.2 for the proof of this theorem. In other words, the RCNN layer

evaluates the kernel function given a sequence prefix x1:𝑡 and the fuzzy sequence

w𝑖,𝑗. This means any linear combination of the state values (a classifier 𝜃⊤c𝑛[𝑡] for

example), as a function of the input x, will lie in the function space (i.e. reproducing

kernel Hilbert space) introduced by string kernel 𝒦1, ...,𝒦𝑛.

Similarly, there are corresponding kernel functions for other variants of RCNN

discussed in Section 2.3. Table 2.3 lists the kernels and underlying mappings for

RCNNs listed in Table 2.2.

Applying Non-linear Activation In practice, a non-linear activation function

such as polynomial activation or sigmoid-like activation is added to the internal states
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Underlying string kernel for 2-gram RCNN:

(a) Multiplicative mapping, aggregation un-normalized:

𝒦2(x,y) =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1 𝜆|y|−𝑘−1 ⟨x𝑖,y𝑘⟩ · ⟨x𝑗 ,y𝑙⟩

𝜑2(x) =
∑︁

1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1 x𝑖 ⊗ x𝑗

(b) Multiplicative mapping, aggregation normalized:

𝒦2(x,y) =
1

𝑍

∑︁
1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1 𝜆|y|−𝑘−1 ⟨x𝑖,y𝑘⟩ · ⟨x𝑗 ,y𝑙⟩

s.t. 𝑍 =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1 𝜆|y|−𝑘−1

𝜑2(x) =
1

𝑍 ′

∑︁
1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1 x𝑖 ⊗ x𝑗

s.t. 𝑍 ′ =
∑︁

1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1

(c) Additive mapping, aggregation normalized:

𝒦2(x,y) =
1

𝑍

∑︁
1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1 𝜆|y|−𝑘−1 (⟨x𝑖,y𝑘⟩+ ⟨x𝑗 ,y𝑙⟩)

s.t. 𝑍 =
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1 𝜆|y|−𝑘−1

𝜑2(x) =
1

𝑍 ′

∑︁
1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1 [x𝑖,x𝑗 ]

s.t. 𝑍 ′ =
∑︁

1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1

Table 2.3: Kernel functions and associated mappings for RCNNs shown in Table 2.2.
[x𝑖,x𝑗] denotes the concatenation of two vectors.
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to produce the final output state h[𝑡]. It turns out that many activations are also

functions in RKHS of certain kernel functions, including the quadratic activation

𝜎𝑠𝑞(𝑥) = 𝑥2, sigmoid-like and ReLU-like activations (see Shalev-Shwartz et al. [92],

Zhang et al. [120, 121]). Given these facts, RCNN layer with non-linear activations

can also be related to RKHS as well. We give the formal statements below.

Lemma 1. (Shalev-Shwartz et al. [92], Zhang et al. [120]) Let x and w be multi-
dimensional vectors with finite norm. Consider the function 𝑓(x) := 𝜎(w⊤x)
with non-linear activation 𝜎(·). For activation functions such as polynomials and
sigmoid function 𝜎𝑒𝑟𝑓 , there exists kernel functions 𝒦𝜎(·, ·) and the underlying
mapping 𝜑𝜎(·) such that 𝑓(𝑥) is in the reproducing kernel Hilbert space of 𝒦𝜎(·, ·),
i.e.,

𝑓(x) = 𝜎(w⊤x) = ⟨𝜑𝜎(x), 𝜓(w)⟩

for some mapping 𝜓(w) constructed from w. In particular, 𝒦𝜎(x,y) can be the
inverse-polynomial kernel 1

2−⟨x,y⟩ for the above activations.

Theorem 2. For one RCNN layer with non-linear activation 𝜎(·) discussed
above, assuming the final output state h[𝑡] = 𝜎(c𝑛[𝑡]) (or any linear combi-
nation of {c𝑖[𝑡]}, 𝑖 = 1, .., 𝑛), then h[𝑡][𝑖] as a function of input x belongs to the
RKHS introduced by the composition of 𝒦𝜎(·, ·) and string kernel 𝒦𝑛(·, ·).
Here a kernel composition 𝒦𝜎,𝑛(x,y) is defined with the underlying mapping
x ↦→ 𝜑𝜎(𝜑𝑛(x)), and hence 𝒦𝜎,𝑛(x,y) = 𝜑𝜎(𝜑𝑛(x))⊤𝜑𝜎(𝜑𝑛(y)).

Theorem 2 is the corollary of Lemma 1 and Theorem 1, since h[𝑡][𝑖] = 𝜎(c𝑛[𝑡][𝑖]) =

𝜎(𝒦𝑛(x1:𝑡,w𝑖,𝑗)) = ⟨𝜑𝜎(𝜑𝑛(x1:𝑡)), w̃𝑖,𝑗⟩ and 𝜑𝜎(𝜑𝑛(·)) is the mapping for the composed

kernel. The same proof applies when h[𝑡] is a linear combination of all c𝑖[𝑡] since

kernel functions are close under addition.

2.4.3 Deep RCNN Models

We now address the case when multiple RCNN layers are stacked to construct deeper

networks. That is, the output states h(𝑙)[𝑡] of the 𝑙-th layer are fed to the (𝑙 + 1)-

th RCNN layer as the input sequence. We show that layer stacking corresponds to
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recursive kernel construction (i.e. (𝑙 + 1)-th kernel is defined on top of 𝑙-th kernel),

which has been proved for feed-forward networks [120].

We first generalize the sequence kernel definition to enable recursive construction.

Notice that the definition in Eq.(2.7) uses the inner product ⟨x𝑖,y𝑘⟩ as a “subroutine”

to measure the similarity between substructures (e.g. tokens) within the sequences.

We can therefore replace it with other similarity measures introduced by kernels. In

particular, let 𝒦(1)(·, ·) be the kernel function introduced by a single RCNN layer.

The generalized sequence kernel can be recursively defined as,

𝒦(𝑙+1)(x,y) 𝑓𝑜𝑟 𝑙 = 1, 2, · · · , 𝐿− 1

=
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1+|y|−𝑘−1 𝒦(𝑙)(x1:𝑖,y1:𝑘) 𝒦(𝑙)(x1:𝑗 ,y1:𝑙)

=
∑︁

1≤𝑖<𝑗≤|x|

∑︁
1≤𝑘<𝑙≤|y|

𝜆|x|−𝑖−1+|y|−𝑘−1
⟨
𝜑(𝑙)(x1:𝑖), 𝜑

(𝑙)(y1:𝑘)
⟩⟨

𝜑(𝑙)(x1:𝑗), 𝜑
(𝑙)(y1:𝑙)

⟩

=

⟨ ∑︁
1≤𝑖<𝑗≤|x|

𝜆|x|−𝑖−1𝜑(𝑙)(x1:𝑖)⊗ 𝜑(𝑙)(x1:𝑗),
∑︁

1≤𝑘<𝑙≤|y|

𝜆|y|−𝑘−1𝜑(𝑙)(y1:𝑘)⊗ 𝜑(𝑙)(y1:𝑙)

⟩
(2.8)

where 𝜑(𝑙)(·) is the underlying mapping for kernel 𝒦(𝑙)(·, ·) and 𝐿 is the maximum

level of recursive construction (or equivalently the number of stacking layers). Sim-

ilarly, when non-linear activation 𝜎(·) is involved, we shall replace 𝜑(𝑙)(·) with the

composition 𝜑𝜎(𝜑(𝑙)(·)), and we denote the associated kernel as 𝒦(𝑙)
𝜎 (·, ·). Based on

this definition, a deeper model can be interpreted as kernel computation as well.

Theorem 3. For a RCNN model with 𝐿 stacking layers and activation function
𝜎(·), assuming the final output state h(𝑙)[𝑡] = 𝜎(c𝑛[𝑡]) (or any linear combination
of {c(𝑙)𝑖 [𝑡]}, 𝑖 = 1, .., 𝑛), then for any 𝑙 = 1, · · · , 𝐿,

(i) c
(𝑙)
𝑛 [𝑡][𝑖] as a function of input x belongs to the RKHS of kernel 𝒦(𝑙)(·, ·);

(ii) h(𝑙)[𝑡][𝑖] belongs to the RKHS of kernel 𝒦(𝑙)
𝜎 (·, ·).

The proof of this theorem is included in Appendix A.3.
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2.4.4 Adaptive Decay using Neural Gates

The sequence kernel and neural network discussed so far use a constant decay value

regardless of the current input token. However, this is often not the case since the

importance of the input tokens can vary across the context or the applications. One

extension is to make use of neural gates that adaptively control the decay factor, i.e.

𝜆𝑡 = 𝜎(Ux𝑡) or 𝜆𝑡 = 𝜎(Ux𝑡 + Vh[𝑡− 1]) where 𝜎(·) is a sigmoid function.

When the decay only depends on the input (x𝑡 or any context), the theoretical

results and the sequence kernels can be extended accordingly. Specifically, let’s again

assume Lemma 1 applies to the sigmoid function 𝜎(·) that is used to calculate the

adaptive decay value. Let 𝒦𝜎(·, ·) be the corresponding kernel function whose RKHS

contains 𝜎(·), and let us assume 0 ≤ 𝒦𝜎(·, ·) ≤ 1. Let x1:𝑡 and y1:𝑡′ be two sequences.

We can define a sequence kernel and the underlying mapping in a recursive manner,

𝒦(x1:𝑡,y1:𝑡′) = 𝒦𝜎(x𝑡,y𝑡′) · 𝒦(x1:𝑡−1,y1:𝑡′−1) + ⟨x𝑡,y𝑡′⟩

𝜑(x1:𝑡) = [x𝑡, 𝜑(x1:𝑡−1)⊗ 𝜑𝜎(x𝑡)]

The corresponding neural operation is then

c[𝑡] = 𝜆𝑡 ⊙ c[𝑡− 1] + Wx𝑡

Similarly, for a deep kernel and network, the inner product ⟨x𝑡,y𝑡′⟩ can be replaced by

a base kernel function (e.g. the one associated with shallow network as we discussed

in the previous section).

Although working this out is mathematically more involved, we can understand

the adaptive version in an simpler way. Since Lemma 1 applies to 𝜎(·), it can be also

expressed as an inner product in the space introduced by a kernel mapping 𝜎(u⊤x𝑡) =

⟨𝜑𝜎(x𝑡), 𝜓(u)⟩. Let’s write 𝜑𝜎(x𝑡) and 𝜓(u) as x̃𝑡 and ũ for short. Note that the

internal hidden state c[𝑡] is computed in the form such as c[𝑡] = 𝜆𝑡 ⊙ c[𝑡− 1] + Wx𝑡.

If we plug in 𝜆𝑡 = 𝜎(Ux𝑡) and expand the formula, we can rewrite each entry of the
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state c[𝑡][𝑖] as,

c[𝑡][𝑖] = c[𝑡− 1][𝑖] · 𝜆𝑡[𝑖] + ⟨w𝑖,x𝑡⟩

= c[𝑡− 1][𝑖] · ⟨ũ𝑖, x̃𝑡⟩+ ⟨w𝑖,x𝑡⟩

= c[𝑡− 2][𝑖] · ⟨ũ𝑖, x̃𝑡−1⟩ · ⟨ũ𝑖, x̃𝑡⟩+ ⟨w𝑖,x𝑡−1⟩ · ⟨ũ𝑖, x̃𝑡⟩+ ⟨w𝑖,x𝑡⟩

= · · · + ⟨w𝑖,x𝑡−2⟩ · ⟨ũ𝑖, x̃𝑡−1⟩ · ⟨ũ𝑖, x̃𝑡⟩+ ⟨w𝑖,x𝑡−1⟩ · ⟨ũ𝑖, x̃𝑡⟩+ ⟨w𝑖,x𝑡⟩

In other words, the state c[𝑡][𝑖] becomes a polynomial that involves unbounded high-

order terms over all previous inputs x1 · · ·x𝑡. In contrast, if the decay value is con-

stant, the n-th internal layer c𝑛[𝑡] would be (at most) a 𝑛-order polynomial.

