
ScrAPIr: Making Web Data APIs Accessible to End Users
Tarfah Alrashed

MIT CSAIL
tarfah@mit.edu

Jumana Almahmoud
MIT CSAIL

jumanam@mit.edu

Amy X. Zhang
MIT CSAIL
axz@mit.edu

David R. Karger
MIT CSAIL

karger@mit.edu

ABSTRACT
Users have long struggled to extract and repurpose data from
websites by laboriously copying or scraping content from
web pages. An alternative is to write scripts that pull data
through APIs. This provides a cleaner way to access data than
scraping; however, APIs are effortful for programmers and
nigh-impossible for non-programmers to use. In this work,
we empower users to access APIs without programming. We
evolve a schema for declaratively specifying how to interact
with a data API. We then develop ScrAPIr: a standard query
GUI that enables users to fetch data through any API for which
a specification exists, and a second GUI that lets users author
and share the specification for a given API. From a lab eval-
uation, we find that even non-programmers can access APIs
using ScrAPIr, while programmers can access APIs 3.8 times
faster on average using ScrAPIr than using programming.

Author Keywords
Web APIs; API Description Language; Web Scraping

CCS Concepts
•Human-centered computing → Web-based interaction;
•Information systems→ RESTful web services;

INTRODUCTION
A common practice on the web is to extract and repurpose
structured data from websites. As far back as 2005, the Hous-
ingMaps [34] and Chicagocrime [19] mashups showed the
utility of presenting old data in new visualizations. More re-
cently, applications, articles, and visualizations that repurpose
data from sites like Twitter or Wikipedia have become increas-
ingly common [29, 6]. However, a major challenge has been
to extract the needed data from its source sites.

Today, the strategies that programmers and non-programmers
employ to capture data from websites have diverged. Non-
programmers laboriously copy and paste data, or use web
scrapers that download a site’s webpages and parse the content
for desired data; many of the early mashups were created this
way. But scrapers are error prone as they must cope with ever
more complex and dynamic sites and webpage layout changes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
DOI: https://dx.doi.org/10.1145/3313831.3376691

{"info":{
 "name":"Yelp Search API",
 "url":"https://api.yelp.com
 /v3/businesses/search",
 ...
 },
 "parameters":[{
 "name":"term",
 "type":"string",
 "value":"Restaurants",
 "allowedValues":"",
 "displayedNames":"Search",
 "description":"Search Yelp",
 "required":false,
 "displayed":true
},{...}]
"responses":[{...}],
"authentication":{...},
"headers":[{...}],
"pagination":{...}}> SNAPIHaAPIWRAPI

ScrAPIr System

HAAPI

Figure 1. An illustration of the ScrAPIr system, consisting of the compo-
nents WRAPI, HAAPI, and SNAPI.

While programmers can and do use these non-programmer
tactics, they also find ever more sites offering APIs (Applica-
tion Programming Interfaces). Compared to scrapers, APIs
provide a more reliable way to access and retrieve clean web
data, since they do not rely on parsing complex or irregular
web page structures. Many web APIs also offer advanced
searches and provide more extensive data than can be accessed
by scraping web pages [6].

However, a survey we conducted found three significant ob-
stacles to using APIs: 1) In order to access data through web
APIs, people need to write code, making them inaccessible to
non-programmers, 2) Even for programmers, web APIs can be
hard to learn and use [26, 27] since they vary widely and there
is great variability in the quality of the documentation [30, 38,
45], and 3) Most modern web services return structured data in
JSON and XML formats, which can contain large and complex
hierarchies that are difficult for people to parse without writing
code.

To simplify API programming, efforts have been made to de-
sign API description languages [9, 16] that provide structured
descriptions of web APIs. The machine-readable descriptions
can be used to generate documentation for programmers [10]
and code stubs for connecting to the APIs through various lan-
guages. The most popular is the OpenAPI specification [40].
While OpenAPI improves the developer experience, it offers
no value to non-programmers who still face the necessity of
writing code to access APIs and parse results.

In this work, we empower users (programmers and non-
programmers) to access web APIs without programming. We
do so with three related components:

1. We describe how most APIs draw from a small palette of
choices: the query parameters used to filter objects, their
types, the authentication and pagination methods (if any),
and the structure of the returned data. We propose HAAPI

(Human Accessible API), an OpenAPI extension for declar-
atively specifying these choices.

2. We build a search GUI called SNAPI (Search Normalized
APIs) to query and download data from any API with a
HAAPI description. SNAPI reads a HAAPI description and
presents a typical search form through which a user specifies
their query, invokes the relevant API, and shows results in a
tabular (spreadsheet) or other standard data format.

3. We build a tool called WRAPI (Wrapper for APIs), that
empowers a user to author the HAAPI description for an
API simply by filling out a separate web form. WRAPI can
guide even non-programmers with little or no understanding
of APIs to unpack the necessary information from API
documentation.

Together, these components form ScrAPIr1, a repository of
HAAPI descriptions and GUIs for querying and authoring
them. As shown in Figure 1, any user can first use WRAPI
to author a HAAPI description of any web API (e.g. the
Yelp search API). Once this is done (just once per API), any
other user can use SNAPI to query this API and download its
response data. ScrAPIr thus empowers users who want data to
standardize and access data-query APIs without demanding
any cooperation from the sites providing those APIs.

We describe user studies providing evidence that it is easy
for users to use the (quite typical) SNAPI search form to re-
trieve data from HAAPI websites. More significantly, we also
find that novice and even non-programmers who are unfamil-
iar with the concept of an API, using the guidance provided
by WRAPI, are able to create HAAPI descriptions for APIs
that they had never seen or used before. We also show that
programmers can perform the wrapping and query tasks on
average 3.8 times faster using ScrAPIr than by writing code.

RELATED WORK

Web Scraping
Early mashup developers wrote one-off web scraping tools,
so had to be programmers. Over time, libraries and frame-
works for scraping evolved, including Beautiful Soup [37]
and Scrapy [39], that continue to support active communities.
Other scraping tools are automatic. Wrapper induction [21,
2, 20, 44, 1] aims to train a web scraper through examples
instead of programming. Such tools can infer structure from
unstructured or poorly structured text and HTML markup, but
their example-based training often leads to errors. Early tools
used pattern matching between example content and target con-
tent; more recent work [24, 23, 8] leverages programming by
demonstration to learn not just from the content but also from
the steps a human demonstrator takes to extract the content
they want. For example, Vegemite extracts tabular data from a
web page into a spreadsheet to then allow users to mashup that
data with data from other sources [23]. These tools continue
to wrestle with the errors inherent in such learned approaches,
which can arise from inadequate or inaccurate examples as
well as the frequent changes to web content presentations.

