
Interpretable Neural Models for NLP

Tao Lei

Jan 19, 2017

1

Motivation

• Deep learning enables very flexible model exploration

• Often leads to state-of-the-art performance

Under review as a conference paper at ICLR 2017

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left:
LSTM cell. Top right: Cell found by our model when the search space does not include max and
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller
did not choose to use the sin function).

15

recurrent unit

state-of-the-art unit for language modeling

- why this unit?

- what’s happening inside?

- why this prediction?

- what if I change this operator?

- …

2

8 tanh(), 5 sigmoid() and 2 ReLU()

Our Goal

Design neural methods better for NLP applications

‣ Performance

being able to achieve top accuracy

‣ Interpretability

being able to explain the model’s design

being able to explain the model’s decision

3

Outlines (i)

‣ From (deep) kernel to (deep) neural model

• a class of neural operator for text / sequence

• can be derived from traditional sequence kernel

• encodes an efficient algorithm as its central part of
computation

4

Example of Proposed Component

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 +W

(2)
xt)

ht = tanh(c(2)t)

how to interpret and understand it?

5

“the movie is not that good”Sentence:

6

movie

good

not

that

Bag	of	words,	TF-IDF

is

movie

not

good

…

�(x)

…+ + + =

Neural	Bag-of-words 
(average	embedding)

movie not
good

�(x) ·Memb

“the movie is not that good”Sentence:

the movie

that good

not that

Ngram	Kernel

is not …movie is

CNNs
(N=2)

Pre-activation as a dimension-reduction or projection
of traditional methods

7

�(x) �(x) ·Mfilter

“the movie is not that good”Sentence:

String	Kernel

the movie

is not

not that

…

movie _ not

not _ good

is _ that

2

66666664

0
�0

�2

...
�1

0

3

77777775

the movie

not _ good

is _ _ good

penalize	skips� 2 (0, 1)

Neural model inspired by this kernel method

expanded	feature	space

8

Illustration

not that goodthe movie is

9

Illustration

not that goodthe movie is

10

Illustration

not that goodthe movie is

11

aggregated 1-gram and 2-gram features

Formulas

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 +W

(2)
xt)

ht = tanh(c(2)t)

12

re-normalize to remove length bias

decay penalizing skip grams

Formulas

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 +W

(2)
xt)

ht = tanh(c(2)t)

13

Formulas

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 +W

(2)
xt)

ht = tanh(c(2)t)

�t = 0 : ht = tanh(W

(1)
xt�1 +W

(2)
xt) (one-layer CNNs)

14

Formulas

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 +W

(2)
xt)

ht = tanh(c(2)t)

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 �W

(2)
xt)

ht = tanh(c(2)t)
multiplicative mapping

15

Formulas

c

(1)
t = �t � c

(1)
t�1 + (1� �t)� (W(1)

xt)

c

(2)
t = �t � c

(2)
t�1 + (1� �t)� (c(1)t�1 �W

(2)
xt)

...

c

(n)
t = �t � c

(n)
t�1 + (1� �t)� (c(n�1)

t�1 �W

(n)
xt)

ht = tanh(c(n)t)

16

can be generalized to n-grams

From Kernel to Neural Model

String kernel counts shared patterns in sequences x and y:

The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.6)

where the decay weights �|x|�i�1 and �|y|�k�1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when n 6= 2. For simplicity, we use 2-gram (n = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match (u = v) by the inner

product hu,vi. To this end, the kernel function (2.6) can be rewritten as,

K2(x,y) =

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

,y
k

i hx
j

,y
l

i

=

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

⌦ x
j

,y
k

⌦ y
l

i

=

*
X

1i<j|x|

�|x|�i�1x
i

⌦ x
j

,
X

1k<l|y|

�|y|�k�1y
k

⌦ y
l

+
(2.7)

where x
i

⌦x
j

2 Rd⇥d (and similarly y
k

⌦y
l

) is the outer-product. The above equality

uses the fact that hx
i

,y
k

i·hx
j

,y
l

i = hx
i

⌦ x
j

,y
k

⌦ y
l

i. In other words, the underlying

mapping of kernel K2() defined above is �2(x) =
P

1i<j|x| �
|x|�i�1x

i

⌦ x
j

.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

hx
i

,y
k

i + hx
j

,y
l

i instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).

