
Shapir: Standardizing and Democratizing Access to Web APIs
Tarfah Alrashed Lea Verou David R. Karger

MIT CSAIL MIT CSAIL MIT CSAIL
Cambridge, USA Cambridge, USA Cambridge, USA
tarfah@mit.edu leaverou@mit.edu karger@mit.edu

ABSTRACT
Today, many web sites ofer third-party access to their data through
web APIs. But manually encoding URLs with arbitrary endpoints,
parameters, authentication handshakes, and pagination, among
other things, makes API use challenging and laborious for program-
mers, and untenable for novices. In addition, each site ofers its
own idiosyncratic data model, properties, and methods that a new
user must learn, even when the sites manage the same common
types of information as many others.

In this work, we show how working with web APIs can be dra-
matically simplifed by describing the APIs using a standardized,
machine-readable ontology. By surveying a statistical sample of
web APIs, we develop a simple ontology that can efectively de-
scribe the core functionality of nearly all of them. We then present
Shapir, a system that includes a graphical, form-based authoring
tool for the API description, from which Shapir can automatically
generate a standardized JavaScript library for accessing data on
the web site as objects with readable and writeable properties. This
enables programmers to access data without learning the details of
each API, and indeed allows them to use the same unchanged code
for multiple web sites. We then integrate Shapir with Mavo, an
HTML language extension for describing web applications declara-
tively, to also empower plain-HTML authors to access these APIs.
In our lab evaluation, we found that programmers are able to ac-
complish program data management tasks that require multiple
API requests 5.6 times faster on average using the Shapir generic
library than using the popular Swagger API integration library.
Using our Mavo-Shapir integration, even non-programmers were
able to build functioning data management applications that access
multiple web APIs in just 4 minutes.

CCS CONCEPTS
• Human-centered computing → Web-based interaction; • In-
formation systems → RESTful web services.

KEYWORDS
Web APIs, API Description Languages, Schema.org, Semantic Web

ACM Reference Format:
Tarfah Alrashed, Lea Verou, and David R. Karger. 2021. Shapir: Standardizing
and Democratizing Access to Web APIs. In The 34th Annual ACM Symposium
on User Interface Software and Technology (UIST ’21), October 10–14, 2021,

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474822

Virtual Event, USA. ACM, New York, NY, USA, 23 pages. https://doi.org/10.
1145/3472749.3474822

1 INTRODUCTION
Nowadays, substantial amounts of valuable data on many web sites
can be accessed through web APIs (application programming inter-
faces). Using these APIs, a programmer can create new applications
that present and manipulate the data on those web sites in new
ways. But using these APIs is a signifcant efort, even for skilled
programmers. Data from the application must be marshalled and
unmarshalled for delivery and proper API invocation URLs need
to be generated. While skilled programmers may be familiar with
this process in general, many newer and non- programmers will
be bafed by the complexity of web API usage [36]. In addition,
each API is diferent, so even a programmer skilled in API usage
must invest signifcant time reading documentation to learn any
API they intend to use [12]. As we show experimentally below, the
time required to learn and code to an API can be signifcantly larger
than the rest of the time needed to create a simple application.

In this work we describe Shapir1, an ecosystem that signifcantly
simplifes the creation of interactive web applications that operate
on data accessible through arbitrary web APIs. Shapir provides a
graphical interface that permits any user (even a non-programmer)
to describe any web API using a Web of Objects Programming Inter-
face (WoOPI) ontology that maps the web site objects to standard
data types and methods found on Schema.org [17], a site that of-
fers a common set of schemas for describing objects on the web
and is supported by major search engines. Given such a WoOPI
description, Shapir can automatically generate a client library that
presents the web site data as objects in the application’s local envi-
ronment, which can be manipulated by getting and setting object
properties or invoking apparently-local methods. Using this library,
a programmer unfamiliar with APIs can author their applications as
if the data they are manipulating is already in their hands. Because
the provided data types ft the Schema.org standard, an applica-
tion written over one website will work, unchanged, for any other
website providing semantically-equivalent data. Shapir also inte-
grates with Mavo [43], a library that empowers non-programmers
to create interactive web applications simply by authoring HTML.
Combined, Shapir and Mavo make it possible to create standalone
web applications that manipulate data, even over (multiple) web
APIs simultaneously, without writing a single line of JavaScript.

The Shapir ecosystem is based on a simple standard description
language, which makes it modular and distributed. WoOPI API
descriptions can be published anywhere, and the small ShapirJS
library that leverages those descriptions can run anywhere. Our
approach involves no bottleneck platform or server, leaving people

1https://shapir.org

1282

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3472749.3474822
https://doi.org/10.1145/3472749.3474822
https://doi.org/10.1145/3472749.3474822
https://shapir.org
https://Schema.org
https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

free to use it anywhere, and to modify, remix, or replace individual
components as they see ft.

1.1 Motivation
Consider someone who wants to create a small application for col-
lecting videos they fnd on the web, organizing them into playlists,
and playing them. They likely start with a mental model of their
data: videos with titles, creators, creation dates, and video data
links; and playlists, each with a title, a creation time, and a collec-
tion of videos in the playlist. It would be relatively straightforward
to create a basic web application for managing this data model,
presenting forms that allow the author to view and edit the infor-
mation about each video and move videos among playlists. Indeed,
with Mavo [43] the author would not even really need to program:
they would create an HTML document that looks like the desired
application, then add a small amount of Mavo markup which in-
dicates which elements of the HTML are editable data. The Mavo
library would read those annotations and provide the relevant data
editing, presentation, and storage capabilities.

But suppose the user wanted to enrich their application by en-
abling it to search for videos and playlists on Dailymotion, and
pull the resulting information into their application to manage it.
Now the task becomes signifcantly harder. To begin, they would
need to learn the whole concept of web APIs—the idea that you can
generate specially formatted HTTP requests that fetch data from
or modify data on websites. They would then need to study the
Dailymotion API documentation and determine how to write the
appropriate HTTP requests to fetch that data, and the JavaScript
necessary to unpack what is returned. Then they would need to
write more code translate the data coming back from Dailymotion
to match the schema they have chosen for their application (and to
translate back if they are sending updates in the opposite direction),
as it is unlikely that Dailymotion has selected the same property
names and values as they did.

If the user then decided to incorporate Vimeo videos into their
application as well, they would have to repeat the entire process:
learn an entirely diferent API, generate appropriate HTTP requests
to it, unpack the returned data, and translate those results (using a
diferent dictionary) into their own preferred schema.

This task demands a signifcant amount of tedious labor. The
user knows from the beginning that these sites have videos and
playlists, but must work to learn about and translate between multi-
ple inconsistent website API syntaxes and data models. It takes the
user far away from their initial simple model of video and playlist
objects with readable and writeable properties, and the simple appli-
cation they build with elementary programming (or, if using Mavo,
writing nothing but HTML).

1.2 Our Approach
In this work, we propose an approach to eliminating much of the
mental and manual labor overhead of working with web APIs. We
propose a new API description language, the Web of Objects Pro-
gramming Interface (WoOPI), that can be used to describe most ex-
isting website APIs. We then provide a JavaScript library (ShapirJS)
that uses the WoOPI description to provide proxy objects in the
local programming environment for each object available through

the website API. A user can read and write properties of those
objects, and invoke methods on them, as if they were local, and the
library takes care of making the necessary API calls (as described
in WoOPI) to provide or modify the relevant data.

Equally important, WoOPI can wrap the API with objects con-
forming to canonical type defnitions provided by Schema.org.
For example, both Dailymotion and Vimeo videos in the exam-
ple above can be wrapped in objects conforming to the Video
type from Schema.org, with canonical properties such as creator,
dateCreated, and name. Thus, the same code that the user writes
to incorporate videos from Dailymotion into their application will
work unchanged to incorporate videos from Vimeo, or from any
other website with a suitable WoOPI description.

In addition, we have incorporated the WoOPI interpreter into
the Mavo framework. A user can thus construct their video man-
agement application entirely by authoring HTML, and then direct
this application (still just HTML) to retrieve and incorporate video
information from both Vimeo and Dailymotion.

This scenario relies on the existence of WoOPI descriptions for
specifc websites. Our fnal contribution is ShapirUI, a graphical,
form-based authoring tool for WoOPI descriptions. ShapirUI steers
users through a process of describing the API and its alignment
with standard Schema.org types and methods, all without writing
any code.

In summary, in order to simplify interaction with data on web
sites, we ofer the following contributions:

(1) WoOPI, a simple schema for (i) modeling a website’s data as
a collection of typed objects with read/write properties and
methods using (ii) canonical data types from the Schema.org
standard, and (iii) describing how to implement that model
via appropriate calls to the site’s API.

(2) Evaluation of a random sample of web APIs, showing that
WoOPI sufces for describing roughly 90% of those APIs.

(3) ShapirJS, a JavaScript library that uses a WoOPI description
to present the website’s data as typed objects in the local
environment.

(4) ShapirUI, a graphical tool that lets even non-programmers
create the required WoOPI descriptions.

(5) Integration with Mavo, which allows a user to create applica-
tions interacting with web-site data by writing only HTML,
with no JavaScript programming required.

Taken together, these components (Figure 1) empower a user, using
only GUIs and HTML authoring, to build a complete web application
aggregating and interacting with data provided by multiple web
APIs.

We evaluate the efectiveness of this approach through a series
of user studies: one in which users use ShapirUI to create WoOPI
descriptions, another in which programmers create simple web ap-
plications in JavaScript using the WoOPI-driven ShapirJS library,
and a third in which users (including non-programmer HTML au-
thors) write HTML to create Mavo applications that interact with
the websites’ data using the WoOPI description.

Languages and Components before Platforms. Shapir is a
collection of small interoperable ontologies and systems, rather
than a monolithic platform. This decomposition ofers meaningful

1283

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 1: An illustration of the Shapir system, consisting of the components ShapirUI, WoOPI, ShapirJS and its integration
with Mavo, being used to create a small video playlist app.

modularity benefts. Our pipeline from web APIs to Mavo applica-
tions demonstrates one powerful combination of these components,
but there are many others. The standard-typed objects provided by
ShapirJS using WoOPI can be useful in a variety of programming
tasks, without any reference to Mavo. WoOPI can also clearly be
used to generate class defnitions for other programming languages,
or be interpreted by other web frameworks such as React or Vue.js
to automatically generate components for interacting with data
behind wrapped APIs. WoOPI could also be used to declare object
mappings for APIs described by other ontologies, such as WSDL.