1http://scrapir.org

Web APIs
As a more robust and accurate alternative for accessing data,
many websites now offer APIs that let programmers send a
structured query over an HTTP connection and receive struc-
tured data in response. Rather than scraping content formatted
for humans, programmers face the much easier task of parsing
content formatted for machines. However, having to learn and
program to a new API for every website is taxing, so efforts
have long been underway to standardize web APIs. REST
offers a web standard for serializing API function calls and
parameters but standardizes nothing about what those calls
and parameters are.

The most aggressive standardization would be for all sites
to use exactly the same data API. An ancient standard in
this space is SQL. More recently, the Semantic Web [4] pro-
posed a single graph structured data model—RDF—and a
standard query language—SPARQL—that would work on any
data repository. But the Semantic Web has faced adoption
challenges. Even more recently, GraphQL [13] has been put
forward; it is too early to know how widely it will be adopted.

Besides simplifying programmer work, a single standard API
would also empower non-programmers, who could use a sin-
gle generic query tool like SNAPI to access data from any
compliant site. Although different sites would still use dif-
ferent property names in their data, these could be read out
of the site and used to construct site-specific query interfaces.
There are a number of search engine interfaces that allow users
to query over or explore generic structured data on the web,
using GraphQL endpoints [15], the Semantic Web’s SPARQL
endpoints [12, 18], or DBPedia [3]. However, these tools are
limited to sites that expose the single standard API.

Despite these clear benefits, to date no one uniform standard
has become dominant. Most websites still offer their own
idiosyncratic APIs. This is not surprising. It takes significant
effort to standardize, and it is not clear what benefits would ac-
crue to a website doing so. It seems relatively straightforward
for a developer to code to a reasonable API (though our sur-
veys below suggest otherwise), so a developer thinking about
other developers may consider it sufficient to provide any API
at all. But this leaves non-programmers without recourse.

API Description Languages
In the absence of a single standard API, it might be possible
at least to create a standard way of describing the many APIs
that are in use. Early efforts include the Web Service Descrip-
tion Language (WSDL) [9] and Web Application Descrip-
tion Language (WADL) [16], both written in XML. More re-
cently, the OpenAPI specification language, API Blueprint [5],
and RESTful API Modeling Language (RAML) [35] have
emerged. These API descriptions have been used primarily in
two ways: first, to automatically generate API connector code
in a variety of languages, and second, to automatically gen-
erate documentation describing the API to developers. Such
documentation may be easier to read than free-form docu-
mentation, since everything is standardized. But while these
improve the developer experience, they offer no value to non-
programmers who still face the barrier of writing code to
access APIs and parse results.

http://scrapir.org

Swagger [41], Postman [31] and RapidAPI [36] share
ScrAPIr’s use of a meta-schema to generate an API query
form. But their intent is to help developers to debug their
API queries. Thus, their meta-schemas omit information—
such as which parameters are important and how pagination
works—that are essential to create an API query form for less
experienced users. They also offer form-based meta-schema
editors, but they too are aimed at experienced developers doc-
umenting and testing their APIs, unlike WRAPI which can
guide even novices to describe an API. RapidAPI [36], like
ScrAPIr, offers a repository of APIs that users can access but
it does not allow users programmers and novices to query and
retrieve data from APIs and it is also not free.

Unlike all this prior work, we consider how standardized de-
scription of APIs can improve non-programatic data access.
We show that a suitable description can be used to empower
users to visually query APIs, and that users (even those unfa-
miliar with APIs) can author this description themselves. We
extend the OpenAPI Specification in order to support graphical
query access to APIs.

Visually Querying APIs
Prior work tries to facilitate non-programmer use of web APIs.
Marmite [44] and Carpé Data [43] have pre-programmed
web API connectors to access specific data sources, but non-
programmers cannot create connections to new API sources.
D.mix [17] also posits a developer for each API connector: “a
smooth process for creating the site-to-service maps is impor-
tant but somewhat orthogonal to this paper’s contributions.”
Modern tools such as Node-RED [29] have brought the Yahoo
Pipes style of visual editor for flow-based programming into
widespread use, but continue to rely on developers to provide
appropriate manifests to describe APIs.

Gneiss [6] does allow users to query arbitrary APIs. But it
expects users to do so by typing an API request URL with
parameters; it thus requires each user to learn the API and
construct API query strings. Gneiss also does not deal with
pagination for additional results, API headers, authentication,
or presenting a usable query form. From the paper: Gneiss
“limits our target users to people who already have some basic
knowledge about web APIs,”.

These tools thus complement ScrAPIr; ScrAPIr focuses en-
tirely on simplifying access to data, for provision to Gneiss,
d.mix, Yahoo Pipes [33], or other data mashup or processing
tools for interaction. More similar is Spinel [7], which helps
end-users connect data APIs to mobile applications. Spinel
has a form-based query-builder for describing an API. How-
ever, the resulting description is used to feed data to existing
applications, not to build a query interface, and Spinel’s meta-
schema for describing APIs is missing even more key elements
than OpenAPI (e.g. authentication).

None of this previous work directly tackles the core questions
in ours: (1) what is the full set of properties needed in an API
meta-schema to automate generation of an easily usable data-
query UI, and (2) can end users be guided, and how, to provide
all the needed properties? By addressing these two questions,
ScrAPIr shows how to refactor the API usage workflow so

that one relatively inexperienced “gardener” [28] can tackle
the steps needed to let all other users make simple form-based
queries.

EXPERIENCES AND STRATEGIES WITH WEB DATA
We began by investigating people’s needs for and experiences
with retrieving web data by distributing a survey through var-
ious private university mailing lists, social media, and to in-
dividuals identified as using web data as part of their work
(e.g. journalists). The survey was taken by 116 people with
a wide range of educational and programming backgrounds
(31% have no programming skills, 33% are beginners, and the
rest are skilled).

We asked what web data subjects wanted and why. We then
asked how respondents tried to access that data and whether
they succeeded. For two complex questions, we gathered
free responses. Two authors then coded the responses into
categories (e.g. requires programming skills). The inter-rater
reliability (IRR) was 78% for one question and 87% for the
other.