43

2.4 Theoretical Interpretation

In the previous section, we have presented the recurrent convolution (RCNN) as a

sequence modeling component, and discussed about the intuition behind its con-

struction. In this section, we give more theoretical justifications for it – why RCNN

would be good sequence model. When the decay factor � is a constant, we show

that RCNN encodes sequence kernels (a.k.a string kernels), i.e. functions measuring

sequence similarity, as the central part of its computation. As a result, we show that

any classification function built from one or several RCNN layers belongs to the re-

producing kernel Hilbert space (RKHS) introduced by sequence kernels. Finally we

discuss the generalized case when the decay factor becomes adaptive (controlled by

neural gates).

2.4.1 Background

Notations We define a sequence (or a string) of tokens (e.g. a sentence) as x1:L =

{x
i

}L
i=1 where x

i

2 Rd represents its ith element and |x| = L denotes the length.

Whenever it is clear from the context, we will omit the subscript and directly use

x (and y) to denote a sequence. For a pair of vectors (or matrices) u,v, we denote

hu,vi =
P

k

u
k

v
k

as their inner product. For a kernel function K
i

(·, ·) with subscript

i, we use �
i

(·) to denote its underlying mapping, i.e. K
i

(x,y) = h�
i

(x),�
i

(y)i =

�
i

(x)>�
i

(y).

Sequence Kernels A family of functions called string kernels measures the sim-

ilarity between two strings (sequences) by counting shared subsequences (see Lodhi

et al. [67]). For example, let x and y be two strings, a 2-gram string kernel K2(x,y)

counts the number of 2-grams x
i

x
j

and y
k

y
l

such that x
i

x
j

= y
k

y
l

,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�j�i�1�l�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.5)

where � 2 [0, 1) is a decay factor penalizing non-contiguous substrings.

42

The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.6)

where the decay weights �|x|�i�1 and �|y|�k�1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when n 6= 2. For simplicity, we use 2-gram (n = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match (u = v) by the inner

product hu,vi. To this end, the kernel function (2.6) can be rewritten as,

K2(x,y) =

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

,y
k

i hx
j

,y
l

i

=

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

⌦ x
j

,y
k

⌦ y
l

i

=

*
X

1i<j|x|

�|x|�i�1x
i

⌦ x
j

,
X

1k<l|y|

�|y|�k�1y
k

⌦ y
l

+
(2.7)

where x
i

⌦x
j

2 Rd⇥d (and similarly y
k

⌦y
l

) is the outer-product. The above equality

uses the fact that hx
i

,y
k

i·hx
j

,y
l

i = hx
i

⌦ x
j

,y
k

⌦ y
l

i. In other words, the underlying

mapping of kernel K2() defined above is �2(x) =
P

1i<j|x| �
|x|�i�1x

i

⌦ x
j

.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

hx
i

,y
k

i + hx
j

,y
l

i instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).

43

Written in vector form:

The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.6)

where the decay weights �|x|�i�1 and �|y|�k�1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when n 6= 2. For simplicity, we use 2-gram (n = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match (u = v) by the inner

product hu,vi. To this end, the kernel function (2.6) can be rewritten as,

K2(x,y) =

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

,y
k

i hx
j

,y
l

i

=

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

⌦ x
j

,y
k

⌦ y
l

i

=

*
X

1i<j|x|

�|x|�i�1x
i

⌦ x
j

,
X

1k<l|y|

�|y|�k�1y
k

⌦ y
l

+
(2.7)

where x
i

⌦x
j

2 Rd⇥d (and similarly y
k

⌦y
l

) is the outer-product. The above equality

uses the fact that hx
i

,y
k

i·hx
j

,y
l

i = hx
i

⌦ x
j

,y
k

⌦ y
l

i. In other words, the underlying

mapping of kernel K2() defined above is �2(x) =
P

1i<j|x| �
|x|�i�1x

i

⌦ x
j

.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

hx
i

,y
k

i + hx
j

,y
l

i instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).