Other, better tools for generating WoOPI descriptions could coexist
comfortably with ShapirUI. The diferent layers of our decomposi-
tion ofer useful functionalities on their own but have small surfaces
that make it easy to replace them with better alternatives in the
future.

Equally important, our work is achieved through *declarative
languages* that can be standardized and used by a variety of com-
peting but interoperating tools. Such an outcome would ofer far
more diversity and freedom to innovate than the walled-garden API
integration platforms currently being developed (see Section 2.5).

1284

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

Our proposal, that a small declarative schema sufces for API inte-
gration and interoperability, is another part of our contribution.

2 RELATED WORK
The plethora of inconsistent web APIs imposes a substantial bur-
den on anyone hoping to interact with the data they ofer. Several
distinct approaches have been explored to reduce this burden. Most
ambitious is the idea, typifed in the Semantic Web and Open Graph
Protocol [20], of replacing all web APIs with a single, standard-
ized protocol for accessing data on any website. A less top-down
approach is to provide API description languages that can be inter-
preted by clients to connect to the described APIs. More recently,
we’ve begun to see the emergence of API integration platforms that
proxy access to numerous APIs through a single meta-API.

Once data has been accessed, users need tools to interact with it,
which has motivated a long line of work on Mashups that combine
data from multiple (inconsistent) websites, and visual tools for
creating applications to present and manipulate the data.

2.1 One Standard API
Having to learn and program to a new API for every website is
challenging, so eforts have long been underway to standardize
web APIs. REST ofers a web standard for serializing API function
calls and parameters but standardizes nothing about what those
calls and parameters are.

The most aggressive standardization would be for all sites to use
exactly the same data API. An ancient standard in this space is SQL.
More recently, the Semantic Web [3] proposed RDF, a single graph
structured data model, and SPARQL, a standard query language
that would work on any data repository. But the Semantic Web has
faced adoption challenges [21]. Even more recently, GraphQL [16]
has been put forward; it is too early to know how widely it will be
adopted.

An alternative design is the Open Graph Protocol [20], Face-
book’s version of the Semantic Web and Linked Data, which stan-
dardizes the use of metadata within a web page to represent the
content of a page. But outside of Facebook, the Open Graph Proto-
col also has not been widely adopted [14]. Open Graph is not the
only web page semantic markup in use. Schema.org [17] is another
one that ofers a richer vocabulary than Open Graph to describe
the content of web pages. Schema.org is mainly used by Search
Engines to improve the user experience on their search results. We
chose Schema.org for describing web APIs data because both search
engines and open-source tools have used it successfully to build an
open ecosystem for various types of content [5].

Despite these clear benefts, to date no one uniform standard has
become dominant. Most websites still ofer their own idiosyncratic
APIs. This is not surprising. It takes signifcant efort to standardize,
and it is not clear what benefts would accrue to a website doing so.

2.2 API Description Languages
In the absence of a single standard API, many eforts have been
made to create a standard way of describing the many APIs that
are in use. Early eforts include the Web Service Description Lan-
guage (WSDL) [9] and Web Application Description Language

(WADL) [18], both using XML. More recently, the OpenAPI specif-
cation language, API Blueprint [4], RESTful API Modeling Language
(RAML) [34], and Human accessible API (HAAPI) [1] have emerged.

Like WoOPI, these API descriptions describe technical aspects of
APIs (input and output parameters, data types, etc). They have been
used primarily in two ways: frst, to automatically generate API con-
nector code, and second, to automatically generate documentation
describing the API to developers.

However, unlike WoOPI, these prior schemas describe APIs
as callable endpoints but do not describe the data model exposed
through those endpoints (objects, types, the IDs that connect these
objects, how to read and write objects’ properties, etc). WoOPI
describes APIs at a higher level of abstraction which enables the
automated generation of a typed local data model using ShapirJS.
We show how this richer description improves both programmatic
and declarative data access and signifcantly decreases the efort
end users must invest to write applications that access APIs in
standard ways.

Like ShapirUI, Swagger [38], Postman [30], RapidAPI [35], and
HAAPI ofer graphical, web-form-based editors that enable develop-
ers to describe their APIs. Because our underlying WoOPI ontology
is richer in some dimensions than those others, we had to solve
new problems in order to create a usable editor.

2.3 Mashup Tools
Kicked of by ChicagoCrime.org [22], a long line of research has
explored ways to let end users create alternative visualizations and
applications over data accessed through website APIs. The earliest
mashups were hand-crafted by programmers. A later generation of
tools, such as Marmite [44] and Carpé Data [41], helped users author
the applications, but assumed the existence of pre-programmed web
API connectors to access specifc data sources, or for programmers
to create new ones. D.mix [19] also posits a developer for each API
connector: “a smooth process for creating the site-to-service maps is
important but somewhat orthogonal to this paper’s contributions.”

Gneiss [7] gives users a spreadsheet-like interface to build appli-
cation query over any publicly accessible data APIs. But it expects
users to do so by manually entering an API request URL with pa-
rameters; it thus requires each user to learn the API and construct
API query strings. Gneiss also does not deal with pagination for
additional results, API headers, or authentication. Mavo [43] is a
library that lets a user build an interactive application over any
JSON data source, simply by authoring and annotating an HTML
document (we will use Mavo as part of our overall system). But like
the other tools above, Mavo posits that programmers will provide
the connectors to those JSON data sources.

Easing the burden further, Spinel [8] does help end-users connect
data APIs to mobile applications without programming. Spinel has
a form-based query-builder for describing an API. However, the
resulting description is used to feed data to existing mobile appli-
cations, and Spinel’s meta-schema for describing APIs is missing
even more key elements than OpenAPI (e.g. authentication).

These prior tools focus more on building applications and
mashups over easily accessible data. WoOPI descriptions would
provide a way for all these past tools to read descriptions of new
websites’ API and integrate them into their workfow (this again

1285

https://ChicagoCrime.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

shows the beneft of designing a standard description language
that can be used anywhere, rather than a platform). WoOPI’s main
focus is to make data easily accessible. In addition, Shapir allows
relatively inexperienced programmers to describe and connect any
web APIs using ShapirUI, without writing code or assembling any
query strings. With Mavo, Shapir also allows non-programmers to
create HTML applications to query and access these APIs.

All these prior tools focus on querying and retrieving API data;
none of them support editing data through web APIs. Shapir sup-
ports read and write; it allows users to access and manipulate data
through web APIs.

Data fow language tools such as Yahoo Pipes [32] and Node-
RED [28] allow users to edit data through APIs. Node-RED allows
users to confgure individual HTTP requests, using a web form,
and connect them together. Node-RED does not ofer an easy way
for end users to connect data from Node-RED to their applications.
Users need to make changes to their application and write code to
make this connection. In addition, studies have found that the data
fow representation is often difcult for end-users to understand [6].

2.4 Data Integration
Several eforts have been made to help users integrate data from
multiple sources. Research on mashup tools has provided ways to
let users extract and integrate web data from diferent websites
without having to write conventional code [10]. Mashup tools like
MashMaker [13] and Vegemite [27] allow users to scrape web data
directly from web pages, and allow users to create a mashup by
browsing and combining diferent web pages. Potluck [23] is an-
other data integration tool that allows users to combine, clean and
merge data coming from diferent sources. However, the majority
of these mashup tools do not support the reuse and integration of
the created Mashups. In addition to mashup tools, the Semantic
Web vision includes representations like RDFS and OWL that can
be used to drive inference engines able to transform data between
multiple schemas. RDFS aims to support transformation between
any two schemas at any time. We choose a less ambitious but more
practical approach of describing and executing a translation from
specifc website’s API to the (single) Schema.org standard as we
fetch the data, so that no transformations need to be applied during
computation.

2.5 API Integration Platforms
Several platforms have been built to provide access to large num-
bers of web APIs. RapidAPI [35] and Prompt API [2], like Shapir,
each ofer a repository of APIs that programmers can access and
integrate into their applications. They both provide users with a
library and code snippets that allow users to access these APIs
only through their servers and charge users to access their APIs or
request more than 10 requests/day. Thus, these tools can become
bottleneck: their servers control and must work to provide API
access to their users. In addition, RapidAPI and Prompt API do not
provide a way for novices and non-programmers to access their
APIs. Shapir, on the other hand, ofers a repository of web APIs
“descriptions” and simplifes users’ access to these APIs in a decen-
tralized way. Shapir provides a local programming environment

for users to interact directly with APIs through their WoOPI de-
scriptions. Shapir also empowers novices and non-programmers
to author WoOPI descriptions and access arbitrary web APIs.

Zapier [45] and IFTTT [24] also provide a repository of web APIs
but unlike RapidAPI and Prompt API, they allow users to connect
diferent APIs, and without coding. The goal of both IFTTT and
Zapier frameworks is to provide an easy way for non-programmers
to automate activities across multiple services by integrating their
functionalities [33]. However, IFTTT and Zapier use very con-
strained workfows and control how users use their APIs. And
although both are no-code tools, they again rely on pre-existing
API connectors—they do not ofer a way for users, even developers,
to add new APIs. In contrast, anyone can use ShapirUI to describe
any new API and use Mavo to build an application that implements
IFTTT-like functionalities without its constraints.

3 BACKGROUND
Our system builds heavily on three pieces of prior work that we
describe here: ScrAPIr, Mavo, and Schema.org.

3.1 ScrAPIr
ScrAPIr [1] is a system that empowers end-users to graphically
query and retrieve data from web APIs. ScrAPIr presents a Human
Accessible API (HAAPI) schema that describes web APIs in terms
of the available API endpoints (functions) and the arguments to
them, as well as the format of results. ScrAPIr includes a GUI for
authoring HAAPI descriptions for a web API. Given such a HAAPI
description, ScrAPIr can automatically generate an end-user inter-
face that enables any user to query the described API and view and
flter the returned results in a spreadsheet-like interface. HAAPI
was originally focused on search APIs, but for this work we extend
the HAAPI schema to support arbitrary API endpoints that retrieve
or mutate data.

In this work we place a richer abstraction layer over HAAPI via
a Web of Objects Programming Interface (WoOPI). While HAAPI
describes web sites in terms of opaque methods that accept and
return primitive string or number values—which is sufcient to
support a search interface—WoOPI describes the API in terms of
types of objects managed, and type-specifc methods that create,
read, update, and delete those objects (and collections of them). This
richer representation enables us to automate more and richer inter-
actions with the API than was possible with HAAPI. An example of
WoOPI and HAAPI markup is discussed in detail below in Figure 2.