The above results suggest that an adaptive RCNN has more expressive power

than the constant version. We also conjecture that the network gains additional

power when the decay depends on both the input and the previous hidden state. We

will empirically demonstrate this in the experiments.

To summarize Section 2.4, we show that RCNN models have a close connection with

string kernels (and their generalization). Specifically, the function space introduced by

the kernels contain all the predictor constructed from RCNNs (e.g. 𝜃⊤h𝑛[𝑡]). Training

a RCNN model in this sense can be interpreted as finding a good predictor in that

function space under the RCNN parameterization.4 The result suggests why RCNNs

(and perhaps similar recurrent structures) would be a good sequential component,

since the underlying kernels are indeed a suitable choice for sequences.

4This is different to traditional kernel methods, where the parameterization is a linear combination
of representers associated with each training example.
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2.5 Applications and Evaluations

In this section, we apply the recurrent convolution component to various NLP tasks

and empirically evaluate its performance against other neural network models. These

tasks include language modeling, text classification and text retrieval. We discuss

each of them in a separate subsection.

2.5.1 Language Modeling on PTB

Dataset and Setup We analyze the performance of RCNNs and alternative neural

networks on the language modeling task. We use the Penn Tree Bank (PTB) corpus

as the benchmark. The dataset contains about 1 million tokens in total. We use the

standard train/development/test split of this dataset and limit the vocabulary size

to 10,000.

We run two sets of experiments using Adam [57] and SGD as the optimizer re-

spectively. In the first setup, we aim to explore different versions of RCNNs shown

in Table 2.2 and use either state c[𝑡] or z[𝑡] as the pre-activation output state. We

also train RCNNs with the adaptive decay controlled by neural gates (Section 2.3.5).

The model’s behavior can be sensitive to the parameter initialization, especially for

the multiplicative feature mapping (e.g. W(1)x𝑖 ⊙W(2)x𝑗).5 For a fair comparison

between different models, we use Adam optimization method to alleviate the initial-

ization issue. We train LSTM models under the same setting, and also include CNN

models for comparison since CNNs are a special case of our model (corresponding to

decay value 𝜆 = 0).

In the second setup, we compare with state-of-the-art models on this dataset. To

this end, we follow the previous work of Zaremba et al. [116] and use SGD with gradi-

ent clipping [82] and learning rate decay as the optimization strategy. Specifically, the

initial learning rate is 1.0 and is decreased by a constant factor after a certain epoch.

5Due to multiplication u ⊙ v, the gradient w.r.t one vector depends on the values of the other
vector. This leads to easy gradient vanishing or explosion in vanilla SGD optimization. This limits
the applicability of multiplicative RCNNs. A future work would be to find a good strategy for
optimizing the network.
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These choices are crucial for the PTB dataset. In addition, we add highway connec-

tions [101] between the input and the output of each RCNN layer in order to train

deeper model that has multiple RCNN layers. We back-propagate the gradient with

an unroll size of 35 and use the standard dropout [41] as the regularization. For each

model run, we train a maximum of 50 epochs and select the best epoch based on the

performance on the development set. The evaluation metric is word-level perplexity.

The detailed experimental setup is shown in Appendix B.1.

Results Table 2.4 shows the results of each model when trained using Adam op-

timizer. The RCNN model with the adaptive decay achieves better performance

compared to RCNN with a constant decay and the LSTM model.6 In addition, the

RCNN component clearly outperforms its counterpart, the traditional CNNs, getting

perplexities that are 30 to 40 points lower compared to the latter. This illustrates

the effectiveness of specifically tailoring a neural component for sequential data.

Table 2.4 also shows the results of two additional RCNN variants. First, our the-

oretical results suggest that any linear combination of the internal states is a valid

function in the RKHS. We can simply use the sum of these states as the pre-activation

output (i.e.
∑︀𝑛

𝑖=1 c𝑖[𝑡], corresponding to combining 1-gram to n-gram kernels). Sec-

ond, recent work found that the neural output gate is necessary in language modeling.

The output states of our model can be re-scaled by an output gate, similar to that in

LSTMs. As shown in the table, these modifications lead to improved results.

Figure 2-1 analyzes the importance of hyper-parameters for RCNN models. As

shown in the figure, deeper RCNN models (i.e. stacking multiple RCNN layers)

achieve better performance compared to single-layer models, indicating better repre-

sentational power. Figure 2-1 also suggests that the multiplicative feature mapping

(e.g. W(1)x1 ⊙W(2)x2) performs better than the additive linear mapping. This is

also true for traditional CNNs – the multiplicative filters decrease the perplexity by

10 points, as demonstrated in Table 2.4. However, the multiplicative version is much

6Best version is the multiplicative, normalized version using c𝑛[𝑡] as the pre-activation output,
presented in Table 2.2 (b). Other versions achieve worse results, but not too much.
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Model 𝑑 |𝜃| Test PPL
CNN, 3-gram, linear 250 5.4m 141.7
CNN, 2-gram, multiplicative 250 5.4m 132.8
LSTM 225 4.9m 107.6
RCNN, 2-gram, 𝜆 = 0.8 240 5.2m 115.2
RCNN, 2-gram, 𝜆 adaptive 230 5.0m 103.9
LSTM 650 16.4m 92.3
RCNN, 2-gram, 𝜆 = 0.8 650 16.4m 106.2
RCNN, 2-gram, 𝜆 adaptive 650 16.4m 91.8

+ h[𝑡] = tanh(c1[𝑡] + c2[𝑡]) 650 16.4m 89.6
+ h[𝑡] = tanh(c1[𝑡] + c2[𝑡]) and outgate 650 18.1m 85.9

Table 2.4: Results of CNN, LSTM and RCNN using Adam optimizer. 𝑑 is the hidden
dimension and |𝜃| denotes the number of parameters. Best results of each category
are reported. For CNNs, we explore 1 to 3 layers with 2-gram or 3-gram feature
maps. For LSTMs and RCNNs, we explore 1 or 2 layers. The last two rows present
the results of two additional variants: (a) using the sum of all internal states as the
pre-activation output and (b) adding an output gate similar to that in LSTMs.
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Figure 2-1: Analyses of RCNN models using Adam optimizer on the language mod-
eling task. We compare the variants shown in Table 2.2 with either a constant or
an adaptive decay. We show the test perplexity of small networks (5m parameters).
Best runs of each category are reported here. Top: deeper architecture (via stack-
ing RCNN layers) exhibits better expressive power and delivers better performance.
Bottom: multiplicative feature mapping performs better on language modeling task.
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more sensitive to the optimization method and parameter initialization.7 This limits

the applicability of the multiplicative mapping.

Table 2.5 compares our model with various state-of-the-art models. Our results

are competitive to state-of-the-art results. For example, a small model with 5 million

parameters achieves a test perplexity of 73.6, outperforming many results achieved

using much larger network. By increasing the network size to 20 million, we obtain

a test perplexity of 69.2, being close to the best result reported [122, 123]. The

large models are prone to overfitting even with the standard dropout. Our results

may be further improved with better regularization techniques such as the variational

dropout [30], which have been shown to improve several points of perplexity on PTB.

2.5.2 Sentiment Classification

Datasets We evaluate our model on sentence sentiment classification task. We

use the Stanford Sentiment Treebank benchmark [97]. The dataset consists of 11855

parsed English sentences annotated at both the root (i.e. sentence) level and the

phrase level using 5-class fine-grained labels. We use the standard 8544/1101/2210

split for training, development and testing respectively. Following previous work,

we also evaluate our model on the binary classification variant of this benchmark,

ignoring all neutral sentences. The binary version has 6920/872/1821 sentences for

training, development and testing.

Baselines We compare our model with a wide range of neural network models

on the sentence sentiment classification task. Most of these models fall into either

the category of recursive neural networks (RNNs) or the category of convolutional

neural networks (CNNs). The recursive neural network baselines include standard

RNN [95], RNTN with a small core tensor in the composition function [97], the

deep recursive model DRNN [43] and the most recent recursive model using long-

short-term-memory units RLSTM [103]. These recursive models assume the input

7For example, the training cost may remain high due to gradient vanishing. This happens more
often for models with more layers and larger 𝑛 (𝑛 > 2).
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Model |𝜃| Test PPL
LSTM (medium) [116] 20m 82.7
LSTM (large) [116] 66m 78.4
Character CNN [56] 19m 78.9
Variational LSTM (medium) [30] 20m 78.6
Variational LSTM (large) [30] 66m 73.4
Variational LSTM (shared emb) [86] 51m 73.2
Pointer Sentinel-LSTM [75] 21m 70.9
Variational RHN (9 layers, shared emb) [122] 24m 66.0
Neural Net Search (variational, shared emb) [123] 25m 64.0
RCNN (𝜆 = 0.8) 5m 84.3
RCNN (𝜆 constants trained as parameters) 5m 77.0
RCNN (𝜆 adaptive based on x) 5m 74.2
RCNN (𝜆 adaptive based on x) 20m 70.9
RCNN (𝜆 adaptive based on x and h) 5m 73.6
RCNN (𝜆 adaptive based on x and h) 20m 69.2

Table 2.5: Comparison with state-of-the-art results on PTB. |𝜃| denotes the number
of parameters. Following these work, we use SGD with gradient clipping and learning
rate decay during training. We also share the input and output word embedding
matrix [86]. However, variational dropout regularization has not been explored.
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sentences are represented as parse trees. As a benefit, they can readily utilize an-

notations at the phrase level. In contrast, convolutional neural networks are trained

on sequence-level, taking the original sequence and its label as training input. Such

convolutional baselines include the dynamic CNN with k-max pooling DCNN [50]

and the convolutional model with multi-channel CNN-MC by Kim [55]. To lever-

age the phrase-level annotations in the Stanford Sentiment Treebank, all phrases and

the corresponding labels are added as separate instances when training the sequence

models. We report results based on this strategy.

Word vectors The word vectors are pre-trained on much larger unannotated cor-

pora to achieve better generalization given limited amount of training data [107]. In

particular, we use the publicly available 300-dimensional GloVe word vectors trained

on the Common Crawl with 840B tokens [84]. This choice of word vectors follows

most recent work, such as DAN [45] and RLSTM [103]. The word vectors are

normalized to unit norm (i.e. ‖𝑤‖22 = 1) and are fixed in the experiments without

fine-tuning.

Hyperparameter setting Our model configuration largely follows our prior work [66].

We stack several RCNN layers and apply dropout on the word embeddings and the

output states of each layer. We use mean-pooling to average the output states across

different word positions and fed the averaged vector as the input to the final softmax

layer. We perform a few independent runs to explore different random initializations.

The detailed experimental setup is shown in Appendix B.2.

Results Table 2.6 presents the performance of our model and other baseline meth-

ods on Stanford Sentiment Treebank benchmark. Our best model obtains the highest

performance, achieving 53.2% and 89.9% test accuracies on fine-grained and binary

tasks respectively. Our model with only a constant decay factor also obtains quite

high accuracy, outperforming other baseline methods shown in the table.