43

(i) multiplicative

(ii) additive

17

The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.6)

where the decay weights �|x|�i�1 and �|y|�k�1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when n 6= 2. For simplicity, we use 2-gram (n = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match (u = v) by the inner

product hu,vi. To this end, the kernel function (2.6) can be rewritten as,

K2(x,y) =

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

,y
k

i hx
j

,y
l

i

=

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

⌦ x
j

,y
k

⌦ y
l

i

=

*
X

1i<j|x|

�|x|�i�1x
i

⌦ x
j

,
X

1k<l|y|

�|y|�k�1y
k

⌦ y
l

+
(2.7)

where x
i

⌦x
j

2 Rd⇥d (and similarly y
k

⌦y
l

) is the outer-product. The above equality

uses the fact that hx
i

,y
k

i·hx
j

,y
l

i = hx
i

⌦ x
j

,y
k

⌦ y
l

i. In other words, the underlying

mapping of kernel K2() defined above is �2(x) =
P

1i<j|x| �
|x|�i�1x

i

⌦ x
j

.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

hx
i

,y
k

i + hx
j

,y
l

i instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).

43

underlying mapping�(x)

From Kernel to Neural Model

18

The kernel function presented above assign decay weights to substrings regardless

of the positions they appear in the sequence. In many temporal predictions such as

language modeling, substrings (i.e. patterns) appear later may have higher impact

and should be assigned higher weights for prediction, for instance,

K2(x,y) =
X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1
[(x

i

= y
k

) · (x
j

= y
l

)] (2.6)

where the decay weights �|x|�i�1 and �|y|�k�1 are determined based on the distance

from the 2-grams to the end. Note the kernel functions can be generalized to n-grams

when n 6= 2. For simplicity, we use 2-gram (n = 2) as the illustrative example for

discussion.

In our case, each token in the sequence is a vector (such as one-hot encoding of

a word or a feature vector), we shall replace the exact match (u = v) by the inner

product hu,vi. To this end, the kernel function (2.6) can be rewritten as,

K2(x,y) =

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

,y
k

i hx
j

,y
l

i

=

X

1i<j|x|

X

1k<l|y|

�|x|�i�1�|y|�k�1 hx
i

⌦ x
j

,y
k

⌦ y
l

i

=

*
X

1i<j|x|

�|x|�i�1x
i

⌦ x
j

,
X

1k<l|y|

�|y|�k�1y
k

⌦ y
l

+
(2.7)

where x
i

⌦x
j

2 Rd⇥d (and similarly y
k

⌦y
l

) is the outer-product. The above equality

uses the fact that hx
i

,y
k

i·hx
j

,y
l

i = hx
i

⌦ x
j

,y
k

⌦ y
l

i. In other words, the underlying

mapping of kernel K2() defined above is �2(x) =
P

1i<j|x| �
|x|�i�1x

i

⌦ x
j

.

The kernel function (2.5) can be derived the same way with the different decay

weight. Another variant is to use partial matching score, e.g. an additive term

hx
i

,y
k

i + hx
j

,y
l

i instead of the multiplicative version in Eq.(2.7). As we will see

later in the section, these variants have a one-to-one correspondence with the RCNN

variants presented in the previous section (see examples in Table 2.2).

43

String kernel counts shared patterns in sequences x and y:

ct[k] =

*
w

(1)
k ⌦w

(2)
k ,

X

1i<jt

�|x|�i�1
xi ⌦ xj

+

w(1)
k ⌦w(2)

k| {z }

X

1i<jt

�|x|�i�1
xi ⌦ xj

| {z }
�(x1:t)k-th filter

Projecting to hidden representation�(x) ct 2 Rd

c(2)t [k]

From Kernel to Neural Model

ct[k] = K2

⇣
w

(1)
k w

(2)
k , x1x2 · · ·xt

⌘

can be seen as evaluating kernel functions;
naturally embeds sequence similarity computation

19

ct[k] =

*
w

(1)
k ⌦w

(2)
k ,

X

1i<jt

�|x|�i�1
xi ⌦ xj

+

w(1)
k ⌦w(2)

k| {z }

X

1i<jt

�|x|�i�1
xi ⌦ xj

| {z }
�(x1:t)k-th filter

c(2)t [k]

c

(2)
t [k] = � · c(2)t�1[k] + c

(1)
t�1[k] ·

D
w

(2)
k ,xt

E

Efficient implementation to compute (dynamic programming)ct

Projecting to hidden representation�(x) ct 2 Rd

From Kernel to Neural Model

20

Efficient implementation to compute (dynamic programming)ct

From Kernel to Neural Model

21

2-grams end exactly
at position t

all 2-grams up to
position t-1

c

(2)
t [k] = � · c(2)t�1[k] + c

(1)
t�1[k] ·

D
w

(2)
k ,xt

E

all 2-grams up to
position t

can be seen as recursive kernel construction using the
kernel of the previous layer as the base kernel