WoOPI could be built on top of any low level API description
(HAAPI, OpenAPI, RAML, WSDL, etc). But we chose HAAPI be-
cause it ofers additional advantages over the other API descrip-
tion schemas. HAAPI is built on top of a lower level OpenAPI
description [37] that describes endpoints, parameters, and response
structure. HAAPI augments the OpenAPI description as follows: (1)
HAAPI specifes information about how to authenticate to the API
or paginate to gather large numbers of results. Authentication and
pagination to be some of the main challenges programmers face in
dealing with APIs [1]; Building WoOPI on top of HAAPI allowed
us to automatically generate a standard API that takes care of the
pagination and authentication for users. (2) HAAPI provides default
values for all required parameters and some optional ones. This

1286

https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

helps users start querying the API quickly and iterate by adding
more parameters, taking advantage of the feedback that the inter-
mediate responses provide. If we used another description schema,
we would need to augment it to handle these issues as well.

Our previous work [1] demonstrated that end users without pro-
gramming experience could author HAAPI descriptions of API
endpoints. Thus, in our current work (which also targets non-
programmers) we posit the existence of a previously-created HAAPI
description and demonstrate a GUI that can be used to augment
that description with WoOPI information. ScrAPIr already ofers a
repository of HAAPI descriptions for more than 170 API endpoints,
that can be easily accessed by Shapir.

3.2 Mavo
Mavo [42, 43] is a “bidirectional” HTML templating language that
extends the declarative syntax of HTML to describe Web applica-
tions that manage, store and transform data. Mavo aligns hierar-
chically structured data to a hierarchically structured web page.
Authors link a page to to a data source, then add a few attributes
and expressions to their HTML elements to transform a static web
page into a persistent, data-driven web application.

Mavo includes support for common storage APIs, such as Drop-
box or GitHub, which it uses to read and store JSON fles with the
data for each Mavo app. Authors specify which of these predefned
storage APIs they intend to use by using mv-storage (read-write)
or mv-source (read-only) HTML attributes. Support for new APIs
can be added by authoring JavaScript plugins.

For example, the HTML below defnes a complete to-do list
application whose data is stored on GitHub. Based on the markup,
Mavo supports adding, deleting, and editing todo items in the list.

Loading data from arbitrary APIs in Mavo applications is tech-
nically already possible. Any URL that returns JSON is a valid
mv-source for Mavo. However, this requires authors to manually
assemble API-invocation URLs, and does not provide help with
authentication or pagination, so it is of limited utility.

3.3 Schema.org
Schema.org [17] is an initiative by the world’s biggest search en-
gines (Google, Bing, Yahoo and Yandex), that provides a collection of
schemas that webmasters can use to describe or mark up their web
pages in ways recognized by these major search engines. Search
Engines use these descriptions to enrich the user experience on
their search results and to generate rich snippets. Schema.org is
widely used all over the web [29] and made up of more than a
1000 attributes organized into a few primary types: Thing, Action,
Creative Work, Event, Medical Entity, Organization, Person, Place,
and Product. Subtypes include Article, Video, Image, Book, Movie,
Restaurant, and Recipe. At present, Schema.org is being used pri-
marily to mark up web pages with information helpful to search
engines.

Here, we propose an additional application of schema.org, to
describe data provided by web APIs and standardize access to these
APIs for uses other than search. We choose Schema.org because it
is a rich vocabulary that it is widely being used to describe content
on web pages [17], which is similar to the content of these website’s
APIs.

Our approach could also enhance search. Current vertical search
engines that rely on the presence of structured metadata (e.g., jobs,
datasets, etc) on Web pages are not able to discover and index
structured content that can only be accessed through web APIs.
The availability and use of web APIs have increased in the last
decade [11], and a number of these APIs provide access to valuable
data that is not necessarily presented on web pages. Describing
these APIs in using standard data types might allow search engines
to discover and index these sites’ data, making it more fndable.
The data behind APIs is also often cleaner and more complete than
what can be extracted from web pages.

3.4 Unifcation
Shapir bridges the signifcant gap between two of the background
systems: ScrAPIr and Mavo. Non-programmers are not equipped
to pass parameters through chains of function calls, even if those
function calls are standardized through HAAPI. But they can cer-
tainly understand the concept of objects with readable and write-
able properties—the conceptual model underlying the Mavo HTML
templating language. To bridge the gap, Shapir provides another
graphical authoring tool (ShapirUI) for another ontology, WoOPI,
which describes how to take an API of arbitrary methods and pa-
rameters (as described by HAAPI) and wrap it in a “normalized” API
consisting of a collection of typed objects with readable and write-
able properties. Our ShapirJS library reads an arbitrary WoOPI
description and provides the declared objects within the browser’s
JavaScript environment where they become available for manipula-
tion by Mavo.

In addition, incorporating Schema.org as a way to steer WoOPI
descriptions toward common data types means that Shapir appli-
cations can be used unchanged over any of the web APIs that have
been wrapped by those common data types, increasing portability
and reuse.

4 THE SHAPIR ECOSYSTEM
Shapir is an ecosystem that signifcantly simplifes the work for
users—even non-programmers—to create interactive web applica-
tions that operate on standardized data accessible through arbitrary
web APIs. It consists of three related components: WoOPI, ShapirJS,
and ShapirUI. WoOPI is a standardized, machine-readable API on-
tology that can describe an API in terms of objects conforming to
the canonical type defnitions provided by Schema.org. ShapirJS is
a JavaScript library that uses a WoOPI description to present the
API’s data as typed objects in the local environment. And ShapirUI
is a graphical tool that lets even non-programmers create the re-
quired WoOPI descriptions, using standard data types. These three
components are connected. A person uses ShapirUI to describe an
API, and ShapirUI generates a corresponding WoOPI description
of it. The ShapirJS JavaScript client library can read that WoOPI
description to provide simple, local-environment access to the data
behind the API. The WoOPI description only needs to be authored
once; then anyone can use it. We also integrated ShapirJS with
Mavo, an interactive declarative HTML-based language, to em-
power a user to create applications interacting with APIs’ data by
writing only HTML, with no JavaScript programming required.

1287

https://Schema.org
https://Schema.org
https://Schema.org
https://schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

<!-- Mavo App -->
<ul mv-app mv-storage="https://github.com/janedoe/todos">

<li property="task" mv-multiple>
<label>

<input property="done" type="checkbox" />
Do stuff

</label>

<button mv-action="delete(task where done)">

Clear Completed
</button>

<!-- JSON data from GitHub -->

{"task":[
{"taskTitle":"Code furiously", "done":true},
{"taskTitle":"Do user studies", "done":true},
{"taskTitle":"Write paper", "done":false},
{"taskTitle":"Have a life?", "done":false}

]}

5 WOOPI: A WEB OF OBJECTS
PROGRAMMING INTERFACE

As discussed in the introduction, our goal is to expose website data
to users as no diferent from the data a user would work with in
their own local environment. In particular, we wish to present the
data as

• objects of diferent types,
• each with specifc properties that a user can get and set,
• which can be added to or removed from various collections,
• and possibly with methods that can be invoked on objects of
a given type.

In contrast, web APIs are generally presented via endpoints that
are invoked over HTTP; each endpoint receives certain parameters
and returns certain values. Semantically, many of these APIs are
object oriented: many endpoints accept some kind of ID parameter
identifying a particular object to act on. In particular there are
often endpoints for creating and deleting objects, and for reading
or updating (some or all of) the properties of a particular object.
The values of some object properties might be identifers of other
objects. Other endpoints might accept IDs of objects and collections
and add or remove those objects to or from the collections. However,
the semantics of these operations are not exposed by the endpoints;
instead, they can be found in the (human readable) documentation.
Anyone wishing to make use of the website’s data must read that
documentation to learn which endpoints manipulate which of the
various site objects.

Our frst objective was to eliminate the need for this human
labor by creating a machine readable description that would permit
automatic generation of a library that presented a website’s data as
a collection of (typed) objects in the local environment, such that
reading or modifying the object’s properties would automatically
trigger the invocation of appropriate API endpoints to perform
the requested modifcations on the website. To do so, we needed
to determine how general such a description would need to be, in
order to capture the diversity of present-day web APIs.

5.1 Surveying Web APIs
We began our design of WoOPI by analyzing a random sample of
web APIs to understand what was common among them. We sam-
pled from ProgrammableWeb [31], a catalog of over 24,000 APIs,
and designed WoOPI to be able to describe them. After completing
our design, we validated it by choosing a diferent random sample
of 60 additional APIs and assessing whether WoOPI could describe
them. The ProgrammableWeb divides its APIs into categories. There
are 505 categories—too many for our sample to cover completely.
Our sample hit 10% of all categories including the 9 most popu-
lar categories: Mapping, Social, Search, Travel, Weather, Music,
eCommerce, Financial, and Photos.

In our initial random sample of 40 web APIs we found the follow-
ing commonalities: All of these APIs ofer objects of various types,
all identifed by ID. They have one API endpoint for each type that
accepts an object ID and returns that object’s “basic” properties—
generally those that are strings, integers, or other small data types.
They provide other endpoints for accessing each “large” property of
an object—such as an image or video fle or an array of associated
objects. Of the 21/40 APIs that allow users to create new objects,
each provides a single API endpoint for doing so per type. Of the
22/40 APIs that allow users to delete objects, each provides one
API endpoint per object that deletes an object by its ID. And of
the 22/40 APIs that allow users to update objects’ properties, 86%
of them provide one API endpoint per object to update multiple
properties, while the rest provide multiple endpoints to update
diferent properties.

In addition to endpoints for manipulating single objects, many
web APIs ofer other functionality. Of the 36/40 APIs that provide
more general methods, 34 (94%) support search only while 6% sup-
port other methods (e.g. an API endpoint that creates a unique URL
or an endpoint that parses a message). For the APIs that provide a
search method, 97% allow users to search by keywords. Of those,
83% of them return only a subset of each objects’ properties through
their search endpoint, while the others return all object properties.