Similar to the experiments of the language modeling application, we also investi-

gate the impact of hyperparameters in the model performance. To this end, we train
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Model Fine Binary
RNN (Socher et al. [95]) 43.2 82.4
RNTN (Socher et al. [97]) 45.7 85.4
DRNN (Irsoy and Cardie [43]) 49.8 86.8
RLSTM (Tai et al. [103]) 51.0 88.0
DCNN (Kalchbrenner et al. [50]) 48.5 86.9
CNN-MC (Kim [55]) 47.4 88.1
Bi-LSTM (Tai et al. [103]) 49.1 87.5
LSTMN (Cheng et al. [12]) 47.9 87.0
PVEC (Le and Mikolov [61]) 48.7 87.8
DAN (Iyyer et al. [44]) 48.2 86.8
DMN (Kumar et al. [59]) 52.1 88.6
RCNN, 𝜆 = 0.5 (Lei et al. [66]) 51.2 88.6
RCNN, 𝜆 adaptive on x 51.4 89.2
RCNN, 𝜆 adaptive on x and h 53.2 89.9

Table 2.6: Comparison between our RCNN model and other baseline methods on
Stanford Sentiment Treebank. The top block lists recursive neural network mod-
els, the second block are convolutional network models and recurrent neural models,
and the third block contains other baseline methods, including the paragraph-vector
model [61], the deep averaging network model [45] and the dynamic memory net-
work [59].
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Figure 2-2: Dev accuracy (x-axis) and test accuracy (y-axis) of independent runs of
our model on fine-grained sentiment classification task. Deeper architectures achieve
better accuracies.

44.5%

48.0%

51.5%

44.0% 47.0% 50.0%

1 layer 2 layers 3 layers

44.5%

48.0%

51.5%

45.5% 47.8% 50.0%

decay=0.0 decay=0.3 decay=0.5

45.5%

48.3%

51.0%

46.0% 47.0% 48.0% 49.0% 50.0%

None ReLU

Figure 2-3: Comparison of our model variations in sentiment classification task when
considering consecutive n-grams only (decaying factor 𝜆 = 0) and when considering
non-consecutive n-grams (𝜆 > 0). Modeling non-consecutive n-gram features leads to
better performance.
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many independent runs exploring various hyperparameter configurations. To reduce

the total running time, we use the RCNN models with constant decay value and ex-

clude phrase-level annotations during training. We plot the fine-grained sentiment

classification accuracies on both the development set and the test set obtained during

this hyperparameter grid search.

Figure 2-2 illustrates how the number of feature layers impacts the model per-

formance. As shown in the figure, adding higher-level features by stacking more

layers clearly improves the classification accuracy across various other hyperparame-

ter settings and initializations. Again, this observation demonstrates deeper RCNN

architectures possess more representational power compared to shallow models.

We also analyze the effect of modeling non-consecutive n-grams. Figure 2-3 splits

the model accuracies according to the choice of span decaying factor 𝜆. Note when

𝜆 = 0, the model only applies feature extractions to consecutive n-grams and hence

becomes a traditional CNNs. As shown in Figure 2-3, this setting leads to consistent

performance drop. This result confirms the importance of handling non-consecutive

n-gram patterns.

Finally we conduct case studies on the learned sentiments. Figure 2-4 gives exam-

ples of input sentences and the corresponding predictions of our model in fine-grained

sentiment classification. To see how our model captures the sentiment at different

local context, we apply the learned softmax activation (i.e. the output layer) to the

extracted features (i.e. the hidden states h(𝑙)[𝑖]) at each position. That is, for each

index 𝑖, we obtain the local sentiment 𝑝 = softmax
(︀
W⊤[h(1)[𝑖]; ...;h(𝐿)[𝑖]]

)︀
. We plot

the expected sentiment scores
∑︀2

𝑠=−2 𝑠 ·𝑝(𝑠), where a score of 2 means “very positive”,

0 means “neutral” and -2 means “very negative”. As shown in the figure, our model

successfully learns negation and double negation. The model also identifies positive

and negative segments appearing in the sentence.

2.5.3 Similar Question Retrieval

Our third application is a text retrieval task for community-based question answering.

Given a user input question post and a set of candidate questions, the goal is to rank
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Figure 2-4: Example sentences and their sentiments predicted by our RCNN model
trained with root labels. Our model successfully identifies negation, double negation
and phrases with different sentiment in one sentence.
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How can I boot Ubuntu from a USB ? 

I bought a Compaq pc with Windows 8 a few months ago and now I want to install Ubuntu but still 
keep Windows 8. I tried Webi but when my pc restarts it read ERROR 0x000007b. I know that 
Windows 8 has a thing about not letting you have Ubuntu but I still want to have both OS without 
actually losing all my data. How can I do this?

When I want to install Ubuntu on my laptop I’ll have to erase all my data. “Alonge side 
windows” doesn't appear  

I want to install Ubuntu from a Usb drive. It says I have to erase all my data but I want to install it 
along side Windows 8. The “Install alongside windows” option doesn’t appear. What appears is, "you 
don't have an operate system etc, and Note: all your data will be lost." I've already installed Ubuntu 
on my Pc (alonge side windows 7) and it worked fine but I don't know now why is it not working on 
my laptop which is windows 8.

Figure 2-5: An example of similar posts taken from AskUbuntu question answer-
ing forum. Both questions ask about installing Ubuntu from USB. A question post
consists of a title section and a detailed body section.

these candidates according to their semantic relevance to the input post. Figure 2-5

gives an example pair of relevant questions pertaining to booting Ubuntu using a USB

stick. A large portion of the body contains tangential details that are idiosyncratic

to this user, such as references to Compaq pc, Webi and the error message mentioned

in the first question. Not surprisingly, these features are not repeated in the second

question in Figure 2-5. The extraneous detail makes the task quite difficult since it

can easily confuse simple word-matching algorithms.

Model Framework To better access the semantic relevance of questions, we adopt

neural networks as encoders to map question posts into vector representations, and

measure the relevance based on the cosine similarity of these vectors (Figure 2-6 (a)).8

The model is optimized to maximize the similarities of similar questions against non-

similar ones (using user-marked relevant questions from the forum), therefore has

potentials to outperform unsupervised word-matching algorithms.

8The representations of the question title and body are averaged to get a single representation
of the question.
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Corpus
# of unique questions 167,765
Avg length of title 6.7
Avg length of body 59.7

Training # of unique questions 12,584
# of user-marked pairs 16,391

Dev
# of query questions 200
# of annotated pairs 200×20
Avg # of positive pairs per query 5.8

Test
# of query questions 200
# of annotated pairs 200×20
Avg # of positive pairs per query 5.5

Table 2.7: Various statistics from our training, development, and test sets derived
from the Sept. 2014 Stack Exchange AskUbuntu dataset.

The number of questions in a question answering forum far exceeds user annota-

tions of pairs of similar questions. To further leverage the data and the potential of

neural networks, we train an auto-encoder constructed by pairing the encoder model

(such as our RCNNs) with an corresponding decoder (of the same type). As illustrated

in Figure 2-6 (b), the resulting encoder-decoder architecture is akin to those used in

machine translation [], which represent a conditional language model P(title|context).

In our case, the context can be any of (a) the original title itself, (b) the question

body and (c) the title/body of a similar question. All possible (title, context) pairs

are used during training to optimize the likelihood of the words (and their order) in

the titles. The encoders pre-trained in this manner are subsequently fine-tuned to

optimize the cosine similarity (as described above).

Dataset We use the Stack Exchange AskUbuntu dataset used in prior work [25].

This dataset contains 167,765 unique questions, each consisting of a question title

and a question body 9, and a set of user-marked similar question pairs. We provide

various statistics from this dataset in Table 2.7.

9We truncate the body section at a maximum of 100 words
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How can I boot Ubuntu from a USB ? 

I bought a Compaq pc with Windows 8 a few months ago and 
now I want to install Ubuntu but still keep Windows 8. I tried 
Webi but when my pc restarts it read ERROR 0x000007b. I 
know that Windows 8 has a thing about not letting you have 
Ubuntu but I still want to have both OS without actually 
losing all my data. How can I do this?

When I want to install Ubuntu on my laptop I’ll have to 

erase all my data. “Alonge side windows” doesn't appear  

I want to install Ubuntu from a Usb drive. It says I have to 
erase all my data but I want to install it along side Windows 
8. The “Install alongside windows” option doesn’t appear. 
What appears is, "you don't have an operate syste etc, and 
Note: all your data will be lost." I've already installed 
Ubuntu on my Pc (alonge side windows 7) and it worked fine 
but I don't know now why is it not working on my laptop 
which is windows 8.
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Figure 2-6: An illustration of the neural network architecture for question retrieval:
(a) the neural encoder maps questions into vector representations and measures their
semantic relevance via cosine similarity; (b) the encoder-decoder model is pre-trained
to better initialize the encoder. We explore various choices of neural networks as the
encoder and decoder, including for example LSTMs, GRUs and our proposed RCNNs.
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Evaluation Setup User-marked similar question pairs on QA sites are often known

to be incomplete. In order to evaluate this in our dataset, we took a sample set of

questions paired with 20 candidate questions retrieved by a search engine trained on

the AskUbuntu data. The search engine used is the well-known BM25 model [88].

Our manual evaluation of the candidates showed that only 5% of the similar questions

were marked by users, with a precision of 79%. Clearly, this low recall would not lead

to a realistic evaluation if we used user marks as our gold standard. Instead, we make

use of expert annotations carried out on a subset of questions.

We use user-marked similar pairs as positive pairs in training since the annotations

have high precision and do not require additional manual annotations. This allows us

to use a much larger training set. We use random questions from the corpus paired

with each query question 𝑝𝑖 as negative pairs in training. We randomly sample 20

questions as negative examples for each 𝑝𝑖 during each epoch.

We re-constructed the new dev and test sets consisting of the first 200 questions

from the dev and test sets provided by dos Santos et al. [25]. For each of the above

questions, we retrieved the top 20 similar candidates using BM25 and manually an-

notated the resulting 8K pairs as similar or non-similar.10

Baselines and Evaluation Metrics We evaluated neural network models includ-

ing CNNs, LSTMs, GRUs and RCNNs by comparing with the following baselines:

∙ BM25, we used the BM25 similarity measure provided by Apache Lucene.

∙ TF-IDF, we ranked questions using cosine similarity based on a vector-based

word representation for each question.

∙ SVM, we trained a re-ranker using SVM-Light [46] with a linear kernel incor-

porating several similarity measures from the DKPro similarity package [6].

We evaluated the models based on the following IR metrics: Mean Average Precision

(MAP), Mean Reciprocal Rank (MRR), Precision at 1 (P@1), and Precision at 5
10The annotation task was initially carried out by two expert annotators, independently. The

initial set was refined by comparing the annotations and asking a third judge to make a final decision
on disagreements. After a consensus on the annotation guidelines was reached (producing a Cohen’s
kappa of 0.73), the overall annotation was carried out by only one expert.
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𝑑 |𝜃| 𝑛

LSTMs 240 423K -
GRUs 280 404K -
CNNs 667 401K 3
RCNNs 400 401K 2

Table 2.8: Configuration of neural models. 𝑑 is the hidden dimension, |𝜃| is the
number of parameters and 𝑛 is the filter width (𝑛-gram features).

(P@5).

Hyper-parameters We performed an extensive hyper-parameter search to iden-

tify the best model for the baselines and neural network models. For the TF-IDF

baseline, we tried 𝑛-gram feature order 𝑛 ∈ {1, 2, 3} with and without stop words

pruning. For the SVM baseline, we used the default SVM-Light parameters whereas

the dev data is only used to increase the training set size when testing on the test

set. We also tried to give higher weight to dev instances but this did not result in

any improvement.

For all the neural network models, we used Adam [57] as the optimization method

with the default setting suggested by the authors. We optimized other hyper-parameters

with the following range of values: learning rate ∈ {1𝑒−3, 3𝑒−4}, dropout [41] prob-

ability ∈ {0.1, 0.2, 0.3}, CNN and RCNN feature width ∈ {2, 3, 4}. We also tuned

the pooling strategies and ensured each model has a comparable number of param-

eters. The default configurations of LSTMs, GRUs, CNNs and RCNNs are shown

in Table 2.8. We use the additive and normalized version of RCNNs with adaptive

neural gates. We used MRR to identify the best training epoch and the model con-

figuration. For the same model configuration, we report average performance across

5 independent runs.11

11For a fair comparison, we also pre-train 5 independent models for each configuration and then
fine tune these models. We use the same learning rate and dropout rate during pre-training and
fine-tuning.
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Word Vectors We ran word2vec [77] to obtain 200-dimensional word embeddings

using all Stack Exchange data (excluding StackOverflow) and a large Wikipedia cor-

pus. The word vectors are fixed to avoid over-fitting across all experiments.