Reasons and Methods for Accessing Web Data
Respondents needed web data for many reasons, including
data visualization (38%), analysis purposes (22%), filtering
(21%), and creating applications based on the data (16%).
Overall, 90% of respondents expressed a desire to access web
data but only 43% had actually attempted to do so. This gap is
not fully explained by lack of education or technical ability,
as 70% of respondents reported at least a beginner level of
programming experience. Of those who attempted to access
web data, only 6% were always successful, while 22% were
never successful. These results imply that while there is strong
interest in using web data, there exist barriers to doing so,
even among those who have the technical skills to complete
the task.

Of the 39 websites from which respondents were able to re-
trieve data, 22 have APIs (e.g. Twitter, YouTube, Amazon,
Wikipedia, etc). Nevertheless, only 27% of our subjects (86%
of them programmers) chose to use them. Instead, the majority
used alternative methods including scraping (31%), manually
copying and pasting (14%), third party websites, plugins or
libraries (14%), or a website-provided download option (13%).
This suggests that while APIs are often available, they are
underutilized.

Obstacles to Accessing Web Data by Scraping
27% of our respondents had tried to scrape one or more web-
sites but were unsuccessful. Some of the main obstacles they
reported include: contending with complex HTML structures
on the page to get at the data (28%); needing greater pro-
gramming skills (20%); finding it too time-consuming (20%);
finding it brittle when web pages change (5%); and getting
blacklisted from scraping (4%). Most of these limitations can
be avoided with web APIs, and yet most of our respondents
did not use APIs, and among those who tried, many still failed.

Obstacles to Accessing Web Data using APIs
Of the 32% of respondents who previously tried to use APIs,
84% failed. Two of the main obstacles were that dealing with

Figure 2. The SNAPI UI. (1) Set search parameters. (2) Choose the number of results. (3) View results as table, tree, or list. (4) Choose response fields.
(5) Save and download the data in JSON or CSV. (6) Get a code snippet in JavaScript or Python that issues this query.

APIs required advanced programming skills (34%), which
many of our respondents did not have, and is time consum-
ing (15%). Both of these obstacles are overcome by ScrAPIr.
Another obstacle was the challenge of following the API doc-
umentation (9%). We replicated this finding in our system
evaluation described later in this paper. This also confirms
prior research investigating the learnability and usability of
APIs [30, 38]. Other obstacles were related to restrictions that
the APIs present, such as rate limits (13%), APIs not returning
desired data (10%), authentication requirements (8%), a pay-
wall (7%), getting data in an unusable format (1%), and API
changes (1%). And of course, many websites do not provide
APIs at all.

THE SCRAPIR ECOSYSTEM
ScrAPIr empowers users to retrieve data from web APIs with-
out programming. It consists of three related components:
HAAPI, SNAPI, and WRAPI. HAAPI is a standard ontol-
ogy for describing an API in enough detail to automatically
build a graphical interface to query it, without per-API pro-
gramming. SNAPI is a tool that creates such a GUI from any
HAAPI description. And WRAPI is a form-based tool that
lets users author HAAPI descriptions of APIs, again without
programming. These three components are connected. One
uses WRAPI to describe an API. WRAPI then generates a
corresponding HAAPI description that can be read by SNAPI.
Then, all other users can query that API through SNAPI.

SNAPI
SNAPI is a GUI that can query any API with a HAAPI descrip-
tion. Users select from a list of published APIs to arrive at the
page shown in Figure 2 (in this case the YouTube search API).

SNAPI provides a typical query interface with typical pre-
sentation and functionality described in the caption. Its only
difference is that it returns data in a table for easy download
instead of as formatted html. We intentionally limit SNAPI to
data queries, with no functionality for editing or computing
over the data. There are many high quality tools that people
can use for these tasks once they have the data.

SNAPI Evaluation
We evaluated SNAPI in a study with 10 participants (5 female,
5 male, ages 18 to 54), with varying programming skills rang-
ing from non-programmer to skilled. We devised five data
retrieval tasks that test different functions:

• Task 1 (search and filter): Get a list of the top 300 highly
rated Italian restaurants in Boston that are open now at Yelp.
Only show the name of the restaurant and the page URL.

• Task 2 (download data): Download a list of 500 Romantic
Fiction ebooks from Google Books ordered from the newest
to the oldest, in a CSV file.

• Task 3 (publish queries): Search for 25 New York Times
news articles about Trump. Only show the title and URL,
and save the data publicly.

• Task 4 (fork and edit queries): Search for the dataset that
you have just saved, order the articles oldest to newest, and
save it under a different name.

• Task 5 (refine using operators): Get the 100 most viewed
YouTube videos of Cute pets but not monkeys. Only show
the video title and URL.

Before introducing SNAPI, we asked participants how they
would perform Tasks 1 and 2. We then demonstrated SNAPI
and had each participant perform all 5 tasks.

Results
Before presenting SNAPI, we asked subjects how they would
perform Tasks 1 and 2. For Task 1, seven of 10 said that
they would go to the Yelp/Google Books website, search for
“Italian restaurants”/“Romantic Fiction”, then copy and paste
each result. For Task 2, they said they would not know how
to download the data without a website export button. A few
people suggested copy-and-pasting the results in a spreadsheet
then saving it. Only two participants indicated that they might
check whether the website had an API that they could use, and
one suggested using a scraping script available online.

Despite most being unfamiliar with APIs, all participants were
able to perform all the tasks using SNAPI with the exception
of Task 5 which only 6/10 were able to perform correctly. In
Task 5, to search YouTube for “cute pets but not monkeys”,
participants had to use the special operator “-” to exclude
videos: “cute pets -monkeys”. This means users had to be
aware of special semantics in the query string. This obstacle
would also have arisen using YouTube’s own search form.

We asked our participants to give us their feedback about
SNAPI. One common response was that this tool could be
helpful for data visualization, where the first challenge users
face is getting the data in a usable format. One participant
said “I have to learn JavaScript and I never had the chance
to spend time on that” A second common response was that
it could support users in their workflow process. One said
“This tool would be so helpful for journalists. Some people
do this for a living and I would love to use this tool!” Two
stated that SNAPI could serve as an educational step to a better
understanding of how APIs work and what kind of data they
offer.