1288

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

5.2 Designing WoOPI to Expose Objects
We designed WoOPI to support APIs ftting the common charac-
teristics we identifed from our initial API sample. An example is
shown in Figure 1. WoOPI is built on top of HAAPI [1], a lower-
level ontology for describing API endpoints. HAAPI describes the
endpoints, what parameters each one takes, and the properties of
the object(s) it returns. This description was sufcient for HAAPI’s
intended usage—providing a general-purpose object search that
returns a fat table of values—but is not sufcient to support object
linking, navigation, and manipulation. WoOPI extends HAAPI with
the information needed to describe and implement a local object
model:

• the various types of objects returned by the API, and the
properties of each

• for each endpoint, which input parameters are IDs for objects
of which types

• for each endpoint, which properties of the returned values
are IDs for objects of which types

• which endpoints can be used to read or update which prop-
erties of an object by ID, and which parameter identifes the
object being retrieved or updated.

• which endpoints create or delete objects of which types
• which endpoints add or remove objects of which types from
collections (those collections may themselves specifed by
IDs, or may be particular properties of other objects specifed
by IDs)

• methods that can be invoked on objects of a given type, and
the endpoints that implement those methods (such as liking
a video)

• other methods that can be applied to the entire site—in partic-
ular a search method that returns objects—and the endpoints

 that implement them
Figure 2 shows HAAPI and WoOPI descriptions of the Dailymo-

tion API. HAAPI (right) describes the API endpoint’s URL, parame-
ters, the schema of response data, pagination, authentication and
headers if any. Specifcally, Figure 2 shows the HAAPI description
of one API endpoint that is used for the site’s method “search for
videos’.’ WoOPI (left) maps the API’s methods and parameters (as
described by HAAPI via the references “haapiDescription”) to a
“normalized” API of standard Schema.org types. Specifcally, WoOPI
describes the API’s objects of diferent types (e.g. MusicPlaylist and
VideoObject)) that can be read and updated, and API’s methods (e.g.
search videos). For each object type, WoOPI describes how they
can be created, deleted, read and updated.

5.3 Designing WoOPI to Transform to Standard
Types

Another goal of WoOPI is to support standardization of objects
over multiple APIs. Since APIs currently follow no uniform con-
vention for choosing property names for the website objects,
WoOPI also provides for describing how to map property names
in objects returned by the API to diferent, preferred property
names. We use this renaming to support mapping API data into
the Schema.org standard as we discuss below. Thus, if a web-
sites returns video objects that have a title property, WoOPI
can assert that this property corresponds to the name property

of videos from the Schema.org ontology. The WoOPI description
in Figure 2 shows the mapping between the playlist fields re-
turned by the Dailymotion API endpoint /playlist/{id} and
the properties of the Schema.org/MusicPlaylist type (e.g.
{"schemaProperty":"creator", "apiField":"owner"}).

5.4 WoOPI Evaluation
To verify that WoOPI does support most web APIs, we picked an-
other random sample of 60 APIs from ProgrammableWeb. We found
that 90% (with a 95% confdence interval of 0.90 ± 0.076) of these
APIs can be fully described by WoOPI such that a ShapirJS library
(described below) can be generated to query them and manipulate
their objects. Of the 10% not supported, one requires two IDs to get
an object, two require two API calls to get all basic properties of a
single object, one requires both an ID and additional parameters to
delete an object, and two require multiple setters to update object
properties. It would be trivial to extend WoOPI to support APIs
like these, but we leave this as future work.

6 SHAPIRJS: SHAPIR JAVASCRIPT LIBRARY
ShapirJS is a JavaScript library that uses the WoOPI description
to wrap an API’s data as typed objects in the local programming
environment. Library users can read and write properties of those
objects, and invoke methods on them or on the site, as if they
were local, and the library takes care of making the necessary
API calls to provide or modify the relevant data. Optionally, the
WoOPI description can map objects to standard Schema.org data
types. Doing so permits applications written using ShapirJS over
one website to work, unchanged, over any other website providing
semantically-equivalent data. In this section, we describe the design,
implementation, and user-study evaluation of ShapirJS.

6.1 ShapirJS Design
6.1.1 Local Connected Objects. Unlike accessing APIs directly or
through any other machine generated library from a low level API
descriptions (e.g OpenAPI [39]), ShapirJS presents object connec-
tions implicitly without requiring the user to invoke API endpoints
to traverse the connections. ShapirJS creates local proxy objects
for each remote object, and translates property accesses into API
invocations as needed. An example is shown in Listing 3. The user
directly accesses a specifc playlist in Vimeo using let playlist =
await vimeo.MusicPlaylist("ID") function. They then directly
access the playlist videos let videos = await playlist.video
and the information in each video in the playlist (e.g. the comments
of the frst video as videos[0].comment). ShapirJS maintains the
ID of the playlist internally so it can pass it to relevant API end-
points to read that playlist’s VideoObject objects, then internally
tracks the ID of each video object so it can use an endpoint to fetch
the video Comment objects. This is made possible by the WoOPI
description specifying the ID-valued properties that connect these
objects.

Web sites often design their APIs to optimize performance for
common cases. Their main object-reading methods may return only
certain “basic” properties of objects, with other methods available
for fetching other properties. ShapirJS hides this performance
optimization complexity from the user. ShapirJS is lazy, and only

1289

https://Schema.org
https://Schema.org/MusicPlaylist
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 2: Part of a WoOPI description (left) that builds on a HAAPI description (right) for the Dailymotion website. HAAPI
provides the API endpoint’s URL, parameters, the schema of response data, pagination, authentication and headers if any
(we are showing one API endpoint for searching Dailymotion videos). WoOPI maps an API of any methods and parameters
(as described by HAAPI) to a “normalized” API of typed objects with create/read/update/delete methods. Specifcally, WoOPI
describes the site’s types (MusicPlaylist, VideoObject, etc) and methods (search videos, search playlists, etc). Each type descrip-
tion includes read and write methods for the object’s properties, and create and delete methods for objects of that type. The
descriptions of the diferent API endpoints that WoOPI uses are fetched from HAAPI (highlighted “haapiDescription”). WoOPI
connects diferent API endpoints through the objects’ properties (e.g. playlist’s videos are connected to the playlist through
the “video” property)

“triggers” API calls for missing properties when the user actually user actually uses them (e.g. playlist.video will call another API
endpoint that returns the playlist’s videos).

The fact that accessing certain properties requires triggering
new API calls means that these accesses may be asynchronous. The
JavaScript await syntax makes it easy to incorporate asynchronous

tries to access them. For example, vimeo.MusicPlaylist(<ID>),
will only access the endpoint that returns the basic properties of
the playlist, and will not invoke other API endpoints until the

1290

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

// Get the playlist
let playlist = await vimeo.MusicPlaylist("8274189");
// Read playlist information
console.log(playlist.name, playlist.description);
// Get the playlist videos
let videos = await playlist.video;
// Get the comments of the 8th video
let videoComments = await videos[7].comment;
// Search Vimeo
videos = await vimeo.search("Adele", {sort:"relevant", filter:"trending", numberOfItems:200});
// Create a new playlist
playlist = await vimeo.MusicPlaylist.create({name:"New", description:"New", layout:"player"});
// Update the playlist's description
playlist.description = "Still New";
// Delete the playlist
playlist.delete();

Figure 3: An example of the Vimeo API with ShapirJS

actions into code; code prefxed by an await keyword (as shown in
Listing 3) will yield control fow and resume when the awaited code
completes. A ShapirJS user will need to check the (automatically
generated) documentation of a given library in order to know which
properties of an object require the await keyword. This abstraction
leakage is unavoidable if we are restricted to providing a runtime-
interpreted library; a WoOPI aware compiler could generate awaits
where necessary.

6.1.2 Documentation. In addition to providing the ShapirJS li-
brary, Shapir also uses the WoOPI description to automatically gen-
erate documentation of the local object model provided by ShapirJS.
The documentation lists all object types and their properties (and
methods as described below) declared in the WoOPI description. It
also includes code snippets showing how to create and delete ob-
jects, access their properties and invoke their methods, and modify
collections, including any necessary await keywords. Figure 8 (left)
shows a code snippet generated by the ShapirJS documentation
for the Songkick API.

6.1.3 Standard Types, Properties and Collections. WoOPI can de-
scribe an API using standard Schema.org types; ShapirJS then
rewrites returned property names to provide those standard types
in the local object model (and its automatically generated docu-
mentation). This allows developers to use the same code to access
several diferent APIs that ofer the same types of data. For exam-
ple, the user can access and manipulate videos and playlists with
standard Schema.org properties and methods regardless of whether
these videos reside on YouTube, Dailymotion, or Vimeo. Listing 3
shows a ShapirJS code snippet for accessing the Vimeo API via a
WoOPI that maps to Schema.org MusicPlaylist and VideoObject
types. MusicPlaylist is a Schema.org type that returns an object
of type MusicPlaylist that includes name, description and video
properties. The video property of MusicPlaylist is a collection of
VideoObject objects. Every VideoObject has a comment property
that returns an array of Comment objects. Users can search Vimeo

using the vimeo.search() method. All objects returned are “live”,
meaning developers can create, delete, and update MusicPlaylist
objects by manipulating the array returned or its contents. This
code would work unchanged given WoOPI descriptions of YouTube
or Vimeo.

6.1.4 Search and Other Site Methods. In addition to objects with up-
datable properties, ShapirJS supports invocation of API-provided
methods on objects as well as “site-wide” methods such as search.
API endpoints that accept a particular type of object are wrapped
by ShapirJS as methods for that object type in the local model.
“Site” API endpoints become (static) methods of the object repre-
senting that site in the local model. Listing 3 shows a user invoking
vimeo.search() as a method on the Vimeo web site; this method
accepts a search parameter (“Adele”) and returns VideoObjects.

This example demonstrates both the power and the current
limits of standardization through Schema.org. If the user instead
wished to search YouTube, they would simply replace it with
youtube.search() and receive VideoObjects from YouTube in-
stead. This works because Schema.org standardizes the notion of a
search parameter for a SearchAction. However, YouTube would
ignore the sort and filter parameters because these are specifc
to the Vimeo API and are not understood by the YouTube API
(which uses an order parameter instead).

Ideally, we would also like to standardize the parameters for
methods that are doing the same work. For example, if YouTube uses
order to order the returned data while Dailymotion uses sort, it
would be desirable to consolidate these two parameters into one (e.g.
sortBy), just as we mapped the data properties returned by these
APIs to standard Schema.org common properties. Unfortunately,
Schema.org does not at present ofer space in its ontology for such
API parameters. Schema.org is designed to allow web sites’ owners
to describe the data on their web pages, and it does not provide a
way to describe the parameters that can be used to query the data
on those web pages. So, we did not have a common vocabulary to

1291

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

use to standardize the API parameters. This would be a powerful
future extension for Schema.org. WoOPI could already be used to
map to standard parameters, but lacks the reach of Schema.org to
advertise them as standard.