Results Table 2.9 shows the performance of the baselines and the neural encoder

models on the question retrieval task. The results show that our full model, RCNNs

with pre-training, achieves the best performance across all metrics on both the dev

and test sets. For instance, the full model gets a P@1 of 62.0% on the test set,

outperforming the word matching-based method BM25 by over 8 percent points.

Further, our RCNN model also outperforms the other neural encoder models and

the baselines across all metrics. This superior performance indicates that the use

of non-consecutive filters and a varying decay is effective in improving traditional

neural network models. Table 2.9 also demonstrates the performance gain from pre-

training the RCNN encoder. The RCNN model when pre-trained on the entire corpus

consistently gets better results across all the metrics.

We analyze the effect of various pooling strategies for the neural network encoders.

As shown in Table 2.10, our RCNN model outperforms other neural models regardless

of the two pooling strategies explored. We also observe that simply using the last

hidden state as the final representation achieves better results for the RCNN model.

Table 2.11 compares the performance of the TF-IDF baseline and the RCNN

model when using question titles only or when using question titles along with ques-

tion bodies. TF-IDF’s performance changes very little when the question bodies are

included (MRR and P@1 are slightly better but MAP is slightly worse). However,

we find that the inclusion of the question bodies improves the performance of the

RCNN model, achieving a 1% to 3% improvement with both model variations. The

RCNN model’s greater improvement illustrates the ability of the model to pick out

components that pertain most directly to the question being asked from the long,

descriptive question bodies.

We also analyze the effect of pre-training the encoder-decoder network. Note that,

during pre-training, the last hidden states generated by the neural encoder are used by
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Method Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

BM25 52.0 66.0 51.9 42.1 56.0 68.0 53.8 42.5
TF-IDF 54.1 68.2 55.6 45.1 53.2 67.1 53.8 39.7
SVM 53.5 66.1 50.8 43.8 57.7 71.3 57.0 43.3
CNNs, mean 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs, mean 58.4 72.3 60.0 46.4 56.8 70.1 55.8 43.2
GRUs, mean 59.1 74.0 62.6 47.3 57.1 71.4 57.3 43.6
RCNNs, last 59.9 74.2 63.2 48.0 60.7 72.9 59.1 45.0
LSTMs, pt, mean 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
GRUs, pt, last 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs, pt, last 61.3* 75.2 64.2 50.3* 62.3* 75.6* 62.0 47.1*

Table 2.9: Comparative results of all methods on the question similarity task. pt
stands for pre-training. For neural network models, we show the best average perfor-
mance across 5 independent runs and the corresponding pooling strategy. Statistical
significance with 𝑝 < 0.05 against other types of model is marked with *.

Method Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

CNNs, max 57.8 69.9 56.6 47.7 59.6 73.1 59.6 45.4
CNNs, mean 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs, pt, mean 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
LSTMs, pt, last 57.6 71.0 58.1 47.3 57.6 69.8 55.2 43.7
GRUs, pt, mean 57.5 69.9 57.1 46.2 55.5 67.3 52.4 42.8
GRUs, pt, last 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs, pt, mean 59.3 73.6 61.7 48.6 58.9 72.3 57.3 45.3
RCNNs, pt, last 61.3 75.2 64.2 50.3 62.3 75.6 62.0 47.1

Table 2.10: Choice of pooling strategies. LSTMs, GRUs and RCNNs are all pre-
trained. max, mean and last stand for the three different pooling strategies.
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TF-IDF MAP MRR P@1
title only 54.3 66.8 52.7
title + body 53.2 67.1 53.8

RCNNs, mean-pooling MAP MRR P@1
title only 56.0 68.9 55.7
title + body 58.5 71.7 56.7

RCNNs, last state MAP MRR P@1
title only 58.2 70.7 56.6
title + body 60.7 72.9 59.1

Table 2.11: Comparision between model variants on the test set when question bodies
are used or not used.
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Figure 2-7: Perplexity (dotted lines) on a heldout portion of the corpus versus MRR
on the dev set (solid lines) during pre-training. Variances across 5 runs are shown as
vertical bars.

the decoder to reproduce the question titles. It would be interesting to see how such

states capture the meaning of questions. To this end, we evaluate MRR on the dev

set using the last hidden states of the question titles. We also test how the encoder

captures information from the question bodies to produce the distilled summary, i.e.

titles. To do so, we evaluate the perplexity of the trained encoder-decoder model on

a heldout set of the corpus, which contains about 2000 questions.

As shown in Figure 2-7, the representations generated by the RCNN encoder

perform quite well, resulting in a perplexity of 25 and over 68% MRR without the
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subsequent fine-tuning. Interestingly, the LSTM and GRU networks obtain similar

perplexity on the heldout set, but achieve much worse MRR for similar question

retrieval. For instance, the GRU encoder obtains only 63% MRR, 5% worse than the

RCNN model’s MRR performance. As a result, the LSTM and GRU encoder do not

benefit clearly from pre-training, as suggested in Table 2.9.

The inconsistent performance difference may be explained by two hypotheses.

One is that the perplexity is not suitable for measuring the similarity of the encoded

text, thus the power of the encoder is not illustrated in terms of perplexity. Another

hypothesis is that the LSTM and GRU encoder may learn non-linear representations

therefore their semantic relatedness can not be directly accessed by cosine similarity.

Finally, we analyze the gated adaptive decay of our model. Figure 2-9 demon-

strates at each word position 𝑡 how much input information is taken into the model

by the adaptive weights 1 − 𝜆𝑡. The average of weights in the vector decreases as 𝑡

increments, suggesting that the information encoded into the state vector saturates

when more input are processed. On the other hand, the largest value in the weight

vector remains high throughout the input, indicating that at least some information

has been stored in h[𝑡] and c[𝑡].

We also conduct a case study on analyzing the neural gate. Since directly inspect-

ing the 400-dimensional decay vector is difficult, we train a model that uses a scalar

decay instead. As shown in Figure 2-8, the model learns to assign higher weights to

application names and quoted error messages, which intuitively are important pieces

of a question in the AskUbuntu domain.
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Figure 2-8: Visualizations of 1− 𝜆𝑡 of our model on several question pieces from the
data set. 𝜆𝑡 is set to a scalar value (instead of 400-dimension vector) to make the
visualization simple. The corresponding model is a simplified variant, which is about
4% worse than our full model.
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Figure 2-9: The maximum and mean value of the 400-dimentional weight vector 1−𝜆𝑡
at each step (word position) 𝑡. Values are averaged across all questions in the dev
and test set.
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3
Rationalizing Neural Predictions

Prediction without justification has limited applicability. In this chapter, we learn

to extract pieces of input text as justifications – rationales – that are tailored to be

short and coherent, yet sufficient for making the same prediction. We first describe our

model framework, which consists two modular components, generator and encoder.

Thereafter, we present our experiments on multi-aspect sentiment analysis and similar

text retrieval. We conclude and discuss some extensions in the last section.

3.1 Introduction

Many recent advances in NLP problems have come from formulating and training

expressive and elaborate neural models. This includes models for sentiment classifi-

cation, parsing, and machine translation among many others. The gains in accuracy

have, however, come at the cost of interpretability since complex neural models offer

little transparency concerning their inner workings. In many applications, such as

medicine, predictions are used to drive critical decisions, including treatment options.

It is necessary in such cases to be able to verify and understand the underlying ba-

sis for the decisions. Ideally, complex neural models would not only yield improved

performance but would also offer interpretable justifications – rationales – for their

predictions.

In this chapter, we propose a novel approach to incorporating rationale generation

as an integral part of the overall learning problem. We limit ourselves to extractive (as

73



the	beer	was	n’t	what	i	expected,	and	i‘m	not	sure	it’s	“true	
to	 style“,	 but	 i	 thought	 it	 was	 delicious.	 a	 very	 pleasant	
ruby	red-amber	color	with	a	rela9vely	brilliant	finish,	but	a	
limited	amount	of	carbona9on,	from	the	look	of	it.	aroma	is	
what	 i	 think	 an	 amber	 ale	 should	 be	 -	 a	 nice	 blend	 of	
caramel	and	happiness	bound	together.

Review

Ratings
Look: 5 stars Smell: 4 stars

Figure 3-1: An example of a review with ranking in two categories. The rationale for
Look prediction is shown in bold.

opposed to abstractive) rationales. From this perspective, our rationales are simply

subsets of the words from the input text that satisfy two key properties. First, the

selected words represent short and coherent pieces of text (e.g., phrases) and, second,

the selected words must alone suffice for prediction as a substitute of the original

text. More concretely, consider the task of multi-aspect sentiment analysis. Figure 3-

1 illustrates a product review along with user rating in terms of two categories or

aspects. If the model in this case predicts five star rating for color, it should also

identify the phrase "a very pleasant ruby red-amber color" as the rationale underlying

this decision.

In most practical applications, rationale generation must be learned entirely in an

unsupervised manner. We therefore assume that our model with rationales is trained

on the same data as the original neural models, without access to additional rationale

annotations. In other words, target rationales are never provided during training;

the intermediate step of rationale generation is guided only by the two desiderata

discussed above. Our model is composed of two modular components that we call

the generator and the encoder. Our generator specifies a distribution over possible

rationales (extracted text) and the encoder maps any such text to task specific target

values. They are trained jointly to minimize a cost function that favors short, concise

rationales while enforcing that the rationales alone suffice for accurate prediction.

The notion of what counts as a rationale may be ambiguous in some contexts
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and the task of selecting rationales may therefore be challenging to evaluate. We

focus on two domains where ambiguity is minimal (or can be minimized). The first

scenario concerns with multi-aspect sentiment analysis exemplified by the beer review

corpus [74]. A smaller test set in this corpus identifies, for each aspect, the sentence(s)

that relate to this aspect. We can therefore directly evaluate our predictions on

the sentence level with the caveat that our model makes selections on a finer level,

in terms of words, not complete sentences. The second scenario concerns with the

problem of retrieving similar questions. The extracted rationales should capture the

main purpose of the questions. We can therefore evaluate the quality of rationales

as a compressed proxy for the full text in terms of retrieval performance. Our model

achieves high performance on both tasks. For instance, on the sentiment prediction

task, our model achieves extraction accuracy of 96%, as compared to 38% and 81%

obtained by the bigram SVM and a neural attention baseline.
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3.2 Related Work

3.2.1 Developing Interpretable Models

Developing sparse interpretable models is of considerable interest to the broader re-

search community[68, 54]. The need for interpretability is even more pronounced

with recent neural models. Efforts in this area include analyzing and visualizing state

activation [40, 51, 70], learning sparse interpretable word vectors [29], and linking

word vectors to semantic lexicons or word properties [28, 37].

Beyond learning to understand or further constrain the network to be directly

interpretable, one can estimate interpretable proxies that approximate the network.

Examples include extracting “if-then” rules [106] and decision trees [20] from trained

networks. More recently, Ribeiro et al. [87] propose a model-agnostic framework

where the proxy model is learned only for the target sample (and its neighborhood)

thus ensuring locally valid approximations.

Our work differs from these both in terms of what is meant by an explanation

and how they are derived. In our case, an explanation consists of a concise yet

sufficient portion of the text where the mechanism of selection is learned jointly with

the predictor.