Because SNAPI works just like most web search interfaces,
our subjects had little difficulty using it. Rather than a novel
UI, the key challenge is determining how to connect SNAPI
to arbitrary web APIs, as we discuss next.

WRAPI AND HAAPI
Writing code to connect to an API is hard for programmers and
impossible for non-programmers. In this section, we describe
an alternative. Many APIs are assembled from a tiny palette
of possible design choices. We show how to describe those
design choices in a machine-readable fashion. SNAPI can
read that description and use it to generate both a suitable
query interface and appropriate API calls. In this section, we
simultaneously introduce HAAPI (Human Access to APIs), an
ontology for describing an API that SNAPI can query, and
WRAPI (Wrapper for APIs), a tool that users can use to provide
the necessary information to describe an API.

Describing an API
Our API description ontology extends the OpenAPI ontology
that emerged recently as part of the Swagger project [40]. The
goals of Swagger are twofold. First, it seeks to schematize
the information needed for effective documentation of an API.

Figure 3. Providing the API URL, and other basic information. When
the user enter the URL, WRAPI will display the response to an API
query (right), in this case asking the user to provide the required param-
eter.

Like JavaDoc before it, OpenAPI lets users specify the pa-
rameters of a particular API call, their types, and so forth.
If a user provides this structured specification, Swagger can
automatically generate human-readable documentation of the
API for use by developers who want to access it. A second use
of this information is for stub generation. Given a description,
Swagger is able to generate code in a variety of languages that
will query the API over the web and return the results in a
language-suitable format.

OpenAPI provides much information necessary for SNAPI,
but is not sufficient. OpenAPI does not specify information
like human-readable parameter names that is necessary for
creating a GUI to query the API. And since it is assumed that
the code will be integrated into a larger system that uses the
API invocations, OpenAPI does not specify information about
how to authenticate to the API or paginate to gather large
numbers of results.

We organize this section by stepping through an API-driven
data query and the information needed to carry out each step.
In some cases the information is part of OpenAPI; in others
we explain how HAAPI extends the schema to include that
information. We use monospace font to indicate property
names in HAAPI. Then, we explain how WRAPI gathers that
information from an integrator of a given API (who may not be
a programmer). In general, the integrator cannot be expected
to know this information. Instead, we expect that the integrator
will seek out and read API documentation in order to find it.
WRAPI guides the integrator toward what they should look
for at each step of the integration.

API Endpoint
The first bit of information needed to access a web
API is its endpoint. Any such API is invoked by
requesting a suitable URL from the server. Ope-
nAPI uses host, basePath, and paths parameters
in its schema to specify the URL to request, such
as https://www.googleapis.com/youtube/v3/search.
WRAPI presents a form where the integrator can enter the API
URL, as shown in Figure 3.

Request Parameters
In addition to the URL, the API request contains query param-
eters—arguments to the API method being invoked. These
can include, for example, a search string to filter results or
a specification of the sort order. Each parameter has a name
and a type such as free text, numeric, or an enumerated list
of permitted values. Some parameters are optional and some

Figure 4. Providing request parameters for Yelp search API in WRAPI.
These parameters were retrieved from GitHub. The most used ones in
GitHub are added to the table and the rest are added under the table.

required. The OpenAPI schema already represents this infor-
mation.

To make a query with these parameters, SNAPI must gather
them from the user making the query. SNAPI uses type
information to specialize parameter entry widgets—for exam-
ple, providing a dropdown for selecting from an enumerated
type. We further extend the OpenAPI schema to include a
displayedName, a human-readable name property for each
parameter, and a default value. Both are used in the SNAPI
query form. Often, some parameters are esoteric and unlikely
to change, so we extend HAAPI to indicate which parameters
should be displayed in the query UI. Those that are not dis-
played always take their default values in a query. WRAPI
collects this information with a form where users can enter
parameter names, default values, and types and indicate which
are required, as shown in Figure 4.

Mining GitHub and APIs Guru
Because manually entering parameters can be tedious for the
integrator and may require wading through substantial docu-
mentation, we offer some alternatives. When the integrator
provides the API URL in the first step, WRAPI tries to auto-
matically pull parameter information from two sources: APIs
Guru and Github. APIs Guru [14] is a repository of OpenAPI
descriptions for thousands of endpoints. If WRAPI finds a
description for its endpoint there, it imports the parameter de-
scriptions. At the same time, WRAPI queries Github for code
snippets containing the API URL and incorporates parameters
it finds.

APIs Guru and Github complement each other. APIs Guru
is for documentation; its descriptions are therefore relatively
complete. But documentation becomes outdated and may
be wrong [27]. Github provides (hopefully) working code
examples, so we have higher expectations of correctness. But
we will only see parameters that programmers actually use, so
the information may be incomplete.

To asses the reliability of APIs Guru we picked a random
sample of 10 API descriptions (out of about 1500). All of the
10 OpenAPI specifications listed the right parameters, 2/10
were missing some important information about those param-
eters (e.g. if the parameter is required). Only 5/5 had the
correct authentication type (discussed below, suggesting that
information is unreliable. As a result, we collect parameter

Figure 5. Providing authentication and headers information for Yelp
API using WRAPI.

information from APIs Guru, but not authentication informa-
tion.

APIs often include many parameters that are optional and
unimportant. To address this, WRAPI uses its search of Github
to determine the popularity of each parameter. Then, to avoid
daunting the user, WRAPI shows only the five most popular
parameters in the parameter table, then provides a list of the
other parameter names for the integrator to choose and add
to the table if they wish. The OpenAPI specification does
not include the displayedName and pagination informa-
tion (discussed below), but the integrator can add those using
WRAPI’s form.

Authentication and Headers
Most Web APIs aim to track and control access using some
kind of token provided to each API user that is then included
with the API request to identify who is making it. There are
different types of authentication: HTTP authentication (Basic
and Bearer), API key, and OAuth. There are two ways to de-
liver this authentication: it can be included as one of the named
parameters in the query, or it can be provided as a header in the
HTTP request. The OpenAPI specification describes the au-
thentication type, name, and whether it is query or header
parameter. WRAPI uses another form interaction to collect
the relevant information, as shown in Figure 5.