�(x) =
X

i,j

�t�i�1 �1(x1:i)⌦ �1(x1:j)

can be seen as function composition between string
kernel and the dual kernel of the activation function

�(x) = �2(�1(x))

Interpreting Other Operations

22

Applying non-linear activation

Stacking multiple layers

Choices of Decay

constants:

depends on x:

depends on x and h:

CNNs
decay=0

constants adaptive

�t = �(Uxt +Vht�1 + b)

�t = �(Uxt + b)

�t = [u1, u2, · · · , ud]

23

Experiments: Classification

24

Task: Predict the sentiment given a sentence in a review

Data: Stanford sentiment treebank

Experiments: Classification

44.5%

48.0%

51.5%

44.0% 47.0% 50.0%

1 layer 2 layers 3 layers

44.5%

48.0%

51.5%

45.5% 47.8% 50.0%

decay=0.0 decay=0.3 decay=0.5

45.5%

48.3%

51.0%

46.0% 47.0% 48.0% 49.0% 50.0%

None ReLU

Does it help to model non-consecutive patterns?

25

44.5%

48.0%

51.5%

44.0% 47.0% 50.0%

1 layer 2 layers 3 layers

44.5%

48.0%

51.5%

45.5% 47.8% 50.0%

decay=0.0 decay=0.3 decay=0.5

45.5%

48.3%

51.0%

46.0% 47.0% 48.0% 49.0% 50.0%

None ReLU

Experiments: Classification

Deeper model exhibits better representational power

26

Experiments: Classification

Model 5-class Binary
CNNs (Kalchbrener et al. 2014) 48.5 86.9
CNNs (Kim 2014) 47.4 88.1
Bi-LSTMs (Tai et al. 2015) 49.1 87.5
RLSTMs (Tai et al. 2015) 51.0 88.0
Dynamic MemNet (Kumar et al. 2016) 52.1 88.6
Constant (0.5) 51.2 88.6
Adaptive (depends on x) 51.4 89.2
Adaptive (depends on x and h) 53.2 89.9

Test Results on Stanford Sentiment Treebank

27

Experiments: Language Model

28

Task: Predict the next word given previous words

Data: Penn treebank (Wall street journal corpus)

Experiments: Language Model

Test PPL of Small Networks (5m)

65

74

83

91

100

CNNs

constants (0.8)

constants (tra
ined)

adaptive (x)

adaptive (x and h)

99.0

29

Experiments: Language Model

Test PPL of Small Networks (5m)

65

74

83

91

100

CNNs

constants (0.8)

constants (tra
ined)

adaptive (x)

adaptive (x and h)

84.3

99.0

30

Experiments: Language Model

Test PPL of Small Networks (5m)

65

74

83

91

100

CNNs

constants (0.8)

constants (tra
ined)

adaptive (x)

adaptive (x and h)

76.8

84.3

99.0

31

Experiments: Language Model

Test PPL of Small Networks (5m)

65

74

83

91

100

CNNs

constants (0.8)

constants (tra
ined)

adaptive (x)

adaptive (x and h)

73.674.2
76.8

84.3

99.0

32

Experiments: Language Model

Model Size Perplexity

Character CNNs 19m 78.9

LSTM (large) 66m 78.4

Variational LSTM (medium) 20m 78.6

Variational LSTM (large) 51m 73.2

Pointer Sentinel LSTM 21m 70.9

Variational Deep Highway RNN 24m 66.0

Neural Net Search 25m 64.0

Ours (adaptive on x) 20m 70.9

Ours (adaptive on x and h) 20m 69.2

Comparison with state-of-the-art results can be improved w/
variational techniques

33

w
(1

)
k

⌦
w

(2
)

k
|

{z
}

better
regularized

Experiments: Retrieval

body

title

question from Stack Exchange AskUbuntu

Task: Find similar questions given the user’s input question

34

Experiments: Retrieval

question from Stack Exchange AskUbuntu

user-marked similar question

Task: Find similar questions given the user’s input question

35

Experiments: Retrieval

AskUbuntu 2014 dump

pre-train on 167k, fine-tune on 16k

Dataset:

Baselines: TF-IDF, BM25 and SVM reranker

CNNs, LSTMs and GRUs

Grid-search: learning rate, dropout, pooling, filter size,
pre-training, …

5 independent runs for each config.