3.2.2 Attention-based Neural Networks

Attention-based models offer another means to explicate the inner workings of neural

models [4, 13, 73, 11, 110, 112]. Such models have been successfully applied to many

NLP problems, improving both prediction accuracy as well as visualization and inter-

pretability [91, 89, 39]. Xu et al. [111] introduced a stochastic attention mechanism

together with a more standard soft attention on image captioning task.

Our rationale extraction can be understood as a type of stochastic attention al-

though architectures and objectives differ. Moreover, we compartmentalize rationale

generation from downstream encoding so as to expose knobs to directly control types

of rationales that are acceptable, and to facilitate broader modular use in other ap-
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plications.

3.2.3 Rationale-based Classification

Finally, we contrast our work with rationale-based classification [115, 72, 119] which

seek to improve prediction by relying on richer annotations in the form of human-

provided rationales. For example, Zaidan et al. [115] include rationales as additional

supervision in a SVM classifier, and improve the sentiment prediction performance

on movie reviews. Zhang et al. [119] train a sentence-level classifier using rationale

annotations and use the trained model for sentence-level weighted average-pooling

in a document-level CNN model. In contrast to the prior work, we assume that

rationales are never given during training. Instead, the goal is to learn to generate

them.
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3.3 Model

3.3.1 Extractive Rationale Generation

We formalize here the task of extractive rationale generation and illustrate it in the

context of neural models. To this end, consider a typical NLP task where we are

provided with a sequence of words as input, namely x = {𝑥1, · · · , 𝑥𝑙}, where each

𝑥𝑡 ∈ R𝑑 denotes the vector representation of the i-th word. The learning problem is

to map the input sequence x to a target vector in R𝑚. For example, in multi-aspect

sentiment analysis each coordinate of the target vector represents the response or rat-

ing pertaining to the associated aspect. In text retrieval, on the other hand, the target

vectors are used to induce similarity assessments between input sequences. Broadly

speaking, we can solve the associated learning problem by estimating a complex pa-

rameterized mapping enc(x) from input sequences to target vectors. We call this

mapping an encoder. The training signal for these vectors is obtained either directly

(e.g., multi-sentiment analysis) or via similarities (e.g., text retrieval). The challenge

is that a complex neural encoder enc(x) reveals little about its internal workings and

thus offers little in the way of justification for why a particular prediction was made.

In extractive rationale generation, our goal is to select a subset of the input se-

quence as a rationale. In order for the subset to qualify as a rationale it should satisfy

two criteria: 1) the selected words should be interpretable and 2) they ought to suffice

to reach nearly the same prediction (target vector) as the original input. In other

words, a rationale must be short and sufficient. We will assume that a short selection

is interpretable and focus on optimizing sufficiency under cardinality constraints.

We encapsulate the selection of words as a rationale generator which is another

parameterized mapping gen(x) from input sequences to shorter sequences of words.

Thus gen(x) must include only a few words and enc(gen(x)) should result in nearly

the same target vector as the original input passed through the encoder or enc(x). We

can think of the generator as a tagging model where each word in the input receives a

binary tag pertaining to whether it is selected to be included in the rationale. In our

case, the generator is probabilistic and specifies a distribution over possible selections.
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Figure 3-2 illustrates our generator component.

The rationale generation task is entirely unsupervised in the sense that we assume

no explicit annotations about which words should be included in the rationale. Put

another way, the rationale is introduced as a latent variable, a constraint that guides

how to interpret the input sequence. The encoder and generator are trained jointly,

in an end-to-end fashion so as to function well together.

3.3.2 Encoder and Generator

We use multi-aspect sentiment prediction as a guiding example to instantiate the two

key components – the encoder and the generator. The framework itself generalizes to

other tasks.

Encoder enc(·): Given a training instance (x,y) where x = {x𝑡}𝑙𝑡=1 is the input

text sequence of length 𝑙 and y ∈ [0, 1]𝑚 is the target m-dimensional sentiment vector,

the neural encoder predicts ỹ = enc(x). If trained on its own, the encoder would aim

to minimize the discrepancy between the predicted sentiment vector ỹ and the gold

target vector y. We will use the squared error (i.e. 𝐿2 distance) as the loss function,

ℒ(x,y) = ‖ỹ − y‖22 = ‖enc(x)− y‖22

The encoder could be realized in many ways such as a recurrent neural network. For

example, let h[𝑡] = 𝑓𝑒(x𝑡,h[𝑡 − 1]) denote a parameterized recurrent unit mapping

input word x𝑡 and previous state h[𝑡− 1] to next state h[𝑡]. The target vector is then

generated on the basis of the final state reached by the recurrent unit after processing

all the words in the input sequence. Specifically,

h[𝑡] = 𝑓𝑒(x𝑡,h[𝑡− 1]), 𝑡 = 1, . . . , 𝑙

ỹ = 𝜎𝑒(W
𝑒h[𝑙] + b𝑒)
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P(z):
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input words x:

binary selection z: 0 1 0 1 1 0 1 0 1 1

0 1 0 1
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Generator gen(x)

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

Input x

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 
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beer, unfortunately it gets worse from here …

Distribution over possible rationales P(z|x)

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.02

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.05

z0.8

…

Generator Implementations

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.01

this beer pours ridiculously clear with tons of 

carbonation that forms a rather impressive 

rocky head that settles slowly into a fairly 

dense layer of foam. this is a real good lookin' 

beer, unfortunately it gets worse from here …

0.1

Figure 3-2: An illustration of the generator component. The generator specifies the
distribution of rationales for a given input document.
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Figure 3-3: Two possible neural implementations of the generator component.

Generator gen(·): The rationale generator extracts a subset of text from the orig-

inal input x to function as an interpretable summary. Thus the rationale for a given

sequence x can be equivalently defined in terms of binary variables z = {𝑧1, · · · , 𝑧𝑙}

where each 𝑧𝑡 ∈ {0, 1} indicates whether word x𝑡 is selected or not (see Figure 3-2).

From here on, we will use z to specify the binary selections and thus (z,x) is the actual

rationale generated (selections, input). We will use generator gen(x) as synonymous

with a probability distribution over binary selections, i.e., z ∼ gen(x) ≡ 𝑝(z|x) where

the length of z varies with the input x.

In a simple generator, the probability that the 𝑡𝑡ℎ word is selected can be assumed

to be conditionally independent from other selections given the input x. That is, the
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joint probability 𝑝(z|x) factors according to

𝑝(z|x) =
𝑙∏︁

𝑡=1

𝑝(𝑧𝑡|x) (independent selection)

The component distributions 𝑝(𝑧𝑡|x) can be modeled using a shared bi-directional

recurrent neural network. Specifically, let
−→
𝑓 () and

←−
𝑓 () be the forward and backward

recurrent unit, respectively, then

−→
h [𝑡] =

−→
𝑓
(︁
x𝑡,
−→
h [𝑡− 1]

)︁
←−
h [𝑡] =

←−
𝑓
(︁
x𝑡,
←−
h [𝑡− 1]

)︁
𝑝(𝑧𝑡|x) = 𝜎𝑧

(︁
W𝑧

[︁−→
h [𝑡];

←−
h [𝑡]

]︁
+ b𝑧

)︁
Independent but context dependent selection of words is often sufficient. However,

the model is unable to select phrases or refrain from selecting the same word again if

already chosen. To this end, we also introduce a dependent selection of words,

𝑝(z|x) =
𝑙∏︁

𝑡=1

𝑝(𝑧𝑡|x, 𝑧1 · · · 𝑧𝑡−1)

which can be also expressed as a recurrent neural network. To this end, we introduce

another hidden state s[𝑡] whose role is to couple the selections. For example,

𝑝(𝑧𝑡|x, z1,𝑡−1) = 𝜎𝑧

(︁
W𝑧

[︁−→
h [𝑡];

←−
h [𝑡]; s[𝑡− 1]

]︁
+ b𝑧

)︁
s[𝑡] = 𝑓𝑧

(︁[︁−→
h [𝑡];

←−
h [𝑡]; 𝑧𝑡

]︁
, s[𝑡− 1]

)︁
Figure 3-3 illustrates the independent and dependent implementations of selections.

Joint objective: A rationale in our definition corresponds to the selected words,

i.e., {x𝑘|z𝑘 = 1}. We will use (z,x) as the shorthand for this rationale and, thus,

enc(z,x) refers to the target vector obtained by applying the encoder to the rationale

as the input. Our goal here is to formalize how the rationale can be made short and

81



meaningful yet function well in conjunction with the encoder. Our generator and

encoder are learned jointly to interact well but they are treated as independent units

for modularity.

The generator is guided in two ways during learning. First, the rationale that it

produces must suffice as a replacement for the input text. In other words, the target

vector (sentiment) arising from the rationale should be close to the gold sentiment.

The corresponding loss function is given by

ℒ(z,x,y) = ‖enc(z,x)− y‖22

Note that the loss function depends directly (parametrically) on the encoder but only

indirectly on the generator via the sampled selection.

Second, we must guide the generator to realize short and coherent rationales. It

should select only a few words and those selections should form phrases (consecutive

words) rather than represent isolated, disconnected words. We therefore introduce

an additional regularizer over the selections

Ω(z) = 𝜆1‖z‖+ 𝜆2
∑︁
𝑡

|𝑧𝑡 − 𝑧𝑡−1|

where the first term penalizes the number of selections while the second one discour-

ages transitions (encourages continuity of selections). Note that this regularizer also

depends on the generator only indirectly via the selected rationale. This is because

it is easier to assess the rationale once produced rather than directly guide how it is

obtained.

Our final cost is the combination of the two, cost(z,x,y) = ℒ(z,x,y) + Ω(z).

Since the selections are not provided during training, we minimize the expected cost:

min
𝜃𝑒,𝜃𝑔

∑︁
(x,y)∈𝐷

Ez∼gen(x) [cost(z,x,y)]

where 𝜃𝑒 and 𝜃𝑔 denote the set of parameters of the encoder and generator, respec-

tively, and 𝐷 is the collection of training instances. Our joint objective encourages
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the generator to compress the input text into coherent summaries that work well with

the associated encoder it is trained with.

Minimizing the expected cost is challenging since it involves summing over all the

possible choices of rationales z. This summation could potentially be made feasible

with additional restrictive assumptions about the generator and encoder. However,

we assume only that it is possible to efficiently sample from the generator.

Doubly stochastic gradient We now derive a sampled approximation to the gra-

dient of the expected cost objective. This sampled approximation is obtained sep-

arately for each input text x so as to work well with an overall stochastic gradient

method. Consider therefore a training pair (x,y). For the parameters of the generator

𝜃𝑔, the gradient is

𝜕Ez∼gen(x) [cost(z,x,y)]

𝜕𝜃𝑔

=
∑︁
z

cost(z,x,y) · 𝜕𝑝(z|x)

𝜕𝜃𝑔

=
∑︁
z

cost(z,x,y) · 𝜕𝑝(z|x)

𝜕𝜃𝑔
· 𝑝(z|x)

𝑝(z|x)

Using the fact (log 𝑓(𝜃))′ = 𝑓 ′(𝜃)/𝑓(𝜃), we can rewrite the gradient as,

∑︁
z

cost(z,x,y) · 𝜕𝑝(z|x)

𝜕𝜃𝑔
· 𝑝(z|x)

𝑝(z|x)

=
∑︁
z

cost(z,x,y) · 𝜕 log 𝑝(z|x)

𝜕𝜃𝑔
· 𝑝(z|x)

= E𝑧∼gen(x)

[︂
cost(z,x,y)

𝜕 log 𝑝(z|x)

𝜕𝜃𝑔

]︂

The last term is the expected gradient where the expectation is taken with respect to

the generator distribution over rationales z. Therefore, we can simply sample a few

rationales z from the generator gen(x) and use the resulting average gradient in an

overall stochastic gradient method. A sampled approximation to the gradient with
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respect to the encoder parameters 𝜃𝑒 can be derived similarly,

𝜕Ez∼gen(x) [cost(z,x,y)]

𝜕𝜃𝑒

=
∑︁
z

𝜕cost(z,x,y)

𝜕𝜃𝑒
· 𝑝(z|x)

= E𝑧∼gen(x)

[︂
𝜕cost(z,x,y)

𝜕𝜃𝑒

]︂

Choice of recurrent unit We employ the recurrent convolution (RCNN) proposed

in the previous chapter. Specifically, we use the adaptive version with additive and

normalized 2-gram feature mapping,

c1[𝑡] = 𝜆𝑡 ⊙ c1[𝑡− 1] + (1− 𝜆𝑡)⊙ (W1x𝑡)

c2[𝑡] = 𝜆𝑡 ⊙ c2[𝑡− 1] + (1− 𝜆𝑡)⊙ (c1[𝑡− 1] + W2x𝑡)

h[𝑡] = tanh(c2[𝑡] + b)

𝜆𝑡 = 𝜎(W𝜆x𝑡 + U𝜆h[𝑡− 1] + b𝜆)

As shown in the evaluation in the previous chapter, the RCNN component works

remarkably well in classification and retrieval applications compared to other alter-

natives such CNNs and LSTMs. We use it for all the recurrent units introduced in

our model.
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3.4 Applications and Evaluations

We evaluate the proposed joint model on two NLP applications: (1) multi-aspect

sentiment analysis on product reviews and (2) similar text retrieval on AskUbuntu

question answering forum.