To prevent an API from being overwhelmed, API owners
often enforce a rate limit on the number of requests users can
consume. If sites apply rate limits by token, this single token
will rapidly be exhausted by multiple users. Thus, we extended
OpenAPI to represent instructions for getting an API key (what
web page to visit, what to ask for, etc.) WRAPI collects this
information from the API integrator. The integrator (who will
need to generate a key at least to test their API) can "donate"
that key for public use or keep it private. If no public API
key is available, SNAPI uses the new HAAPI information to
guide a user to get their own (which they too have the option
of donating).

We expect authentication to be one of the most significant
challenges for an integrator. Unlike the specification of param-
eters, it does not have an analogue in users’ typical interactions
with a web search form. The documentation describing au-
thentication can be technical and opaque. And the integrator
may have to go through a complex process—signing up on
the website, activating a “developer account” and submitting
a request—to get an access token. As we show in our user

Figure 6. Choosing response fields using the interactive pane (right),
which shows the API response. The user can search and browse for fields,
click on them, then they will be added to the table (left).

studies, non-programmers can succeed in this process, but it
is certainly a pain point.

Response
Most web APIs return results in JSON format [22]. As JSON
is self describing, it is straightforward for a system to parse
those returned results. However, to present those results to a
user through SNAPI, some additional information is useful.
In particular, many APIs return extremely rich JSON, full
of properties that are unlikely to interest the user. And, the
property names may be relatively opaque. Thus, HAAPI
extends the OpenAPI specification with a responses property
that captures which fields a user is likely to care about and
gives them human-readable names and descriptions.

WRAPI provides affordances to simplify extraction of spe-
cific result fields. Once the integrator has specified query pa-
rameters/authentication, WRAPI submits a sample query and
shows the JSON response in an interactive pane, shown in Fig-
ure 6 (right), where the user can click to select desired fields.
The chosen fields are added to the table on the left, where
the user can add displayed names and descriptions
to these fields. WRAPI adds the name, displayed name,
and description of these fields to the HAAPI description.
SNAPI uses this information to present results by populat-
ing the selected result fields and showing them in its UI (Fig-
ure 2(4)). This allows a user to further filter the result columns.

Pagination
Most APIs use some form of pagination to reduce unnecessary
data delivery. Abstractly, there is an ordered sequence of
results to a query, and pagination specifies a small subsequence
of this ordered sequence to return in the query results. Many
web users are familiar with pagination, as it is also used in
web search interfaces. Pagination interfaces usually offer “next
page” and “previous page” links, and sometimes a way to jump
to a specific page number. Pagination is similarly used within
APIs. As with authentication, we found only a few distinct
pagination mechanisms. Some APIs use a fixed or specifiable
number of items per page and a parameter to specify the
page number. Others provide next-results and previous-results
values that are used to assign the currentPage property to
request an adjacent subsequence of items. Others have a

parameter that specifies either a page index or an offset
into the entire result list along with a count of a number of
results to return.

Pagination is not part of the OpenAPI specification. More
precisely, although OpenAPI can specify the parameters that
the API happens to use for pagination, it does not provide any
way to express that those parameters have pagination seman-
tics. This is understandable; OpenAPI is intended to support
arbitrary APIs, while pagination is a semantics specifically
directed towards large query result sets. Thus, we extend
HAAPI with a pagination property that can be populated
with the relevant information: the type of pagination used,
and the parameter names used to drive that pagination.

WRAPI provides a form for the integrator to select a particular
type of pagination used by the API, then provide the relevant
parameter names (Figure 7). If the integrator omits pagination
information, SNAPI issues queries but can only retrieve the
(default) first page of results. If the integrator provides the
pagination information, SNAPI will display a number of re-
sults field in its front end (Figure 2(2)) where users can type
in the number of results they want to retrieve. SNAPI uses
pagination to automatically retrieve as many results as the
SNAPI user requests (up to some limit imposed by the API).

Feedback during Integration
We have described five steps an integrator goes through to
generate all the necessary HAAPI information. In an early
prototype, similar to other tools like Postman and Swagger,
we took the user through all five steps before generating any
query to the API. But evaluation of this prototype found that
integrators made many integration errors which were difficult
to debug. Thus, to provide feedback during integration, we
added a panel, as shown on the right in Figure 3 and 6, that
displays the JSON response to an API query. WRAPI sends
an initial query, with no parameters, as soon as the user pro-
vides the API url, since even at this early point some APIs
begin returning useful responses. As the user provides more
information, the query is refreshed. The response is in JSON,
so we parse it and display it to the user in a more readable
format.

When the API returns an error response, WRAPI looks for a
human-readable error message and shows it to the user above
the response pane. We propose a simple heuristic to get a
human-readable message from the JSON reponse: look for
the longest text string. To test this heuristic, we examined the
ProgrammableWeb [32], a catalog of over 22 thousand web
APIs. Focusing on the search category (3534 APIs), we chose
a random sample of 40 APIs and found that the longest text
heuristic always works but that some APIs return a “success”
response with an error message, instead of an “error” response,
which is a design limitation of these APIs. Thus, overall our
approach works 87.5% of time (with a 95% confidence interval
of ±14.78%).

IMPLEMENTATION
ScrAPIr has a front end web interface, built using JavaScript,
HTML, and CSS, and a back end component, built using
the Firebase Realtime Database, which stores the HAAPI

Figure 7. Providing pagination information for Yelp search API using
WRAPI.

descriptions. SNAPI reads a HAAPI description from Firebase
and uses it to generate the SNAPI front end. SNAPI displays
results in a table format (Figure 2(3)), using SlikGrid [25], a
JavaScript grid/spreadsheet library. For the interactive pane in
Figure 6 (right), we used JSON Editor [11], a tool to view and
edit JSON data.

HAAPI EVALUATION
HAAPI should be evaluated by how well it is able to describe
web data query APIs. HAAPI builds heavily on OpenAPI,
which has already demonstrated broad uptake in the developer
community, and makes only limited extensions, primarily to
cover pagination, authentication, and presentation. A key
metric is coverage: what portion of the APIs provided on the
web can be described by HAAPI with sufficient fidelity to
enable SNAPI to query them from their descriptions?

To answer this question, we again sampled the Pro-
grammableWeb and found that 90% (with a 95% confi-
dence interval of ±10.73%) of search APIs can be de-
scribed by HAAPI such that SNAPI can query them. Of
the three not describable by HAAPI, one used a different
style of pagination. And two required passing parameters
as part of the URL path— www.example.com/parameter1Value1/

parameter2Value2 as opposed to the query string www.example.
com?parameter1=Value1¶meter2=Value2—which is currently
not supported by HAAPI. It would be trivial to extend HAAPI
to include path-based parameters, which would improve cov-
erage of the sample to 97% (with a 95% confidence interval
of ±6.42%).