In the meantime, aligning to Schema.org does provide enough
information to let us standardize property names and their manipu-
lation through get and set methods, as well as collections with add
and remove methods.

6.1.5 Implementing Search. ShapirJS hides signifcant complexity
from the user around the way web site APIs implement search.
Search APIs generally return “truncated” objects that contain only
the most commonly accessed parts of the object, expected program-
mers to access more extensive “details” about each object using
other API calls. ShapirJS abstracts this complexity away: invoking
the search method provides a collection of objects, and ShapirJS
seamlessly makes further API calls if and only if the user’s code
accesses properties that require those details.

For example, when the user searches Yelp for businesses, they
would expect to read a collection of business objects with all the
details about them. But the Yelp search API, like many others, re-
turns a collection of “partial” business objects and requires further
API calls to /businesses/id for each object to fetch its full details.
From the sample of APIs that we have analyzed, we found that
16% of APIs follow this practice. ShapirJS deals with this implicitly
without any intervention from the user. A ShapirJS search will
return a collection of business proxy objects that appear to have
all of their properties, invoking additional API calls when necessary
to fll in properties the user chooses to inspect.

Search APIs also generally paginate their results, requiring end-
point invocations to specify specifc pages or ranges for the search.
ShapirJS takes care of all this for the user based on the description of
the API’s pagination behavior (which is inherited from the underly-
ing HAAPI ontology). The user may optionally specify a number of
results to override the default HAAPI value. ShapirJS uses this infor-
mation and provides a common parameter called numberOfItems,
from Schema.org, that can be used by users to specify the number
of results (e.g. yelp.search("Seafood", {"location": "NYC",
"numberOfItems": 50})).

ShapirJS thus permits the programmer to ignore performance
considerations and simply access objects and properties as desired.
But this also means it hides these performance considerations from
the programmer, who may end up writing inefcient code as a
result. We believe this trade-of of simplicity for performance is
worthwhile when writing simple applications.

6.1.6 Authentication. In addition to pagination, ShapirJS handles
authentication. The vast majority of APIs authenticate using an API
key. They vary in how that key is delivered (e.g. as a query parame-
ter or a header parameter), but the delivery mechanism is part of the
underlying HAAPI description. Thus, all a ShapirJS user needs to
do is specify the key. To support this, ShapirJS provides a common
parameter called apiKey that allows the developer to specify their
key/token; ShapirJS will pass it to the API in the appropriate way.
ShapirJS provides an init() function for each API that can be
used to pass the apiKey and its value to the site’s functions (e.g.
youtube.init({"apiKey": "<KEY>"})). For OAuth, ShapirJS uses the
OAuth information provided by HAAPI to allow users to login to

their accounts and give permission to the application to access the
web site data through the API.

6.1.7 Error Handling and Debugging. ShapirJS tries to recover
from minor errors (e.g. it will omit unknown query parameters).
For more signfcant errors, such as methods/types that are not
supported by the API or API errors, it throws errors as feedback.
ShapirUI’s automatic documentation also helps avoid errors. De-
bugging is critical. We are working on progressively revealing the
behind-the-scenes of each API call to the user for debugging. As
we will mention in the next section (6.2.4), two study participants
asked for this.

6.2 ShapirJS Evaluation
We conducted a user study between 16 subjects, comparing
ShapirJS to Swagger Client [39], a widely adopted library for ac-
cessing web APIs. The study objective was to evaluate the usability
and efciency of ShapirJS focusing on the following question: Can
programmers access APIs using ShapirJS faster and more easily
than using the Swagger Client library?

6.2.1 Swagger Client Library. Swagger Client is a popular library
for simplifying access to web APIs. Swagger reads an OpenAPI
specifcation of an API and provides JavaScript methods for ac-
cessing the described API endpoints. OpenAPI specifes a unique
string called operationId that is used to identify the API’s opera-
tions (endpoints/methods). For example, the OpenAPI specifcation
for YouTube API endpoints GET /videos/video_id and DELETE
/videos/video_id might have the operationId “get_videos” and
“delete_videos” respectively. Swagger Client allows users to use
these operation IDs to access these API endpoints. Alternatively,
users can use the path and the method of API endpoints. In addition
to the operationId or the path+method, users need to specify the
parameters, request body, and the authorization process for each
API endpoint. Listing 4 shows a code snippet of ShapirJS (top)
compared to the Swagger Client (bottom) for reading a playlist and
its videos and searching for videos on Vimeo. Like ShapirJS, Swag-
ger includes tools to automatically generate documentation from
an OpenAPI description, that assists users coding to the Swagger
Client library.

ShapirJS uses WoOPI, which extends OpenAPI, so comparing
to Swagger Client is a natural way to assess the beneft of the extra
semantics that WoOPI adds to OpenAPI.

An alternative “control” would be to have programmers code
the traditional way, by manually authoring “raw” URLs targeting
the API endpoints, and manually confguring authentication and
other headers in the HTTP requests. But this would be a weak
straw man. The widespread adoption of Swagger Client refects the
benefts of having a library automatically assemble those URLs from
higher-level method invocations. Indeed, in a similar user study
we carried out on ScrAPIr [1], developers on average required 27
minutes to write URLs accessing one API endpoint. In our user
study, participants accessed 7 diferent API endpoints in one hour,
so raw coding was infeasible as a control.

6.2.2 Procedure. We recruited 12 participants (7 female, 5 male,
ages 19 to 37) for a one-hour user study. Participants’ self-assessed

1292

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

/** ShapirJS **/
// Get the playlist
let playlist = await vimeo.MusicPlaylist("8274189");
// Read playlist information
console.log(playlist.name, playlist.description);
// Get the playlist videos
let playlistVideos = await playlist.video;
// Search Vimeo
let videos = await vimeo.search("Adele", {sort:"relevant", filter:"trending", numberOfItems:200});

/*************************************** Swagger Client ***************************************/
const client = await SwaggerClient({

url: 'https://api.apis.guru/v2/specs/vimeo.com/3.4/openapi.json',
authorizations: {oauth2: {token: {access_token: '<TOKEN>'}}}

});
// Get the playlist
const playlistResult = client.execute({

operationId: "get_album",
parameters: {album_id:"8274189", user_id:"108506131"}

});
// Get the playlist's videos
const playlistVideosResult = client.execute({

operationId: "get_album_videos",
parameters: {album_id:"8274189", user_id:"108506131"}

});
// Search Vimeo
const videosResult = client.execute({

operationId: "search_videos",
parameters: {query:"Adele", sort:"relevant", filter:"trending"}

});
// synchronize all issued requests at this point
const results = await Promise.all([playlistResult, playlistVideosResult, videosResult]);
let [playlist, playlistVideosResponse, videosResponse] = results.map(result => result.body);

// Read playlist information
console.log(playlist.name, playlist.description);
// Read playlist videos information
let playlistVideos = playlistVideosResponse.data;
// Read searched videos
let videos = videosResponse.data;

Figure 4: An example of retrieving a playlist with its videos and searching for videos using the Vimeo API with both ShapirJS
(top) and Swagger Client (bottom). Unlike ShapirJS, Swagger Client does not support automatic pagination of results, and
leaves it to the programmer to fgure out the type of pagination and write code that implements it. ShapirJS provides a prop-
erty numberOfItems that lets users specify the number of results without worrying about implementing the diferent types
of pagination that diferent APIs support. (We are not showing here how to go through multiple pages in Swagger Client to
retrieve 200 items)

1293

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

programming skills ranged from intermediate to advanced: 2 inter-
mediate, 5 skilled, and 5 advanced programmers. Their experience
with APIs varied: 5 had used them a couple of times, 5 had used
them quite often, and 2 had used them all the time as part of their
work/research.

Because we conducted a between-subjects user study, half of
our participants were assigned to use ShapirJS, and the other half
were assigned to use the Swagger Client. We used the stratifed
randomization method [25], where we grouped participants by
expertise, then randomly partitioned each group so we get same
amount of expertise on each condition. Participants were allowed to
use the (automatically generated) documentation of the given API,
Swagger Client and ShapirJS, and to look up solutions to issues
they were facing during the study.

Participants, using either ShapirJS or Swagger Client, were as-
signed to write code to perform identical tasks using the Vimeo
API. The tasks were the following:

(1) Get a specifc playlist (album) from Vimeo (playlist ID and
user ID were given)

(a) Get the name and the description of that playlist
(b) Get that playlist’s videos
(c) Get the comments of the 8th video in that playlist

(2) Search Vimeo for “Adele” videos and sort them by relevance
(3) Create a new playlist with the name and description “New”
(4) Update the description of that playlist to “Still New”
(5) Remove that playlist
Traditionally, performing these tasks would require program-

mers to assemble 7 HTTP requests: (1.a) GET /albums/album_id
to get the name and description of the playlist/album. (1.b)
GET /albums/album_id/videos, to get the playlist videos. (1.c)
GET /videos/video_id/comments endpoint to get the com-
ments for the 8th video in the playlist. (2) GET /videos?
query=Adele&sort=relevant To search Vimeo for videos. (3)
POST /albums with the appropriate parameters, to create a new
playlist. (4) PATCH /albums/album_id with the appropriate pa-
rameters, to update the description of that playlist. (5) DELETE
/albums/album_id, to delete that playlist.

In addition to assembling all these HTTP requests, the user would
also have to confgure authentication to the API. The Vimeo API
uses the OAuth2 standard.

Instead of writing raw URLs, our subjects used the JavaScript
interfaces provided by ShapirJS or Swagger Client. Listing 4 shows
how users can perform tasks 1 and 2 using the Swagger Client and
ShapirJS. Listing 3 further shows how users can perform all the
tasks in 7 lines of code using ShapirJS; the Swagger Client code
would occupy several pages.

Participants were allowed to use the documentation of the Swag-
ger Client library and ShapirJS. ShapirJS documentation automat-
ically generates code snippets of the API objects and site methods
from WoOPI descriptions of individual APIs. Table 8 (left) shows
part of the generated ShapirJS documentation for Songkick API.

6.2.3 Results. All participants who were assigned to ShapirJS
(6/12) completed their tasks, with an average time of 8 minutes,
and 5 out of 6 participants who used Swagger Client completed
their tasks, with an average time of 45 minutes. ShapirJS was 5.6x
faster than the Swagger Client for completing the same set of tasks.