3.4.1 Multi-aspect Sentiment Analysis

Dataset We use the BeerAdvocate1 review dataset used in prior work [74].2 This

dataset contains 1.5 million reviews written by the website users. The reviews are

naturally multi-aspect – each of them contains multiple sentences describing the over-

all impression or one particular aspect of a beer, including appearance, smell (aroma),

palate and the taste. In addition to the written text, the reviewer provides the ratings

(on a scale of 0 to 5 stars) for each aspect as well as an overall rating. The ratings

can be fractional (e.g. 3.5 stars), so we normalize the scores to [0, 1] and use them as

the (only) supervision for regression.

McAuley et al. [74] also provided sentence-level annotations on around 1,000 re-

views. Each sentence is annotated with one (or multiple) aspect label, indicating

what aspect this sentence covers. We use this set as our test set to evaluate the

precision of words in the extracted rationales.

Table 3.1 shows several statistics of the beer review dataset. The sentiment cor-

relation between any pair of aspects (and the overall score) is quite high, getting

63.5% on average and a maximum of 79.1% (between the taste and overall score). If

directly training the model on this set, the model can be confused due to such strong

correlation. We therefore perform a preprocessing step, picking “less correlated” ex-

amples from the dataset.3 This gives us a de-correlated subset for each aspect, each

containing about 80k to 90k reviews. We use 10k as the development set. We focus

on three aspects since the fourth aspect taste still gets > 50% correlation with the

1www.beeradvocate.com
2http://snap.stanford.edu/data/web-BeerAdvocate.html
3Specifically, for each aspect we train a simple linear regression model to predict the rating of

this aspect given the ratings of the other four aspects. We then keep picking reviews with largest
prediction error until the sentiment correlation in the selected subset increases dramatically.

85

www.beeradvocate.com
http://snap.stanford.edu/data/web-BeerAdvocate.html


Number of reviews 1580k
Avg length of review 144.9
Avg correlation between aspects 63.5%
Max correlation between two aspects 79.1%
Number of annotated reviews 994

Table 3.1: Statistics of the beer review dataset.

overall sentiment.

Sentiment Prediction Before training the joint model, it is worth assessing the

neural encoder separately to check how accurately the neural network predicts the

sentiment. To this end, we compare neural encoders with bigram SVM model, training

medium and large SVM models using 260k and all 1580k reviews respectively. As

shown in Table 3.2, the recurrent neural network models outperform the SVM model

for sentiment prediction and also require less training data to achieve the performance.

The LSTM and RCNN units obtain similar test error, getting 0.0094 and 0.0087

mean squared error respectively. The RCNN unit performs slightly better and uses

less parameters. Based on the results, we choose the RCNN encoder network with 2

stacking layers and 200 hidden states.

To train the joint model, we also use RCNN unit with 200 states as the forward

and backward recurrent unit for the generator gen(). The dependent generator has

one additional recurrent layer. For this layer we use 30 states so the dependent version

still has a number of parameters comparable to the independent version. The two

versions of the generator have 358k and 323k parameters respectively.

Figure 3-4 shows the performance of our joint dependent model when trained to

predict the sentiment of all aspects. We vary the regularization 𝜆1 and 𝜆2 to show

various runs that extract different amount of text as rationales. Our joint model

gets performance close to the best encoder run (with full text) when few words are

extracted.
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𝐷 𝑑 𝑙 |𝜃| MSE
SVM 260k - - 2.5M 0.0154
SVM 1580k - - 7.3M 0.0100
LSTM 260k 200 2 644k 0.0094
RCNN 260k 200 2 323k 0.0087

Table 3.2: Comparing neural encoders with bigram SVM model. MSE is the mean
squared error on the test set. 𝐷 is the amount of data used for training and devel-
opment. 𝑑 stands for the hidden dimension, 𝑙 denotes the depth of network and |𝜃|
denotes the number of parameters (number of features for SVM).

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

0.015
SVM

0.009
Encoder

Figure 3-4: Mean squared error of all aspects on the test set (y-axis) when various
percentages of text are extracted as rationales (x-axis). 220k training data is used.
Our model using only the extracted rationales is getting close performance to the
neural model using full text as the input.
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Method Appearance Smell Palate
%prec %sel %prec %sel %prec %sel

SVM 38.3 13 21.6 7 24.9 7
Attention model 80.6 13 88.4 7 65.3 7
Generator (independent) 94.8 13 93.8 7 79.3 7
Generator (dependent) 96.3 14 95.1 7 80.2 7

Table 3.3: Precision of selected rationales for the first three aspects. The precision
is evaluated based on whether the selected words are in the sentences describing
the target aspect, based on the sentence-level annotations. Best training epochs are
selected based on the objective value on the development set (no sentence annotation
is used).

Rationale Selection To evaluate the supporting rationales for each aspect, we

train the joint encoder-generator model on each de-correlated subset. We set the

cardinality regularization 𝜆1 between values {2𝑒− 4, 3𝑒− 4, 4𝑒− 4} so the extracted

rationale texts are neither too long nor too short. For simplicity, we set 𝜆2 = 2𝜆1 to

encourage local coherency of the extraction.

For comparison we use the bigram SVM model and implement an attention-based

neural network model. The SVM model successively extracts unigram or bigram

(from the test reviews) with the highest feature. The attention-based model learns

a normalized attention vector of the input tokens (using similarly the forward and

backward RNNs), then the model averages over the encoder states accordingly to

the attention, and feed the averaged vector to the output layer. Similar to the SVM

model, the attention-based model can selects words based on their attention weights.

Table 3.3 presents the precision of the extracted rationales calculated based on

sentence-level aspect annotations. The 𝜆1 regularization hyper-parameter is tuned

so the two versions of our model extract similar number of words as rationales. The

SVM and attention-based model are constrained similarly for comparison. Figure 3-

5 further shows the precision when different amounts of text are extracted. Again,

for our model this corresponds to changing the 𝜆1 regularization. As shown in the
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table and the figure, our encoder-generator networks extract text pieces describing the

target aspect with high precision, ranging from 80% to 96% across the three aspects

appearance, smell and palate. The SVM baseline performs poorly, achieving around

30% accuracy. The attention-based model achieves reasonable but worse performance

than the rationale generator, suggesting the potential of directly modeling rationales

as explicit extraction.

Figure 3-6 shows the learning curves of our model for the smell aspect. In the early

training epochs, both the independent and (recurrent) dependent selection models fail

to produce good rationales, getting low precision as a result. After a few epochs of

exploration however, the models start to achieve high accuracy. We observe that

the dependent version learns more quickly in general, but both versions obtain close

results in the end.

Finally we conduct a qualitative case study on the extracted rationales. Figure 3-

7 presents several reviews, with highlighted rationales predicted by the model. Our

rationale generator identifies key phrases or adjectives that indicate the sentiment of

a particular aspect.

3.4.2 Similar Text Retrieval on QA Forum

Dataset For our second application, we use the real-world AskUbuntu4 dataset

used in recent work [25, 67]. This set contains a set of 167k unique questions (each

consisting a question title and a body) and 16k user-identified similar question pairs.

Following previous work, this data is used to train the neural encoder that learns the

vector representation of the input question, optimizing the cosine distance (i.e. cosine

similarity) between similar questions against random non-similar ones. We use the

“one-versus-all” hinge loss (i.e. positive versus other negatives) for the encoder, similar

to [67]. During development and testing, the model is used to score 20 candidate

questions given each query question, and a total of 400×20 query-candidate question

pairs are annotated for evaluation5.

4askubuntu.com
5https://github.com/taolei87/askubuntu
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SVM Attention Gen (independent) Gen (recurrent)

1 73.9 1 89.1 6 97.4 12 96.5

3 55.9 3 88.1 13 94.9 14 96.3

5 48.5 5 86.4 16 92.9 16 91.2

7 44.7 7 84.1

9 42.2 9 82.3

11 41.2 11 79.8
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Figure 3-5: Precision (y-axis) when various percentages of text are extracted as ra-
tionales (x-axis) for the appearance aspect.
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Figure 3-6: Learning curves of the optimized cost function on the development set
and the precision of rationales on the test set. The smell (aroma) aspect is the target
aspect.
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Very dark beer. Pours a nice finger and a half of creamy foam and stays throughout 
the beer. Smells of coffee and roasted malt. Has a major coffee-like taste with 
hints of chocolate. If you like black coffee, you will love this porter. Creamy smooth 
mouthfeel and definitely gets smoother on the palate once it warms. It's an ok 
porter but i feel there are much better one 's out there . 

a : poured a nice dark brown with a tan colored head about half an inch thick, nice 
red/garnet accents when held to the light. Little clumps of lacing all around the 
glass, not too shabby. Not terribly impressive though s : smells like a more guinness-y 
guinness really, there are some roasted malts there , signature guinness smells, less 
burnt though, a little bit of chocolate … …  m : relatively thick, it isn't an export stout 
or imperial stout, but still is pretty hefty in the mouth, very smooth, not much 
carbonation. Not too shabby d : not quite as drinkable as the draught, but still not 
too bad. I could easily see drinking a few of these. 

A beer that is not sold in my neck of the woods , but managed to get while on a 
roadtrip. poured into an imperial pint glass with a generous head that sustained life 
throughout. Nothing out of the ordinary here, but a good brew still. body was kind of 
heavy, but not thick. The hop smell was excellent and enticing. very drinkable

Figure 3-7: Examples of extracted rationales indicating the sentiments of various
aspects. The extracted texts for appearance, smell and palate are shown in orange,
blue and green color respectively. The last example is shortened for space.
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Task/Evaluation Setup The question descriptions are often long and fraught with

irrelevant details. In this set-up, a fraction of the original question text should be

sufficient to represent its content, and be used for retrieving similar questions. There-

fore, we will evaluate rationales based on the accuracy of the question retrieval task,

assuming that better rationales achieve higher performance. To put this performance

in context, we also report the accuracy when full body of a question is used, as well

as titles alone. The latter constitutes an upper bound on the model performance as

in this dataset titles provide short, informative summaries of the question content.

We evaluate the rationales using the mean average precision (MAP) of retrieval.

Results Table 3.4 presents the results of our rationale model. We explore a range of

hyper-parameter values6. We include two runs for each version. The first one achieves

the highest MAP on the development set, The second run is selected to compare the

models when they use roughly 10% of question text (7 words on average). We also

show the results of different runs in Figure 3-8. The rationales achieve the MAP up

to 56.5%, getting close to using the titles. The models also outperform the baseline

of using the noisy question bodies, indicating the the models’ capacity of extracting

short but important fragments.