WRAPI EVALUATION
We conducted a user study comparing WRAPI to the typical
approach of coding to access APIs. We focused on the follow-
ing questions: (i) Can first-time users who are programmers
access and query APIs using WRAPI faster than writing code?,
and (ii) Can first-time users without programming skills use
WRAPI to access and query web APIs? We recruited 20 par-
ticipants (9 male, 11 female, ages 21 to 62) for a two-hour user
study. Ten of our participants were non-programmers, and ten
programmers. Programmer skills ranged from intermediate
to advanced: 0 newcomers (learning concepts), 0 beginners
(understands concepts but frequently needs documentation), 2
intermediate (does not usually need documentation), 2 skilled
(can write complicated programs), and 6 advanced (profes-
sional). Programmer experience with APIs varied: 2 had never

used APIs, 2 had used them once, and 6 had used them a
couple of times or more.

Procedure
Non-programmers only used WRAPI while programmers had
one session with WRAPI and another writing code. In the
coding session, participants could use any language, online
code snippets, or libraries. The same API and task was as-
signed for both sessions so we could compare within subjects.
Participants were assigned one of 3 tasks:

• Yelp: Get a list of the top 300 highly rated Italian restaurants
in NYC that are open now. Only get the name, URL, and
rating for each restaurant.

• Reddit: Get a list of the newest 200 posts about GRE exam
tips on Reddit. Only get the title, subreddit, URL, and
number of subscribers for each post.

• Google Books: Get a list of 250 ebooks about Human
History from Google Books. Only get the title, published
date and the info link for each ebook.

We chose these three APIs because they are different in terms
of what they require from the user to access them (e.g., some
require authentication and others do not) and their documenta-
tion quality.

With our programmer participants, we counterbalanced the
order of methods used to perform the tasks: half of our partici-
pants started by using WRAPI and the other half by writing
code. We assigned each task to participants with different
programming skill levels (e.g. we assigned the Google Books
task to 3 participants, 1 advanced, 1 skilled, and 1 interme-
diate). The WRAPI session began with a quick demo of the
tool. We limited the time for each session: if a participant did
not complete the task with a given method within an hour, we
moved on to the next session. After finishing their sessions,
each participant answered a survey that asked them to reflect
on the methods’ usability and efficiency.

Because we expected that the time spent on the first session
would be highly affected by the time spent reading and under-
standing the API documentation, while it would already be
known in the second session, we decided to measure the time
spent on documentation separate from the time spent using
WRAPI and writing code. We accomplished that by using
TimeYourWeb [42], a Chrome extension that tracks the time
spent on web pages. The majority of documentation time was
spent in the first session.

Results
All 20 participants completed their task using WRAPI and
9 of the 10 programmers completed it writing code. Partic-
ipant P5 did not finish their coding task despite rating their
programming as skilled. Figure 8 shows the time spent using
WRAPI and (for programmers) writing code, and the time
they spent on the API documentation. The top shows averages
by task/API while the bottom shows individual times.

All programmers (whether they started with WRAPI or coding)
spent more time coding than reading the documentation, but

www.example.com/parameter1Value1/parameter2Value2
www.example.com/parameter1Value1/parameter2Value2
www.example.com?parameter1=Value1¶meter2=Value2
www.example.com?parameter1=Value1¶meter2=Value2

Figure 8. The top chart shows the average time programmers (P) and
non-programmers (N) spent on completing their task using WRAPI,
writing code (for programmers), and reading the API documentation.
The bottom chart shows in detail the time each participant spent.

less time using WRAPI than reading documentation. For
the programmers who finished both the WRAPI and coding
tasks, the average time they spent to complete their task using
WRAPI was 7.1 minutes versus 26.8 minutes by coding, a
factor of 3.8x faster. Programmers completed the WRAPI task
2.4 times faster than coding for Google Books, 4.4 times faster
for Reddit, and 4.5 times faster for Yelp. We conducted a
paired t-test for programmer participants who completed both
tasks. There was a significant difference in the completion
times for writing code (M=26.778, SD=13.746) and using
ScrAPIr (M=7.111, SD=3.756) with p=0.001.

Programmers were generally faster than non-programmers
using WRAPI. But the average time non-programmers spent
to complete their (WRAPI) task was 19 minutes—faster than
programmers writing code.

In the survey, we asked participants to rate how usable they
found WRAPI. Participants answered all questions with a five-
point Likert scale, with 1 indicating the tool was very easy to
use and 5 very difficult to use. The average ratings were 1.7
and 2.2 for programmers and non-programmers respectively.
In addition, we asked programmers to rate their experience
with the coding task. 40% rated it as difficult, 30% as neutral,
and the rest as easy. Although all participants rated using
WRAPI as easy, 80% of them indicated that it was difficult
for them to find the required information in the API documen-
tation. There is an education process for the users when it

comes to dealing with APIs, and it depends a great deal on the
quality of the API documentation [27].

Participant Feedback
Pros and cons of writing code to access APIs. We asked
the programmer participants what they liked and did not like
about writing code to access APIs. They mainly liked the
flexibility and ability to integrate retrieved data into other
applications and compute over it. Regarding dislikes, many
participants indicated that dealing with pagination was a hassle,
where one participant said “I got stuck on the pagination and
trying to figure out how to get 100 results.” Others stated that
parsing the JSON response and retrieving specific fields was
not easy, where one said “It was not super easy to filter/debug
the response object without constantly referring back to the
documentation.” Finally, lack of familiarity with code made
things difficult, with one person saying: “Not knowing how to
send the GET requests using Python.”

Pros and cons of using WRAPI. We asked all participants
what they liked and did not like about WRAPI. One com-
mon answer for what they liked was accessing APIs with-
out programming. One programmer said “Much faster and
simpler to use than simply coding to access the API.” A non-
programmer said “Everything about it is awesome! It’s the
type of tool needed to standardize API use across available
open source datasets. I like the fact that once a user adds
an API to scrAPIr, it’s permanently added for other users
to use”. Users also liked how the tool guided users through
the integration process: “ScrAPIr was able to cut down the
number of steps significantly and is the first resource I used to
guide my understanding of the entire process (other articles
aren’t so informative or easy to read)”. Finally, users enjoyed
choosing response fields using the interactive pane and the
automatic handling of the pagination. We noticed two main
dislikes. First, the pagination step and how it gets mapped to
SNAPI was confusing for some participants. Second, some
programmers wanted a library using ScrAPIr as a proxy to
access APIs and retrieve data directly in their code.