Figure 5 shows the task completion time for individual participants
using ShapirJS (P1-P6) and Swagger Client (P7-P12). P12 (Swagger
condition) did not fnish, completing only 4/7 assigned tasks within
the given time, despite rating their programming as advanced.

We conducted an unpaired t-test (after pruning the time for P12,
who did not fnish the tasks, to the full duration of the experiment
(60 minutes)) to determine if there is a signifcant diference between
the means of the two groups of participants. There was a signifcant
diference in the completion times for Swagger Client (M=47.64,
SD=6.26) and using ShapirJS (M=8.28, SD=3.65) with p<0.0001.

In an after study survey, we asked participants to rate how dif-
fcult it was to use Swagger Client and ShapirJS. Participants an-
swered all questions with a fve-point Likert scale, with 1 indicating
the tool was very easy to use and 5 very difcult to use. The average
ratings were 4 for Swagger Client and 1.3 for ShapirJS.

6.2.4 Participant Feedback. We asked participants about their ex-
perience accessing APIs using Swagger Client and ShapirJS.

Pros and cons of using Swagger Client. We asked partici-
pants what they did and did not like about using the Swagger Client
library. They mainly liked that they can use functions (operationId)
instead of assembling HTTP request to access API endpoints. One
participant said “the operation ID names were very useful; I liked
having a concise name for each action. I like that it avoids using the
URLs of the APIs.” Participants also liked that Swagger Client can
check the OpenAPI specifcation for required parameters and let
the user know if they are missing these parameters “nice that it
could validate missing required parameters before sending the API
request”.

Regarding dislikes, all participants found it very challenging to
connect multiple API endpoints (e.g. playlist’s videos), given that
Swagger Client depends on OpenAPI which describes endpoints
independently. One participant said “It felt like it took a lot of writ-
ing to use the Swagger Client, especially when it came to performing
multiple calls/chaining the results of calls together.” And another
said “had to fgure out whether associated resources (e.g. comments
on a video) were embedded in data I already had, or if I needed to
make a new request”. ShapirJS, unlike Swagger Client, automat-
ically chains multiple API endpoints. Listing 4 (top) shows how
ShapirJS smoothly handles connecting multiple API endpoints in
playlist.video which returns the videos of a given playlist. Swag-
ger Client (Listing 4 (bottom)) requires users to make individual
requests for each API endpoint.

Many participants felt that having to check the OpenAPI specif-
cation, Swagger Client documentation and the raw API documen-
tation (because sometimes the swagger documentation was not
clear) was very daunting “The Swagger Client syntax was diferent
from the Vimeo API syntax which made them hard to integrate.” In
addition, the syntax of the Swagger Client was challenging for some
participants “Wasn’t clear what arguments could be passed in and
what their types were; e.g. how to pass in authorization information
or how to set a request body.” Finally, participants found the Swagger
Client documentation to be poor “The documentation for Swagger
was very unclear, which made applying things from the Vimeo API
like authorization or request body changes quite difcult.”

1294

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

Figure 5: Task completion time using ShapirJS and Swagger Client.

Some of the just-described documentation problems might be
ameliorated by improving the automatic generation of documen-
tation from OpenAPI, perhaps using some of the ideas from our
WoOPI documentation generator such as included code snippets
for basic access tasks. Indeed, Swagger is well-known for their au-
tomatic generation of API documentation from OpenAPI through
their Swagger Editor [40]. The Swagger Editor documentation is
helpful to test the API and to know the paths and methods for the
diferent API endpoints, but for users to use the Swagger Client
library, they still have to go through the Swagger Client documen-
tation which is of lesser quality.

However, even if the documentation were improved, users would
still be forced to deal with some of the usability challenges inherent
in the limited description provided by OpenAPI: for example, they
would still need to do their own chaining of methods and would
still need to manage authentication and pagination explicitly.

Pros and cons of using ShapirJS. We also asked participants
what they liked and did not like about ShapirJS. One common
answer for what they liked was performing complex tasks in sim-
ple syntax and in an object oriented style, where one said “I like
the fact that I can call complex functions like update, delete, and
search in an Object Oriented style which means that I don’t have to
worry about diferent APIs format and stuf.” And another said “The
use of getters (even with await) was much easier than constructing
requests manually. The object-oriented interface design makes it ex-
tremely easy to know where to go to fnd information. I especially
like how whenever possible, you call methods on named object types
(e.g. MusicPlaylist.create or MusicPlaylist()) rather than top-
level functions (which would be like vimeo.createPlaylist), be-
cause most times in plain JavaScript we do not actually get to see the
types of objects, and this makes the types explicit.” They also liked
how ShapirJS standardizes access to APIs “I really enjoy the literal
approach to accessing and updating data. I think it’s super cool that
Shapir creates a shared vocabulary for various APIs. You can now
learn the relationships between data once and apply that knowledge
in multiple places.” Finally, participants liked how well documented
ShapirJS is, where one said “It was very easy to use because it’s

well-documented. I liked that the function names were direct and to
the point.” Figure 8 shows part of the code snippet generated by
the ShapirJS (left) documentation for the Songkick API. Regarding
the dislikes, participants were confused about Schema.org’s use of
singular noun forms to name multi-valued properties “The wording
of some of the properties like how (video) refers to a list of (videos).”
Schema.org limitations will be discussed in detail in the discussion
section (10.1). Finally, one participant preferred to know the number
of API calls behind the ShapirJS functions “One thing that could be
challenging is being able to tell how many API calls are being made -
since many APIs are charged by the number of API calls”

Improvements to the ShapirJS syntax. We asked partici-
pants if they would prefer a diferent syntax for the ShapirJS
functions that they used to perform the tasks. Two par-
ticipants suggested a diferent syntax for search: One was
to use key-value pairs for all the parameter including the
search term vimeo.search({‘‘query’’: ‘‘Adele’’, ‘‘sort’’:
‘‘relevant’’}), which we already support. And the other was
vimeo.search(‘‘Taylor Swift’’).sort(‘‘relevant’’). We
decided to make the search term a positional parameter because
most search APIs (97% based on our API analysis) use that param-
eter. For the second suggestion, we actually considered this, but
this syntax can get complicated if the search API has a lot of pa-
rameters. One participant also suggested a diferent syntax for cre-
ate. Instead of using vimeo.create.MusicPlaylist(),they sug-
gested vimeo.create({‘‘object’’:‘‘MusicPlaylist’’,...}).
This suggestion seems reasonable and consistent with the other
functions (delete() and search()). One participant suggested
a transaction model, where setters modify local data and another
function is invoked to push these changes to the API “make the
setters only afect the local value, have the playlist object internally
queue the changes that have been made, and then call something like
(await playlist.save()) to commit the changes. That could potentially
reduce the number of API calls as well, depending on the API.” This
might improve performance, but at the cost of simplicity, contrary
to our current goals.

1295

https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

7 END-USER APPLICATION AUTHORING
WITH SHAPIR AND MAVO

We integrated ShapirJS with Mavo, a language that empowers
people to create interactive web applications by authoring HTML.
Mavo assumes the data for such applications is in a single JSON
fle stored on a site like GitHub. We integrate with Shapir by lever-
aging ShapirJS to instead access data behind web APIs. Combined,
ShapirJS and Mavo make it possible to create standalone web ap-
plications that manipulate data over multiple web APIs without
writing any JavaScript or back-end code. As with ShapirJS, our
goal is to permit the author to ignore the diference between data
they are managing locally and data stored behind APIs.

Mavo-Shapir provides Mavo users with a high level syntax
which does not require them to assemble URLs, and seamlessly
takes care of authentication and pagination. Furthermore, it uses
standardized Schema.org types to smooth out any diferences in
data from diferent sites and present them as Schema.org objects.
Authors can write their HTML based on the Schema.org types they
are working with, and changing data source becomes as easy as
changing one mv-source attribute. In contrast, when working with
APIs directly, changing data source often requires extensive code
changes, or even a complete rewrite.

At present, Mavo-Shapir only supports read access to web APIs;
providing write access is conceptually straightforward but will
require substantial modifcations to Mavo that we hope to undertake
in the future.

In this section, we describe the language modifcations we made
to Mavo to describe connection to APIs, then describe a user study
that demonstrates that authors can use these modifcations to write
applications that connect to APIs.

7.1 Mavo-Shapir Design
Mavo by itself allows users to author applications in HTML that
read (and store) data at a data source specifed by the mv-source (or
the mv-storage) attribute; Mavo then renders the data and provides
an editing interface for it based on the existing presentation. With
Mavo-Shapir, we extend this functionality to permit Mavo to read
data stored behind APIs described using WoOPI. Mavo-Shapir is
implemented as a Mavo plugin that registers a new type of data
source. Mavo authors invoke it using mv-source="shapir" on
their Mavo root element. They can then point at an object with a
specifc id by specifying an mv-source-id attribute in their html, or
access an entire collection of objects using the mv-source-search
attribute. Parameters for the type of search to perform are provided
via mv-source-* attributes.

For example, Figure 6 shows a Mavo application to search both
Yelp and Foursquare and list their restaurants. In this application,
instead of rendering data fetched from a static JSON fle, Mavo-
Shapir fetches the data by executing a search (as specifed by
ShapirJS) on Yelp and Foursquare. Given that the data schema is
standardized across similar APIs, like Yelp and Foursquare, the user
can use the same property names with these APIs (aggregateRating,
priceRange, etc).

While the standalone Mavo library generally fetches and ma-
nipulates one fle containing all the data, it is clearly not scal-
able for Mavo-Shapir to fetch all the data behind an API. In-
stead, Mavo-Shapir allows a user to access specifc data items
identifed by their ID, or to access the collection of items re-
turned by invoking the API’s search operation. Mavo-Shapir
translates HTML attributes such as mv-source-search="Jacket"
to API parameters described in WoOPI before querying data.
Users declare which data provider(s) they wish to query via an
mv-source-service attribute. Users can use this HTML-based syn-
tax to specify any other criteria supported by the API for more gran-
ular data querying. For example, they can flter products from Etsy
by mv-source-min_price="10", mv-source-max_price="100",
and sort them via mv-source-sort_on="price". For each site de-
scribed by WoOPI, Shapir provides documentation for the user
that specifes the parameters supported by each site, and provides
sample code that is dynamically generated.