Figure 3-9 shows the rationales for several questions in the AskUbuntu domain,

using the recurrent version with around 10% extraction. Interestingly, the model does

not always select words from the question title. The reasons are that the question

body can contain the same or even complementary information useful for retrieval.

Indeed, some rationale fragments shown in the figure are error messages, which are

typically not in the titles but very useful to identify similar questions.

6𝜆1 ∈ {.008, .01, .012, .015}, 𝜆2 = {0, 𝜆1, 2𝜆1}, dropout ∈ {0.1, 0.2}
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MAP (dev) MAP (test) %words
Full title 56.5 60.0 10.1
Full body 54.2 53.0 89.9

Independent 55.7 53.6 9.7
56.3 52.6 19.7

Dependent 56.1 54.6 11.6
56.5 55.6 32.8

Table 3.4: Comparison between rationale models (middle and bottom rows) and the
baselines using full title or body (top row).

Gen (independent) Gen (recurrent)

0.052 47.08 0.063 50.54

0.058 52.36 0.067 49.48

0.059 46.02 0.07 51.96

0.062 49.76 0.078 51.54

0.064 47.94 0.086 52.55

0.068 48.93 0.095 53.59

0.07 49.5 0.108 53.15

0.081 52.18 0.112 51.48

0.081 51.84 0.116 54.62

0.094 51.24 0.121 52.12

0.094 52.21 0.137 53

0.097 53.61 0.163 53.2

0.098 54.11 0.179 54.13

0.122 49.03 0.193 52.11

0.133 54.19 0.262 52.32

0.135 50.21 0.277 50.87

0.136 48.22 0.328 53.21

0.145 50.96 0.328 55.61

0.155 52.91 0.347 51

0.173 52.74 0.378 54.93

0.197 52.6

45.0
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50.5

53.3

56.0
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Gen (independent)
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Figure 3-8: Retrieval MAP on the test set when various percentages of the texts
are chosen as rationales. Data points correspond to models trained with different
hyper-parameters.
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What is the easiest way to install all the media available for Ubuntu? I am having 
issues with multiple applications prompting me to install codecs before they can play my 
files. How do I install media codecs? 

Please any one give the solution for this Whenever I try to convert the rpm file to 
deb file I always get this problem error: #unk: not an rpm package (or package 
manifest) error executing ``lang=c rp -qp —queryformat %{name} #unk’’ at #unk line 
489 Thanks Converting rpm file to debian file

How do I mount a hibernated partition with Windows 8 in Ubuntu? I can’t mount 
my other partition with Windows 8, I have Ubuntu 12.10 amd64: error mounting /dev/
sda1 at #unk: command-line `mount -t “ntfs” -o “uhelper=udisks2, nodev, nosuid, 
uid=1000, gid=1000, dmask=0077, fmask=0177” …’ exited with non-zero exit status 14:  
Windows is hibernated, refused to mount. Failed to mount `/dev/sda1”: operation not 
permitted. The ntfs partition is hibernated. Please resume and shutdown Windows 
properly, or mount the volume read-only with the `ro’ mount option 

Figure 3-9: Examples of extracted rationales of questions in the AskUbuntu domain.
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3.5 Conclusions and Discussions

In this chapter, we proposed a novel modular neural framework to automatically

generate concise yet sufficient text fragments to justify predictions made by neural

networks. We demonstrated that our encoder-generator framework, trained in an end-

to-end manner, gives rise to quality rationales in the absence of any explicit rationale

annotations. The approach could be modified or extended in various ways to other

applications or types of data.

Choices of enc(·) and gen(·). The encoder and generator can be realized in nu-

merous ways without changing the broader algorithm. For instance, we could use a

convolutional network [55, 50], deep averaging network [45, 47] or a boosting classifier

as the encoder. When rationales can be expected to conform to repeated stereotypi-

cal patterns in the text, a simpler encoder consistent with this bias can work better.

We emphasize that, in this paper, rationales are flexible explanations that may vary

substantially from instance to another. On the generator side, many additional con-

straints could be imposed to further guide acceptable rationales.

Dealing with Search Space. Our training method employs a REINFORCE-style

algorithm [109] where the gradient with respect to the parameters is estimated by

sampling possible rationales. Additional constraints on the generator output can

be helpful in alleviating problems of exploring potentially a large space of possible

rationales in terms of their interaction with the encoder. We could also apply variance

reduction techniques to increase stability of stochastic training (cf. [108, 79, 3, 111]).
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4
Conclusions

In this thesis, we have proposed several neural components as well as theoretical and

empirical studies for interpretable deep learning in the context of NLP. In particular,

we have studied a class of neural operation (or layer) for sequence modeling. Broadly

speaking, this operation is a generalization of convolutional architectures and recur-

rent architectures (with gating) which have been shown to work well for NLP. We

argue that the effectiveness of such class for NLP can be seen and justified by relating

it to sequence kernels – a natural class of functions for measuring sequence similar-

ity. We hope a deeper understanding would lead to empirical success. Indeed, we

have achieved state-of-the-art or competitive results in various NLP applications by

exploring neural architectures guided by the theoretical justifications.

Furthermore, we have presented a framework for generating human-readable ra-

tionales, e.g. text pieces in the context of NLP, to justify model’s prediction. For

tasks such as classification, the model framework can learn rationales jointly with

classification predictions with only classification label annotations. We have derived

a REINFORCE-style learning algorithm and successfully demonstrated its effective-

ness in several NLP applications. The proposed framework opens a way for ordinary

users to verify a neural model’s decision and to communicate with the model.
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Future Work

Several paths of research arises from the work presented in this thesis. We briefly

discuss a few of them below.

∙ Structured Components beyond Sequence The neural operation in Chap-

ter 2 is designed for sequential data. In applications such as parsing, translation

or reasoning, it may be necessary to investigate components and operations that

encode more complicated structures, such as trees or graphs. We have presented

a way for encoding efficient sequence-based computation into the neural struc-

tures, and hope to shed some light on this direction.

∙ Rationale Framework Extensions The rationale framework is presented in

the context of text classification. At a high-level, the framework can be applied

in other scenarios, such as image classification and object detection to provide

supporting image regions without explicit human annotations during training.

Another challenging problem is to model interactions of rationales – when the

decision is made by reasoning between two or several input pieces. On the

technical aspect, the learning is driven by sampling / exploring the rationale

space, and hence it would be also necessary to explore learning techniques such

as variance reduction and model distillation to improve learning stability.
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A
Derivations and Proofs

A.1 Derivation of the Dynamic Programming Method

Consider the feature extraction operations defined in Table 2.1 of Section 2.3. We

derive the dynamic programming method for computing c𝑛[𝑡] and z𝑛[𝑡]. As a running

example, let’s use the multiplicative, un-normalized version,

c𝑛[𝑡] =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−𝑖1−𝑛+1

z𝑛[𝑡] =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑛=𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−𝑖1−𝑛+1

The corresponding DP equations are,

𝑛 = 1 : c1[𝑡] = 𝜆 · c1[𝑡− 1] + W(1)x𝑡

z1[𝑡] = W(1)x𝑡

𝑛 > 1 : c𝑛[𝑡] = 𝜆 · c𝑛[𝑡− 1] +
(︀
c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

)︀
z𝑛[𝑡] = c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

We now prove the equivalence by induction.
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Proof: When 𝑛 = 1, z1[𝑡] = W(1)x𝑡 by definition. For c1[𝑡] we have,

c1[𝑡] =
∑︁

1≤𝑖1≤𝑡

(︀
W(1)x𝑖1

)︀
· 𝜆𝑡−𝑖1

=

(︃ ∑︁
1≤𝑖1≤𝑡−1

(︀
W(1)x𝑖1

)︀
· 𝜆𝑡−1−𝑖1

)︃
⏟  ⏞  

c1[𝑡−1]

·𝜆 + W(1)x𝑡

= c1[𝑡− 1] · 𝜆 + W(1)x𝑡

When 𝑛 = 𝑘 > 1, suppose the DP equations hold for 1, · · · , 𝑘 − 1, we have,

z𝑛[𝑡] =
∑︁

1≤𝑖1<···<𝑖𝑛=𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−𝑖1−𝑛+1

=

⎛⎝ ∑︁
1≤𝑖1<···<𝑖𝑛−1<=𝑡−1

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛−1)x𝑖𝑛−1

)︀
· 𝜆𝑡−𝑖1−𝑛+1

⎞⎠
⏟  ⏞  

c𝑛−1[𝑡−1]

⊙W(𝑛)x𝑡

= c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

c𝑛[𝑡] =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−𝑖1−𝑛+1

=

(︃ ∑︁
1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡−1

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−1−𝑖1−𝑛+1

)︃
⏟  ⏞  

when 𝑖𝑛<𝑡: c𝑛[𝑡−1]

·𝜆

+

(︃ ∑︁
1≤𝑖1<𝑖2<···<𝑖𝑛=𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−1−𝑖1−𝑛+1

)︃
⏟  ⏞  

when 𝑖𝑛=𝑡: z𝑛[𝑡]

= 𝑐𝑛[𝑡− 1] · 𝜆 + z𝑛[𝑡]

= 𝑐𝑛[𝑡− 1] · 𝜆 +
(︀
c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

)︀
DP equations for other versions of RCNN can be derived exactly the same way.
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A.2 Proof of Theorem 1

Theorem 1 states that each version of RCNN (Table 2.2) computes an underlying

variant of string kernel (Table 2.3). Again, in this proof we use the multiplicative and

additive version as the running example. The proof sketch applies to other variants

as well.

We first generalize the kernel definition in Eq.(2.7) to the case of any n-gram. For

any integer 𝑛 > 0, the underlying mapping of the string kernel is defined as,

𝜑𝑛(x) =
∑︁

1≤𝑖1<···<𝑖𝑛≤|x|

𝜆|𝑥|−𝑖1−𝑛+1 x𝑖1 ⊗ x𝑖2 ⊗ · · · ⊗ x𝑖𝑛

Now recall that the n-gram RCNN computes its states as

c𝑛[𝑡] = 𝜆 · c𝑛[𝑡− 1] +
(︀
c𝑛−1[𝑡− 1]⊙W(𝑛)x𝑡

)︀
From the derivation of the dynamic programming algorithm in A.1, we know that this

is equivalent to summing over all n-grams within the first 𝑡 tokens x1:𝑡 = {x1, · · · ,x𝑡},

c𝑛[𝑡] =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡

(︀
W(1)x𝑖1 ⊙ · · · ⊙W(𝑛)x𝑖𝑛

)︀
· 𝜆𝑡−𝑖1−𝑛+1

In particular, the value of the i-th entry, c𝑛[𝑡][𝑖], is equal to,

c𝑛[𝑡][𝑖] =
∑︁

1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡

⟨
w

(1)
𝑖 ,x𝑖1

⟩
· · ·
⟨
w

(𝑛)
𝑖 ,x𝑖𝑛

⟩
⏟  ⏞  ⟨

x𝑖1
⊗···⊗x𝑖𝑛 ,w

(1)
𝑖 ⊗···⊗w

(𝑛)
𝑖

⟩
· 𝜆𝑡−𝑖1−𝑛+1 (A.1)

=

⟨ ∑︁
1≤𝑖1<𝑖2<···<𝑖𝑛≤𝑡

𝜆𝑡−𝑖1−𝑛+1 x𝑖1 ⊗ · · · ⊗ x𝑖𝑛 , w
(1)
𝑖 ⊗ · · · ⊗w

(𝑛)
𝑖

⟩

= ⟨𝜑𝑛(x1:𝑡), 𝜑𝑛(w𝑖,𝑛)⟩

where w
(𝑘)
𝑖 represents the i-th row of matrix W(𝑘) and w𝑖,𝑛 = {w(1)

𝑖 , · · · ,w(𝑛)
𝑖 }. This

completes the proof since 𝒦𝑛(x1:𝑡,w𝑖,𝑛) = ⟨𝜑𝑛(x1:𝑡), 𝜑𝑛(w𝑖,𝑛)⟩ by definition.
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A.3 Proof of Theorem 3

We first review necessary concepts and notations for the ease of reading. Similar to

the proof in A.2, the generalized string kernel 𝒦(𝑙) and 𝒦(𝑙)
𝜎 in Eq.(2.8) can be defined

with the underlying mappings,

𝜑(𝑙)(x) =
∑︁

1≤𝑖1<···<𝑖𝑛≤|x|

𝜆|𝑥|−𝑖1−𝑛+1 𝜑(𝑙−1)
𝜎 (x1:𝑖1)⊗ 𝜑(𝑙−1)

𝜎 (x1:𝑖2)⊗ · · · ⊗ 𝜑(𝑙−1)
𝜎 (x1:𝑖1)

𝜑(𝑙)
𝜎 (x) = 𝜑𝜎(𝜑(𝑙)(x))

where 𝜑𝜎() is the underlying mapping of a kernel function whose reproducing kernel

Hilbert space (RKHS) contains the non-linear activation 𝜎() used in the RCNN layer.