WRAPI versus writing code to access APIs. Programmers
performed better using WRAPI than writing code for sev-
eral reasons. First, they encountered challenges with code
syntax: “I could do everything with scrAPIr that I could do
with code, but scrAPIr was faster and easier because I could
avoid any issues related to syntax”. Programmers also took
advantage of WRAPI’s live feedback, automatic response, and
pagination retrieval: “it simplifies the trial/error through the
simple validation process and allowed me to quickly search for
fields without having to manually traverse the JSON outputs”.
Finally, the guidance provided by WRAPI helped: “Every
API...uses different terms to describe endpoints, parameters,
etc. ScrAPIr makes it easier to navigate through that maze
by distilling required information into sections and providing
common parameters as dropdowns”.

DISCUSSION
The long history of repurposing web data for mashups, analy-
sis, and visualization shows that there is significant value in
pulling data from websites. The spread of web APIs opens

a powerful path to accessing this data by programming but
this is effortful for programmers and impossible for non-
programmers. Many users can easily query websites using
the search forms those sites provide, but too many of those
websites deliver those results only in a messy format that must
be copied or scraped. Instead, we show that with Scrapir,
just one enthusiastic user can do a limited amount of work to
describe a large variety of APIs with HAAPI by reading the
documentation. Once they have done so, anyone can easily
use SNAPI to query and retrieve that API’s data.

In a perfect world, the ScrAPIr ecosystem would not be nec-
essary. If one of the API standardization efforts such as the
Semantic Web or GraphQL were to succeed, then a tool like
SNAPI could be created that would be able to query every
web data source with no additional programming. But this
kind of perfection requires cooperation from every website
developer in the world. While many of these developers have
demonstrated a willingness to provide their data through some
idiosyncratic API, there is less sign of enthusiasm for follow-
ing the constraints of an API standard. Thus, we instead aim
to support other users who have the incentive to download the
data.

LIMITATIONS AND FUTURE WORK
One limitation of ScrAPIr is that it only works on sites offer-
ing an API. As many sites do not, scraping will continue to
be a necessary evil. However, the availability of APIs is in-
creasing [32], and when they exist, ScrAPIr can gather higher
quality data more easily than scraping [6]. ScrAPIr only offers
basic filtering and sorting (select, project, and order by), with-
out the richer “join” queries that databases or query languages
like GraphQL can provide. But this parallels most websites
that similarly offer limited query functionality. If users can
extract data effectively, they can feed it into tools that provide
richer query interfaces and visualizations.

Our study showed that Scrapir is easy to use to download data,
but some programmers preferred to pull this data directly into
their applications. Thus, we are currently building a library
for ScrAPIr that lets users specify the API they want to access,
filter conditions, number of results, fields from results, and the
format they want results in (CSV or JSON). ScrAPIr will then
handle the API request, parse the results, handle pagination,
and return the results.

YouTube’s API shows an important limitation of our approach.
The API permits the use of special “operators”, such as a
minus-sign to indicate terms to exclude, within the textual
query string. Our API description can only describe the query
string as text; it has no way to describe the special semantics
used to interpret that text. If instead the API offered separate
“includeTerms” and “excludeTerms” parameters, our descrip-
tion could represent them meaningfully. Depending on the
prevalence of this phenomenon, it might be worth expand-
ing the description language to describe ways to assemble
“structured” parameters from smaller pieces.

At present, ScrAPIr is not well designed for users who want
different representations of the same API. If one user decides
to add an API, they can select their desired parameters and re-

sponse fields. But another user interested in querying that API
may desire other parameters not included by the original user.
Currently, we allow users to create multiple versions of the
same API if they wish to add different parameters, but ideally
this should be handled as one API with different versions. We
will investigate how to maintain different customizations of
the same API for multiple users.

CONCLUSION
This paper proposes the idea of designing an API description
ontology that can be used to generate data query interfaces for
general use. It presents ScrAPIr, a system that helps users ac-
cess and query web APIs without programming, by providing
a query interface over web APIs. Users can also publish these
APIs for others to query them. Our user study showed that
non-programmers can access APIs using ScrAPIr, while pro-
grammers can access APIs 3.8 times faster on average using
ScrAPIr than writing code.

REFERENCES
[1] Apify. 2019. Apify Web Scraper. (2019). Retrieved

November 17, 2019 from
https://apify.com/apify/web-scraper

[2] Arvind Arasu and Hector Garcia-Molina. 2003.
Extracting structured data from web pages. In
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. ACM, 337–348.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
semantic web. Springer, 722–735.

[4] Tim Berners-Lee, James Hendler, Ora Lassila, and
others. 2001. The semantic web. Scientific american 284,
5 (2001), 28–37.

[5] API Blueprint. 2019. (2019). Retrieved August 10, 2019
from https://apiblueprint.org

[6] Kerry Shih-Ping Chang and Brad A Myers. 2017.
Gneiss: spreadsheet programming using structured web
service data. Journal of Visual Languages & Computing
39 (2017), 41–50.

[7] Kerry Shih-Ping Chang, Brad A Myers, Gene M Cahill,
Soumya Simanta, Edwin Morris, and Grace Lewis. 2013.
A plug-in architecture for connecting to new data
sources on mobile devices. In 2013 IEEE Symposium on
Visual Languages and Human Centric Computing. IEEE,
51–58.

[8] Sarah E Chasins, Maria Mueller, and Rastislav Bodik.
2018. Rousillon: Scraping Distributed Hierarchical Web
Data. In The 31st Annual ACM Symposium on User
Interface Software and Technology. ACM, 963–975.

[9] Roberto Chinnici, M Gudgin, JJ Moreau, and S
Weerawarana. 2004. Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language.
W3C Working Draft. World Wide Web Consortium
(2004).

https://apify.com/apify/web-scraper
https://apiblueprint.org

[10] Marco Cremaschi and Flavio De Paoli. 2017. Toward
automatic semantic API descriptions to support services
composition. In European Conference on
Service-Oriented and Cloud Computing. Springer,
159–167.