At present, Mavo-Shapir provides only read access through
web APIs. Mavo applications that fetch data from web sites can still
manipulate and store that data in Mavo’s usual storage locations.
Thus, for example, an author could use Mavo-Shapir to connect to
YouTube to search for and play videos, while managing those videos
in playlists that they store locally. Enabling Mavo to push updates
back to web sites requires changes to Mavo’s implementation of its
core storage model, which we hope to pursue in the future.

7.2 Mavo-Shapir Evaluation
We conducted a user study to evaluate the usability of the Mavo-
Shapir plugin to answer the following question: Can Mavo-Shapir
reduce the efort and skill required to build applications that access
data through web APIs?

It has already been shown [43] that non-programmers with basic
HTML knowledge can quickly create Mavo applications to manip-
ulate data that is defned and stored locally. The improvement
provided by Mavo-Shapir is to empower those same types of au-
thors to build the same kinds of applications but interact with data
behind web APIs. Therefore, our study design began with Mavo
applications already implemented to interact with local data—the
kind of applications we already know such authors can build—and
investigated whether users could modify those applications to in-
teract with web APIs. This reduced the need for users to familiarize
themselves with all details of Mavo, as well as reducing the time
they needed to spend on their tasks, while still studying the novel
element.

We recruited 16 participants (9 female, 7 male, ages 18 to 60) for
a one-hour user study. Of these, 8 identifed as beginner or interme-
diate in HTML, and 8 as advanced or expert. Their programming
skills ranged from none to skilled: 2 with no programming skills, 6
beginners, 6 intermediate and 2 skilled. Mavo has been deployed for
several years, and has attracted a small user base that we included
in our recruitment. In terms of Mavo familiarity, 7 participants had
used Mavo before, 4 had heard of it but not used it, and 5 had never
heard of it.

7.2.1 Procedure. Sessions were conducted one-on-one and were
limited to one hour. We started the session by giving a quick
overview of Mavo, focusing on the main functionalities of Mavo

1296

https://Schema.org
https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

<div mv-app mv-source="shapir" mv-source-search="[search]"
mv-source-service="yelp, foursquare">
<input property="search" />
<div property="businesses" mv-multiple>

<h2 property="name"></h2>
 reviews

,

</div>
</div>

Figure 6: Search Yelp and Foursquare for businesses.

that the participants would need for the study. Then, we went over
the (generated) Mavo-Shapir plugin documentation, and explained
how it works with an example. We then assigned all the participants
4 apps/tasks. In the frst three tasks, we asked participants to com-
plete the functionality of three diferent applications, by making

App#1 App#2 App#3 App#4

Non-programmers 04:00 01:15 00:40 04:00
Programmers 02:57 01:00 00:50 04:00 these applications read data from web APIs using the Mavo-Shapir

syntax. Participants were given the HTML, CSS and (local data)
Mavo markup, and only had to add Mavo-Shapir attributes to com-
plete their functionality. As a greater challenge, the last task asked
them to build a complete Mavo application from scratch, which
also integrated data from multiple web sites. Each participant was
assigned the following tasks listed in Figure 7. The highlighted code
is what participants needed to add to perform the tasks in each one
of the four Mavo applications.

Similar to the ShapirJS user study, participants were ofered
to use the generated Mavo-Shapir documentation for the API,
which includes code snippets of basic Mavo applications for WoOPI
descriptions of individual APIs. Table 8 (right) shows part of a
Mavo code snippet for Songkick search API. These generated code
snippets helped our participants build running Mavo applications
(App#4) in several minutes. Our documentation does not generate
code snippets for searching multiple APIs, but it describes how to
do so.

7.2.2 Results. All participants were able to fnish all of their tasks.
The average time participants, programmers and non-programmers,
spent to fnish the frst three tasks was 3 minutes, 1 minute and
45 seconds respectively. For the fourth task, where they were
asked to build an entire application from scratch, the average time
was 4 minutes. Table 1, shows a breakdown of the average time
non-programmers and programmers spent on each of the four
tasks/apps. On the frst task, non-programmers spent a bit more
time on average compared to programmers, but for all the other

Table 1: Average time (in minutes) spent on the 4 tasks/apps
by non-programmers and programmers

tasks, both programmers and non-programmers spent roughly the
same amount of time on average. Especially for task 4, this surpris-
ingly rapidly completion benefted from the availability of code
snippets that could be copied from the (automatically generated)
documentation.

Following are some of the challenges that participants faced with
the Mavo-Shapir syntax.

Retrieving information by search versus by ID. Four of six-
teen participants did not understand the diference between search-
ing a site by keywords and retrieving information about a specifc
object by its ID at frst. This may be because users typically search
web sites by keywords, and unless they look at the URL, they do not
even realize that IDs exist. Typically, even someone searching for
a specifc playlist or video is likely to perform a suitable keyword
search then click the item in the result list.

Debugging. One of the limitations of Mavo-Shapir is the lack
of meaningful feedback for errors. For example, when participants
forgot mv-source="shapir" or any of the mv-source-* attributes,
only a generic error was shown, instead of a more specifc message
that would guide them to debug. Shapir interacts with APIs through
ShapirJS, and could show error messages returned by the API.
ScrAPIr, for example, shows human-readable error messages to
their users while authoring the HAAPI description [1]. We can

1297

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 7: Mavo-Shapir user study tasks with their solutions. Participants were assigned 4 applications with tasks (left), and
the highlighted code (right) is what participants added to perform the given tasks.

certainly use they same heuristics and show these messages to the
Mavo users.

Query parameters when searching multiple sites. For rea-
sons discussed in Section 6.1.4, Schema.org only specifes a single
parameter—a query string. It does not ofer any standardized names
for the diferent parameters that could refne this search, such as
ordering or fltering on certain attributes. Thus, Shapir standard-
izes the search term but not additional query parameters of search
APIs. Users searching multiple sites users may therefore need to
repeat the same query parameters with diferent names for diferent

APIs. For example, for the last task in App #4 (Figure 7), partici-
pants needed to specify mv-source-country="US" for SeatGeek
and mv-source-countryCode="US" for Ticketmaster. Nearly half
of all participants (7/16) found that task challenging because of
this. Namespacing query parameters that are specifc to one site
only (e.g. mv-source-seatgeek-country="US") might help allevi-
ate this issue in the future.

7.2.3 Participant Feedback. In a post study survey, we asked partic-
ipants to rate how easy they found the Mavo-Shapir syntax with
the four tasks assigned. Participants answered all questions with a

1298

https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

fve-point Likert scale, from 1 (very easy to use) to 5 (very difcult
to use). The average ratings were 1.75, 1.125, 1.125, and 1.5 for the
four tasks respectively.

Participants found Mavo-Shapir to be easy to use and liked
the documentation presented by Shapir. One participant said “The
documentation and examples were presented very clearly, it was nice
to be able to go from static to dynamic site in just a few lines of edits.”.
Participants also liked how Shapir standardizes the schema for sites
that ofer the same types of data “Shows the versatility of Mavo-
Shapir, being able to change only the name of the website and achieve
diferent results”. Another said “I liked how it showed Mavo+Shapir’s
uniformity across felds in API results and how it’s possible to change
the site it queries just by changing the mv-source-service from yelp to
foursquare.” Finally, participants were impressed by how quickly
they can build applications that access multiple sites “Neat to see
how quickly an MVP site can be spun up that involved combining
multiple data sources.”

8 SHAPIRUI: A VISUAL AUTHORING TOOL
FOR WOOPI

We have now demonstrated the benefts of using the WoOPI schema
to describe an API so that ShapirJS and Mavo-Shapir can simplify
access to it. In this section, we present ShapirUI, a simple GUI for
authoring WoOPI descriptions and a user study showing that it
works well.

8.1 ShapirUI Design
ShapirUI allows users to author WoOPI description and map their
schemas to Schema.org vocabulary, as shown in Figure 9. It guides
users to record key WoOPI information:

• what types of objects are provided by the API, and what are
their properties?

• what are the standard names from Schema.org for these
types and properties?

• what API endpoints are used to create, read, update, and
delete each type, and what parameters are passed to them?

ShapirUI uses heuristics and auxiliary information from several
sources to help reduce the efort of answering these questions.

8.1.1 The GUI. ShapirUI presents WoOPI information in two
columns, as can be seen in Figure 9. On the left are types and
properties (preferably drawn from Schema.org). On the right beside
each type is the API endpoint for reading objects of the correspond-
ing type, while beside each property is the feld in the returned
object that corresponds to that property of the type. Also on the
left with a given type are other methods for the type (in purple
boxes)—create, delete, and update, and any other special methods.
Beside each on the right will be the API endpoint for invoking those
methods. The UI ofers typical afordances for adding types, adding
properties and methods to a type, and adding endpoints and their
felds corresponding to those methods and properties.

To begin, the user enters the URL of the web site they would like
to describe. This can be the root URL or the site’s API URL. ShapirUI
then fetches the HAAPI description of all the site’s API endpoints.
If a HAAPI description does not exist, it can be authored using
ScrAPIr’s graphical authoring tool [1]). The endpoints of the HAAPI

description determine the permitted values in the right column of
ShapirUI—the endpoints that can correspond to the WoOPI types
and create/read/update/delete methods being described (as shown
in Figure 9).

8.1.2 Heuristics for Matching Types and Properties. ShapirUI then
attempts to help the user identify relevant types from Schema.org
that may be suitable for describing the API data. ShapirUI queries
the Klazify API [26] which returns a set of categories for the web site
such as Education, Banking, or Photo & Video Services. ShapirUI
also extracts the HAAPI description of the API endpoints (each
endpoint’s English-language descriptions as well as the terms in
the endpoint’s URLs which may be English words). It treats the com-
bination of category and HAAPI terms as a heuristic “description”
of the web site.

ShapirUI then looks for Schema.org types whose English-
language description (as found on the Schema.org site) overlaps
with the extracted terms, and suggests those types to the user.
ShapirUI calculates the cosine similarity, which is often used to
measure document similarity in text analysis [15]) between the
API’s Klazify/HAAPI description terms and Schema.org types. It
displays the top 5 similar types with the rest in the “Choose Type”
dropdown provided for selecting additional suggested types as
well as all the other types. The user can choose from these sug-
gested types or start from scratch with a dropdown list of all the
Schema.org types, and they can remove selected types.