> 500 runs in total

evaluate using 8k pairs (50/50 split for dev/test)

36

Experiments: Retrieval

BM25 LSTM CNN GRU Ours

75.6

71.371.470.1
68.0

62.3
59.3

57.656.856.0

MAP MRR

Our improvement is significant

37

Experiments: Retrieval

c

(3)
t = �� c

(3)
t�1 + (1� �)�

⇣
c

(2)
t�1 +W3xt

⌘

Analyze the weight vector over time

38

Experiments: Retrieval

39

Experiments: Retrieval

40

Outlines (ii)

‣ Rationalizing neural predictions

• a framework for understanding/justifying predictions

• rationales are extracted from input as “supporting
evidence”

• can be optimized in RL w/o rationale annotations

41

Motivation

• Complex (neural) models come at the cost of interpretability

• Applications often need interpretable justifications — rationales.

this beer pours ridiculously clear with tons of carbonation that
forms a rather impressive rocky head that settles slowly into a
fairly dense layer of foam. this is a real good lookin' beer,
unfortunately it gets worse from here ... first, the aroma is kind
of bubblegum-like and grainy. next, the taste is sweet and
grainy with an unpleasant bitterness in the finish. … … overall,
the fat weasel is good for a fairly cheap buzz, but only if you like
your beer grainy and bitter .

Ratings

Look: 5 stars

Aroma: 2 stars

review with rationales

42

prediction: high risk of recurring cancer

There is no evidence of extranodal extension.
BREAST (RIGHT), EXCISIONAL BIOPSY:
INVASIVE DUCTAL CARCINOMA (SEE TABLE #1). DUCTAL
CARCINOMA IN-SITU, GRADE 1. ATYPICAL DUCTAL
HYPERPLASIA. LOBULAR NEOPLASIA (ATYPICAL
LOBULAR HYPERPLASIA). TABLE OF PATHOLOGICAL
FINDINGS #1 INVASIVE CARCINOMA
 … …

Motivation

• Complex (neural) models come at the cost of interpretability

• Applications often need interpretable justifications — rationales.

Doctors won’t trust machines, unless evidence is provided

43

Motivation

• Complex (neural) models come at the cost of interpretability

• Applications often need interpretable justifications — rationales.

Our goal: make powerful models more interpretable by
learning rationales behind the prediction

44

Problem Setup

Rationales are not provided during training

Interpretability via providing concise evidence from input

- short and coherent pieces

- sufficient for correct prediction

Rationales (evidence) should be:

Use powerful neural nets to avoid accuracy loss

in contrast to (Zaidan et al., 2007; Marshall et al.,2015; Zhang et al., 2016)

in contrast to (Thrun, 1995; Craven and Shavlik, 1996; Ribeiro et al., 2016)

45

Model Architecture

Generator gen(x)

Encoder enc(z)

two modular components gen() and enc()

46

Model Architecture

Generator gen(x)

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

input x

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

distribution over possible rationales P(z|x)

0.8 0.02 0.1

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

0.05 0.01

…

generator specifies the distribution of rationales

Encoder enc(z)

47

Model Architecture

Generator gen(x)

Encoder enc(z)

positivenegative neutral

prediction y

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

distribution over possible rationales P(z|x)

0.8 0.02 0.1

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

0.01

…

encoder makes prediction given rationale

z

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

0.05

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

input x

48

z

Model Architecture

Generator gen(x)

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

input x

Encoder enc(z)

positivenegative neutral

prediction y

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

distribution over possible rationales P(z|x)

0.8 0.02 0.1

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

0.05 0.01

…

two components optimized jointly

49

Generator Implementations

P(z):

hidden states:

input words x:

0 1 0 1 1binary selection z:

independent selection, feedforward net

50

Generator Implementations

P(z):

hidden states:

input words x:

0 1 0 1 1binary selection z:

independent selection, bi-directional RNNs

51

Generator Implementations

P(z):

hidden states:

input words x:

0 1 0 1 1binary selection z:

0 1 0 1

dependent selection, bi-directional RNNs

choose networks based on the data/application

52

Training Objective

cost(z,y) = loss(z,y) + �1|z|1 + �2

X

i

|zi � zi�1|

sufficiency sparsity coherency
correct	predicEon raEonale	is	short conEnuous	selecEon