Here 𝒦(𝑙)() is the “pre-activation kernel” and 𝒦(𝑙)
𝜎 () is the “post-activation kernel”.

To show that the values of RCNN states c(𝑙)[𝑡] is contained in the RKHS of 𝒦(𝑙)()

and that of h(𝑙)[𝑡] is contained in the RKHS of 𝒦(𝑙)
𝜎 (), we re-state the claim in the

following way,

Theorem 4. Given a deep n-gram RCNN model with non-linear activation 𝜎().
Assuming 𝜎() lies in the RKHS of a kernel function with underlying mapping
𝜑𝜎(), then

(i) c(𝑙)[𝑡] lies in the RKHS of kernel 𝒦(𝑙)() in the sense that

c
(𝑙)
𝑗 [𝑡][𝑖] =

⟨
𝜑(𝑙)(x1:𝑡), 𝜓

(𝑙)
𝑖,𝑗

⟩
for any internal state c

(𝑙)
𝑗 [𝑡] (1 ≤ 𝑗 ≤ 𝑛) of the 𝑙-th layer, where 𝜓(𝑙)

𝑖,𝑗 is a
mapping constructed from the parameters of the network;

(ii) h(𝑙)[𝑡] lies in the RKHS of kernel 𝒦(𝑙)
𝜎 () as a corollary in the sense that

h(𝑙)[𝑡][𝑖] = 𝜎(c(𝑙)𝑛 [𝑡][𝑖])

= 𝜎
(︁⟨
𝜑(𝑙)(x1:𝑡), 𝜓

(𝑙)
𝑖,𝑗

⟩)︁
(based on (𝑖))

=
⟨
𝜑𝜎(𝜑(𝑙)(x1:𝑡)), 𝜓𝜎(𝜓

(𝑙)
𝑖,𝑗 )
⟩

(Lemma 1)

and we denote 𝜓𝜎(𝜓
(𝑙)
𝑖,𝑗 ) as 𝜓(𝑙)

𝜎,𝑖,𝑗 for short.
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Proof: We prove by induction on 𝑙. When 𝑙 = 1, the proof of Theorem 1 already

shows that c
(1)
𝑗 [𝑡][𝑖] =

⟨
𝜑
(1)
𝑗 (x1:𝑡), 𝜑

(1)
𝑗 (w𝑖,𝑗)

⟩
in a one-layer RCNN. Simply let 𝜓(1)

𝑖,𝑗 =

𝜑
(1)
𝑗 (w𝑖,𝑗) completes the proof for the case of 𝑙 = 1.

Suppose the lemma holds for 𝑙 = 1, · · · , 𝑘, we now prove the case of 𝑙 = 𝑘 + 1.

Similar to Eq.(A.1) in the proof of Theorem 1, the value of c(𝑘+1)
𝑗 [𝑡][𝑖] equals to

c
(𝑘+1)
𝑗 [𝑡][𝑖] =

∑︁
1≤𝑖1<···<𝑖𝑗≤𝑡

⟨
w

(1)
𝑖 ,h(𝑘)[𝑖1]

⟩
· · ·
⟨
w

(𝑗)
𝑖 ,h(𝑘)[𝑖𝑗]

⟩
· 𝜆𝑡−𝑖1−𝑗+1 (A.2)

where w
(𝑗)
𝑖 is the i-th row of the parameter matrix W(𝑗) of the 𝑙-th layer. Note

h(𝑘)[𝑡][𝑖] =
⟨
𝜑
(𝑘)
𝜎 (x1:𝑡), 𝜓

(𝑘)
𝜎,𝑖,𝑛

⟩
, we construct a matrix M by stacking all {𝜓(𝑘)

𝜎,𝑖,𝑛}𝑖 as

the row vectors.1 We then can rewrite h(𝑘)[𝑡] = M𝜑
(𝑘)
𝜎 (x1:𝑡). Plugging this into

Eq (A.2), we get

c
(𝑘+1)
𝑗 [𝑡][𝑖] =

∑︁
1≤𝑖1<···<𝑖𝑗≤𝑡

⟨
w

(1)
𝑖 ,M𝜑(𝑘)

𝜎 (x1:𝑖1)
⟩
· · ·
⟨
w

(𝑗)
𝑖 ,M𝜑(𝑘)

𝜎 (x1:𝑖𝑗)
⟩
· 𝜆𝑡−𝑖1−𝑗+1

=
∑︁

1≤𝑖1<···<𝑖𝑗≤𝑡

⟨
M⊤w

(1)
𝑖⏟  ⏞  

u𝑖,1

, 𝜑(𝑘)
𝜎 (x1:𝑖1)

⟩
· · ·

⟨
M⊤w

(𝑗)
𝑖⏟  ⏞  

u𝑖,𝑗

, 𝜑(𝑘)
𝜎 (x1:𝑖𝑗)

⟩
· 𝜆𝑡−𝑖1−𝑗+1

=
∑︁

1≤𝑖1<···<𝑖𝑗≤𝑡

⟨︀
u𝑖,1, 𝜑

(𝑘)
𝜎 (x1:𝑖1)

⟩︀
· · ·
⟨︀
u𝑖,𝑗, 𝜑

(𝑘)
𝜎 (x1:𝑖𝑗)

⟩︀
· 𝜆𝑡−𝑖1−𝑗+1

=

⟨ ∑︁
1≤𝑖1<···<𝑖𝑗≤𝑡

𝜆𝑡−𝑖1−𝑗+1 𝜑(𝑘)
𝜎 (x𝑖1)⊗ · · · ⊗ 𝜑(𝑘)

𝜎 (x𝑖𝑗)⏟  ⏞  
𝜑(𝑘+1)(x1:𝑡)

, u𝑖,1 ⊗ · · · ⊗ u𝑖,𝑗

⟩

=
⟨︀
𝜑(𝑘+1)(x1:𝑡), u𝑖,1 ⊗ · · · ⊗ u𝑖,𝑗

⟩︀
Define 𝜓(𝑘+1)

𝑖,𝑗 = u𝑖,1 ⊗ · · · ⊗ u𝑖,𝑗 completes the proof for the case of 𝑙 = 𝑘 + 1.

1Note in practice the mappings 𝜑(𝑘)𝜎 and 𝜓(𝑘)
𝜎 may have infinite dimension because the underlying

mapping for the non-linear activation 𝜑𝜎() can have infinite dimension (See Zhang et al. [120, 121]).
The proof still apply since the dimensions are still countable and the vectors have finite norm (easy
to show this by assuming the input x𝑖 and parameter W are bounded.
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B
Experimental Details

B.1 Language Modeling on PTB

Initialization We initialize all parameter matrices from a uniform distribution

U
[︁
−
√︁

3
𝑑𝑖
,+
√︁

3
𝑑𝑖

]︁
, where 𝑑𝑖 is the input dimension. This means each row vector

has zero mean and unit variance, as suggested by recent work [32, 36]. The bias term

is initialized to 0.

Dropout We apply the standard dropout [41] on the input word embeddings and

from the last recurrent layer to the output softmax layer. No dropout is applied

within or between recurrent layers. For the small networks with 5m parameters, we

use a dropout probability of 0.5. For the large networks with 20m parameters, we use

a probability of 0.75.

Optimization We use the default hyperparemeters for Adam optimizer and an

initial learning rate of 0.001. We train 30 epochs and for larger networks we halve

the learning rate and revert the parameter values (to the version before this epoch)

if the development perplexity doesn’t improve.

For SGD optimizer, our setting largely follows recent work of state-of-the-art mod-

els. The initial learning rate is 1, and the gradient 𝐿2 norm is clipped to 5. The learn-

ing rate decay is set to 0.9, and we start to decrease the learning rate after 10 epochs

for small networks and after 20 epochs for large networks. We train a maximum of

50 epochs for SGD optimizer.
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Model Configuration To achieve a performance competitive to the state-of-the-

art, we perform a hyperparameter search on the various configuration options such

as the number of layers (1 to 3 layers), the activation function (tanh or identity). For

the model using the adaptive decay, the best configuration uses 3 layers, an 𝑛-gram

order 𝑛 = 1 within each layer and a highway connection between each recurrent layer.

tanh activation is not used.1 The recurrent unit of each layer is quite simple,

c[𝑡] = 𝜆𝑡 ⊙ c[𝑡− 1] + (1− 𝜆𝑡)⊙ (Wx𝑡)

h[𝑡] = f𝑡 ⊙ c[𝑡] + (1− f𝑡)⊙ x𝑡

where 𝜆𝑡 is the adaptive decay given by 𝜎(Ux𝑡 + b) or 𝜎(Ux𝑡 + Vh[𝑡− 1] + b), and

f𝑡 = 𝜎(U′x𝑡 + b′) is the forget gate of the highway connection.

For the model using the constant decay, a 2-gram multiplicative mapping performs

better,

c1[𝑡] = 𝜆𝑡 ⊙ c1[𝑡− 1] + (1− 𝜆𝑡)⊙ (W(1)x𝑡)

c2[𝑡] = 𝜆𝑡 ⊙ c2[𝑡− 1] + (1− 𝜆𝑡)⊙ (c1[𝑡− 1]⊙W(2)x𝑡)

h[𝑡] = f𝑡 ⊙ (c1[𝑡] + c2[𝑡]) + (1− f𝑡)⊙ x𝑡

where both 1-gram and 2-gram representations c1[𝑡] and c2[𝑡] are added in the final

representation.

1Using tanh gives very close performance.
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B.2 Sentiment Classification

Initialization The parameter matrices are initialized from a uniform distribution

U
[︁
−
√︁

3
𝑑𝑖
,+
√︁

3
𝑑𝑖

]︁
, similar to the models for language modeling. The word vectors are

pre-trained and are fixed for simplicity.2

Model Configuration Following our prior work [66], we use 3 recurrent layers

with ReLU activation and the hidden dimension 𝑑 = 200 for each layer. We use the

2-gram multiplicative version of RCNN. The output hidden states h[𝑡] of each layer

are averaged across 𝑡. We concatenate the averaged vectors from the 3 recurrent

layers, and use the concatenation as the input of the final softmax layer.

Optimization We use the default hyperparemeters for Adam optimizer and an

initial learning rate of 0.001. We train a maximum of 50 epochs and after each epoch

we decrease the learning rate by a factor of 0.95. We apply a dropout probability

of 0.35 on the input and output of each layer. The L2 regularization coefficient (i.e.

weight decay) is set to 1𝑒− 6.

2It may be helpful to fine tune the word vectors for the classification task.
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