[11] Jos de Jong. 2019. JsonEditor. (2019). Retrieved June 1,
2019 from http://jsoneditoronline.org

[12] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R Scott
Cost, Yun Peng, Pavan Reddivari, Vishal Doshi, and Joel
Sachs. 2004. Swoogle: a search and metadata engine for
the semantic web. In Proceedings of the thirteenth ACM
international conference on Information and knowledge
management. ACM, 652–659.

[13] GraphQL. 2019. GraphQL. (2019). Retrieved August 1,
2019 from https://graphql.org

[14] Apis Guru. 2019a. OpenAPI Directory. (2019).
Retrieved June 1 from
https://apis.guru/openapi-directory/

[15] GraphQL APIs Guru. 2019b. GraphQL Voyager. (2019).
Retrieved March 31, 2019 from
https://apis.guru/graphql-voyager

[16] Marc Hadley. 2009. Web application description
language. World Wide Web Consortium Member
Submission SUBM-wadl-20090831 (2009).

[17] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R
Klemmer. 2007. Programming by a sample: rapidly
creating web applications with d. mix. In Proceedings of
the 20th annual ACM symposium on User interface
software and technology. ACM, 241–250.

[18] Patrick Hoefler, Michael Granitzer, Eduardo E Veas, and
Christin Seifert. 2014. Linked Data Query Wizard: A
Novel Interface for Accessing SPARQL Endpoints. In
LDOW.

[19] Adrian Holovaty. 2005. ChicagoCrime. org. Available at
http (2005).

[20] Mohammed Kayed and Chia-Hui Chang. 2010.
FiVaTech: Page-level web data extraction from template
pages. IEEE transactions on knowledge and data
engineering 22, 2 (2010), 249–263.

[21] Nicholas Kushmerick. 2000. Wrapper induction:
Efficiency and expressiveness. Artificial intelligence 118,
1-2 (2000), 15–68.

[22] Markus Lanthaler and Christian Gütl. 2012. On using
JSON-LD to create evolvable RESTful services. In
Proceedings of the Third International Workshop on
RESTful Design. ACM, 25–32.

[23] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher,
and Tessa A Lau. 2009. End-user programming of
mashups with vegemite. In Proceedings of the 14th
international conference on Intelligent user interfaces.
ACM, 97–106.

[24] Greg Little, Tessa A Lau, Allen Cypher, James Lin,
Eben M Haber, and Eser Kandogan. 2007. Koala:
capture, share, automate, personalize business processes

on the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 943–946.

[25] Ben McIntyre. 2019. SlickGrid. (2019). Retrieved June
1, 2019 from http://slickgrid.net

[26] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu,
Andrew Macvean, and Brad A Myers. 2018. API
Designers in the Field: Design Practices and Challenges
for Creating Usable APIs. In 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 249–258.

[27] Brad A Myers and Jeffrey Stylos. 2016. Improving API
usability. Commun. ACM 59, 6 (2016), 62–69.

[28] Bonnie A Nardi. 1993. A small matter of programming:
perspectives on end user computing. MIT press.

[29] Node-RED. 2013. (2013). Retrieved August 15, 2019
from https://nodered.org

[30] Marco Piccioni, Carlo A Furia, and Bertrand Meyer.
2013. An empirical study of API usability. In 2013
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE, 5–14.

[31] Postman. 2019. Postman. (2019). Retrieved August 10,
2019 from https://www.getpostman.com

[32] ProgrammableWeb. 2005. ProgrammableWeb Search
Category. (2005). Retrieved September 1, 2019 from
https://www.programmableweb.com

[33] Mark Pruett. 2007. Yahoo! pipes. O’Reilly.

[34] Paul Rademacher. 2005. HousingMaps. Available at
http://www.housingmaps.com (2005).

[35] RAML. 2019. RAML. (2019). Retrieved August 10,
2019 from https://raml.org

[36] RapidAPI. 2019. RapidAPI. (2019). Retrieved
November 17, 2019 from https://rapidapi.com

[37] Leonard Richardson. 2007. Beautiful soup
documentation. April (2007).

[38] Christopher Scaffidi. 2006. Why are APIs difficult to
learn and use? Crossroads 12, 4 (2006), 4–4.

[39] A Scrapy. 2016. Fast and powerful scraping and web
crawling framework. Scrapy. org. Np (2016).

[40] Swagger Specification. 2019. OpenAPI Specification.
(2019). Retrieved August 15, 2019 from
https://swagger.io/specification

[41] Swagger. 2019. Swagger. (2019). Retrieved August 10,
2019 from https://swagger.io

[42] TimeYourWeb. 2019. TimeYourWeb. (2019). Retrieved
March 31, 2019 from https://www.timeyourweb.com

[43] Max Van Kleek, Daniel A Smith, Heather S Packer, Jim
Skinner, and Nigel R Shadbolt. 2013. Carpé data:
supporting serendipitous data integration in personal
information management. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 2339–2348.

http://jsoneditoronline.org
https://graphql.org
https://apis.guru/openapi-directory/
https://apis.guru/graphql-voyager
http://slickgrid.net
https://nodered.org
https://www.getpostman.com
https://www.programmableweb.com
https://raml.org
https://rapidapi.com
https://swagger.io/specification
https://swagger.io
https://www.timeyourweb.com

[44] Jeffrey Wong and Jason I Hong. 2007. Making mashups
with marmite: towards end-user programming for the
web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 1435–1444.

[45] Minhaz Zibran. 2008. What makes APIs difficult to use.
International Journal of Computer Science and Network
Security 8, 4 (2008), 255–261.

	Introduction
	Related Work
	Web Scraping
	Web APIs
	API Description Languages
	Visually Querying APIs

	Experiences and Strategies with Web Data
	Reasons and Methods for Accessing Web Data
	Obstacles to Accessing Web Data by Scraping
	Obstacles to Accessing Web Data using APIs

	The ScrAPIr Ecosystem
	SNAPI
	SNAPI Evaluation
	Results

	WRAPI and HAAPI
	Describing an API
	API Endpoint
	Request Parameters
	Mining GitHub and APIs Guru

	Authentication and Headers
	Response
	Pagination
	Feedback during Integration

	Implementation
	HAAPI Evaluation
	WRAPI Evaluation
	Procedure
	Results
	Participant Feedback

	Discussion
	Limitations and Future Work
	Conclusion
	References