• receive this training signal after z is produced

min

✓

X

(x,y)2D

E
z⇠gen(x) [cost(z,y)]

Minimizing expected cost:

• intractable because summation over z is exponential

53

Learning Method

E
z⇠gen(x)


cost(z,y)

@ logP (z|x)
@✓g

�

⇡ 1

N

NX

i=1

cost(zi,yi)
@ logP (zi|xi)

@✓g

• where zi are sampled rationales

• Possible to sample the gradient, e.g.:

• Stochastic gradient decent on sampled gradients

54

Learning as Policy Gradient Method

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

Generator
gen(x)

Encoder
enc(z)

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

prediction

cost
(reward)

input state

policy function P(z|x)

set of actions z

a type of REINFORCE learning  
(Williams, 1992)

55

Experiments

Predicting sentiment for product reviews

Parsing medical pathology reports

Finding similar posts on QA forum

Three real-world datasets and applications for evaluation:

56

Evaluation: Product Review

Dataset:

this beer pours ridiculously clear with tons of carbonation that
forms a rather impressive rocky head that settles slowly into a
fairly dense layer of foam. this is a real good lookin' beer,
unfortunately it gets worse from here ... first, the aroma is kind
of bubblegum-like and grainy. next, the taste is sweet and
grainy with an unpleasant bitterness in the finish. … … overall,
the fat weasel is good for a fairly cheap buzz, but only if you like
your beer grainy and bitter .

Ratings

Look: 5 stars

Aroma: 2 stars

Task: predict ratings and rationales for each aspect

multi-aspect beer reviews from BeerAdvocate
(McAuley et al, 2012) 1.5m in total

1,000 reviews annotated at sentence level with
aspect label (used only for evaluation)

57

Evaluation: Product Review

Set-up: ratings are fractional; treat the task as regression
following (McAuley et al, 2012)

use recurrent networks for gen() and enc()

Baselines: SVM classifier
attention-based RNN

Metrics: precision:  
 percentage of selected words in correct sentences

mean squared error on sentiment prediction

58

Sentiment Prediction

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

 Full text

te
st

 e
rro

r

% selection

various runs by changing
sparsity & coherency

59

Sentiment Prediction

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

 SVM (full text)

 RNN (full text)

rationales getting close performance to full text

% selection

te
st

 e
rro

r

60

Sentiment Prediction

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

 SVM (full text)

 RNN (full text)

advantage of neural models over linear classifiers still clear

% selection

te
st

 e
rro

r

61

Precision of Rationales

more examples available at
https://github.com/taolei87/rcnn/tree/master/code/rationale

a	beer	that	is	not	sold	in	my	neck	of	the	woods	,	but	managed	to	
get	while	on	a	roadtrip	.	poured	into	an	imperial	pint	glass	with	
a	generous	head	that	sustained	life	throughout	.	nothing	out	of	
the	 ordinary	 here	 ,	 but	 a	 good	 brew	 s;ll	 .	 body	was	 kind	 of	
heavy	,	but	not	thick	.	the	hop	smell	was	excellent	and	en:cing	
.	very	drinkable

poured	into	a	sni<er	.	produces	a	small	coffee	head	that	reduces	
quickly	.	black	as	night	.	pre=y	typical	imp	.	roasted	malts	hit	on	
the	nose	 .	a	 li>le	 sweet	chocolate	 follows	 .	big	 toasty	character	
on	the	taste	.	in	between	i	'm	ge?ng	plenty	of	dark	chocolate	and	
some	bi=er	espresso	.	it	finishes	with	hop	bi=erness	.	nice	smooth	
mouthfeel	with	perfect	carbona:on	for	the	style	 .	overall	a	nice	
stout	i	would	love	to	have	again	,	maybe	with	some	age	on	it	.

40

55

70

85

100

80.2

95.196.3

Look Aroma Palate

Examples and precisions of rationales

62

https://github.com/taolei87/rcnn/tree/master/code/rationale

Precision of Rationales

proper modeling leads to better rationale

% selection

30

48

65

83

100

11 12 13 14 15 16 17

SVM
Attention
Enc + Gen

%
 p

re
ci

si
on

SVM

Soft
Attention

63

Learning Curves

find good rationales after epochs of exploration

Aroma Palate

epochs epochs

Learning curves of cost(z) on dev and precision on test

precision precision

64

Evaluation: Parsing Pathology Report

Dataset: patients’ pathology reports from hospitals such
as MGH

Task: check if a disease/symptom is positive in text

binary classification for each category

Statistics: several thousand report for each category

pathology report is long (>1000 words) but
structured

Model: use CNNs fro gen() and enc()

65

Evaluation: Parsing Pathology Report

LCIS 97%

FINAL DIAGNOSIS BREAST RIGHT EXCISIONAL BIOPSY INVASIVE
DUCTAL CARCINOMA DUCTAL CARCINOMA IN SITU SEE TABLE 1
MULTIPLE LEVELS EXAMINED TABLE OF PATHOLOGICAL FINDINGS 1
INVASIVE CARCINOMA Tumor size <unk> X <unk> X 1 3cm Grade 2
Lymphatic vessel invasion Present Blood vessel invasion Not
identified Margin of invasive carcinoma Invasive carcinoma extends to
less than 0 2cm from the inferior margin of the specimen in one focus
Location of ductal carcinoma in situ …

LVI 84%

… Extensive LCIS DCIS Invasive carcinoma of left breast FINAL
DIAGNOSIS BREAST LEFT LOBULAR CARCINOMA IN SITU PRESENT
ADJACENT TO PREVIOUS BIOPSY SITE SEE NOTE CHRONIC
INFLAMMATION ORGANIZING HEMORRHAGE AND FAT NECROSIS
BIOPSY SITE NOTE There is a second area of focal lobular carcinoma in
situ noted with pagetoid spread into ducts No vascular invasion is seen
The margins are free of tumor No tumor seen in 14 lymph nodes
examined BREAST left breast is a <unk> gram 25 x 28 x 6cm left …

Accession Number <unk> Report Status Final
Type Surgical Pathology … Pathology Report:
LEFT BREAST ULTRASOUND GUIDED CORE NEEDLE BIOPSIES …
INVASIVE DUCTAL CARCINOMA poorly differentiated modified
Bloom Richardson grade III III measuring at least 0 7cm in this limited
specimen Central hyalinization is present within the tumor mass but no
necrosis is noted No lymphovascular invasion is identified No in situ
carcinoma is present Special studies were performed at an outside
institution with the following results not reviewed ESTROGEN RECEPTOR
NEGATIVE PROGESTERONE RECEPTOR NEGATIVE …

IDC 98%

F-score:Category:

66

Evaluation: Question Retrieval

Dataset: question posts from AskUbuntu forum
(dos Santos et al., 2015; Lei et al., 2016)

question pairs annotated as similar by users

Task: optimize neural representations such that
distance between similar questions is small

what	 is	 the	 easiest	 way	 to	 install	 all	 the	 media	 codec	
available	 for	 ubuntu	 ?	 i	 am	 having	 issues	 with	 mul;ple	
applica;ons	 promp;ng	 me	 to	 install	 codecs	 before	 they	
can	play	my	files	.	how	do	i		install	media	codecs	?

please	any	one	give	the	solu;on	for	this	whenever	i	try	to	
convert	the	rpm	file	to	deb	file	 i	always	get	 this	problem	
error	:	<unk>	:	not	an	rpm	package	(or	package	manifest)	
error	execu;ng	``		lang=c	rpm	-qp	--	queryformat	%	{	name	
}	<unk>	'	''	:	at	<unk>	line	489	thanks	.	conver;ng	rpm	file	
to	debian	file

underlined texts
are question titles

Rationales:

67

Conclusion

• We derive better justified (recurrent) neural architectures that
are inspired by traditional kernel methods;

• We show model with better intuition and understanding can lead
to better performance

68

• We present a prototype framework for rationalizing model
predictions, and evaluate it quantitatively and qualitatively on
various applications

Explain model’s design:

Explain model’s prediction:

Future Work

vision
this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here …

a beer that is not sold in my neck of the woods ,
but managed to get while on a roadtrip . poured
into an imperial pint glass with a generous head
that sustained life throughout . nothing out of
the ordinary here , but a good brew still . body
was kind of heavy , but not thick . the hop smell
was excellent and enticing . very drinkable

poured into a snifter . produces a small coffee
head that reduces quickly . black as night .
pretty typical imp . roasted malts hit on the nose
. a little sweet chocolate follows . big toasty
character on the taste .

• good looking
• heavy palate
• chocolate smell

aggregation

improve training
(variance reduction) … …

69

interpretable components for trees and graphs