For every selected Schema.org type, whether it was suggested by
ShapirUI or manually selected by the user, the user needs to match
it to the API endpoint that reads an object of that type. ShapirUI
helps the user with this matching by calculating the cosine similar-
ity between the selected Schema.org type description and all the
API endpoints’ descriptions and URLs (from HAAPI). It displays
the most similar (by cosine) API endpoint next to the selected type
(e.g. Figure 9 shows how the ImageObject type is assigned to the
“Unsplash Photo” endpoint, from a list of API endpoints, based on
highest cosine similarity). The user can change the selected API
endpoint by selecting a diferent one from the API endpoints list.

Once the API endpoint for reading a (Schema.org) type is se-
lected, ShapirUI helps the user match the API felds returned by
the API endpoint to Schema.org properties of the type. ShapirUI
also helps the user with this matching by calculating the cosine sim-
ilarity between the description of each property on the Schema.org
site and the selected API endpoint’s felds, then shows these prop-
erties and most-similar felds next to each other. As shown in Fig-
ure 9, ShapirUI displays the description and dateCreated from
Schema.org/ImageObject to the description and created_at
felds from the API endpoint “Unsplash Photo”. The user can then,
manually match more API felds to the type’s properties and can
also remove the suggested ones. Some of the Schema.org properties
can have complex values of another type (e.g. an author can be a
Text a or a Schema.org/Person). When the user chooses one of
these properties, ShapirUI will display a popover asking the user
to choose the type of this property.

8.1.3 Example. If a user wants to describe Unsplash API collections
of images using the ShapirUI, the user would frst enter the Un-
splash URL, as shown in Figure 9. The ShapirUI will then extract the
web site’s categories (Online Image Galleries, Online Communities,

1299

https://Schema.org/Person
https://Schema.org
https://Schema.org/ImageObject
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 8: ShapirUI generates documentation in the form of code snippets for APIs that are described with WoOPI. This fgure
shows parts of the ShapirJS and Mavo code snippets for the Songkick API for events and venues. These code snippets describe
the types of objects, their properties, and methods supported by the API.

Figure 9: ShapirUI. (1) Enter the web site’s URL. (2) Choose
Schema.org types and properties to map the web site’s API
to Schema.org vocabulary. And describe the site and objects
methods (3) Save the description to create a WoOPI for this
API.

and Photo & Video Services), using the Klazify API. ShapirUI will
ask the user to either choose to show suggested types or start from
scratch. If the user chooses to show suggested types, ShapirUI
will display two Schema.org types: Schema.org/ImageGallery
and Schema.org/ImageObject (based on the cosine similarity cal-
culated between Schema.org types and the site’s categories and
HAAPI descriptions). And for each type, ShapirUI will suggest
an API endpoint that reads an object of that type (also based
on the cosine similarity between that type and the HAAPI de-
scriptions). For example, the ImageObject type will be matched
with the /photos/id API endpoint. Some of these mappings be-
tween the types and API endpoints might not be correct—for ex-
ample, ShapirUI will also suggest to match the ImageGallery to
the /photos/id endpoint, instead of the /collections/id end-
point. The user can check these suggested mappings and choose
the right API endpoint for each type. Then, for each matched API
endpoint, ShapirUI will match some of the API endpoint felds
to the type properties (those felds and properties that have a co-
sine similarity above 0). We choose to include all the properties
and felds that are similar, even those with low similarities, be-
cause the user can easily remove these properties and add new
ones. For example, ShapirUI will display the description, width,
height, and created_at from the API endpoint “Unsplash Photo”
(shown in Figure 9), and match them to the ImageObject’s proper-
ties description, width, height, and dateCreated. The user can
then select the additional properties from the Schema.org types
and map them to the appropriate API endpoint felds. To be able to
read the collection images from Unsplash, the user needs to choose
the property image from the ImageGallery type. According to
Schema.org, the image property can be either an ImageObject, a

1300

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org/ImageObject
https://Schema.org/ImageGallery
https://Schema.org
https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

URL or of a primitive type. So, if the user selects the image prop-
erty, ShapirUI will display a popover next to the image property
asking the user to choose the type of the image and if it is either
a collection or a single value. When the user chooses the type of
image property to be an ImageObject, the image property will be
added under the ImageGallery and a dropdown of API endpoints
will be displayed next to the image property (as shown in Figure 9).
The user then needs to choose the API endpoint that returns the
collection’s images /collections/id/photos. This image prop-
erty will connect the ImageGallery type to the ImageObject type,
allowing the user to read the collection (image gallery) images by
invoking the image property.

8.1.4 Adding Methods. To describe each type’s methods (create,
delete, update, etc), the user can click on that Schema.org ob-
ject/type. ShapirUI will display a sidebar asking the user to confg-
ure update, create, delete, or any additional methods (e.g. like)
provided by the API (Figure 10(B)). For the create method, ShapirUI
will simply ask the user to choose the API endpoint that creates an
object. For the update and delete methods, ShapirUI will ask the
user to specify endpoints as well as the object ID parameter. The
properties that the user can update, or specify when creating new
objects, will automatically be fetched from the HAAPI description.
The user does not need to specify that in ShapirUI.

ShapirUI also allows the user to specify the search method, by
clicking on the site node. ShapirUI will display a sidebar asking the
user to pick the API endpoint, the search term parameter, the ID of
the returned objects, and the type of data returned by the search
API endpoint. Some APIs have one API endpoint that is used to
search everything in the site, and other APIs provide multiple API
endpoints that can search for diferent types of data. For example,
Unsplash API has three search API endpoints: collections, photos,
and users. ShapirJS allows users to add multiple search endpoints
(shown as purple nodes in Figure 10(A)). For the search method,
the user does not need to specify the search parameters (other
than the search term). the ShapirUI will automatically fetch these
parameters from the HAAPI description as well.

Once the user is done describing the objects and methods for
the API, they can click on the save button, which will create the
WoOPI description for that API. This will automatically generate
the ShapirJS, client code and documentation for this API.

We are still completing the implementation of ShapirUI. At
present it supports everything required for any WoOPI description
except that: (1) ShapirUI does not yet support whole-site methods
other than search; (2) it also does not support specifying the add
and remove methods on collections of objects. We expect to have
these features implemented soon.

8.2 ShapirUI Evaluation
We conducted a user study to evaluate the usability of the ShapirUI
for making WoOPI descriptions aligned to Schema.org types. We fo-
cused on the following questions: (i) Can frst-timers use ShapirUI
to make a WoOPI description? (ii) How easy is it to understand
the Schema.org vocabulary and choose the appropriate types and
properties for a given API?

We recruited 12 participants (10 female, 2 male, ages 20 to 44) for
a one-hour user study. Programmer skills ranged from none to ad-
vanced: 1 non-programmer, 4 beginners (understand concepts but
frequently need documentation), 1 intermediate (does not usually
need documentation), 3 skilled (can write complicated programs),
and 3 advanced programmers (professional). Programmer experi-
ence with APIs varied: 1 had used them once, and 6 had used them
a couple of times, 3 had used them quite often, and 3 had used them
all the time as part of their work/research.

8.2.1 Procedure. Participants were assigned one of two APIs to
describe using the ShapirUI : Dailymotion and Unsplash APIs. Half
of our participants were randomly assigned to each. Participants
were asked to make WoOPI descriptions detailed enough to let
allows other users complete the following tasks: for Dailymotion,
(1) Retrieve a specifc playlist from Dailymotion with its name,
description, creator, date created, and videos, and, for each video in
it, get the name, description, URL, duration, thumbnail URL, and
creator. (2) Search for videos; (3) Create a new playlist; (4) Update
a playlist’s properties; (5) Remove a playlist; (5) Add a video to a
watch-later playlist; for Unsplash: (1) Retrieve a specifc collection
from Unsplash with its name, description, publish date, update
date, and images, (2) for each image in the collection, to get its
description, height, width, owner, thumbnail, and total number of
likes on that image; (3) Search for images; (4) Search for collections
of images; (5) Update a collection; (6) Remove a collection; (7) Like
an image.

The study session began with a quick demo of the tool. After
fnishing their session, each participant answered a survey that
asked them to refect on the tool’s usability and efciency.

8.2.2 Results. All participants were able to fnish their tasks with
an average time of 11 minutes. The following are some of the
challenges that participants faced usingShapirUI for the frst time.

Web site versus object methods. With some of the methods,
the distinction between the methods performed on objects versus
the ones performed on the web site was not very clear at frst to all
participants. Some of the participants were confused about where
to confgure the search method versus where to confgure all the
other methods. Since search is a method that we perform on the
web site rather than individual objects, ShapirUI requires users to
click on the site node to integrate the search methods (as shown
in Figure 10 (A)). The participant’s confusion came from the fact
that they search the site for a specifc type, so naturally, they would
want to click on that type to confgure the search method. But
some web sites ofer only on search API endpoint that allows users
to search the site for multiple types (e.g. YouTube search API). In
this case, it would not appropriate to have the search to attach to
specifc types.

Object methods. ShapirUI allows users to confgure, for every
object, create, delete, update and other methods (Figure 10 (B)).
Some participants did not understand at frst what is the diference
between (create, remove, and update) and other methods. One par-
ticipant said “The (Like a photo) task was challenging at frst, because
I thought in order to like you would click on (create) as if you’re cre-
ating a like.”. We agree with the participants, that separating these
methods might be confusing. We will try improve our UI to better
guide the user to describe the diferent methods clearly.

1301

https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 10: (A) Describing the “search” functionality of the API (B) Describing “create”, “delete”, “update” and other methods
of the API

Schema.org types and properties. None of our participants
were familiar with Schema.org vocabulary. The main challenge that
they faced was understanding which Schema.org types and proper-
ties to use with the given API. For example, for Unsplash collection
of images, participants were not sure if they should use Schema.org
ImageGallery, Collection or CollectionPage. In addition, the
ImageGallery type had a property image of type ImageObject.
Participants expected a property images, not image, with the type
“list” of ImageObject. All properties in Schema.org are allowed to
have multiple values. But, the Schema.org documentation does not
specify that in their types’ pages. In addition, all complex-valued
properties can also have Text or URL value, but Schema.org does
not specify that very well in their types’ pages.

Feedback. ShapirUI does not really give feedback to the user
about whether their mapping between API objects and Schema.org
types is correct or not. Mainly, because there is no way to check.
What we are proposing in this paper is novel, and there is no repos-
itory of similar mappings on the web that we can check against.

8.2.3 Participant Feedback. In the survey, we asked participants
to rate how usable and easy to learn they found ShapirUI. Partici-
pants answered all questions with a fve-point Likert scale, with 1
indicating the tool was very easy to use and 5 very difcult to use.
The average ratings for usability and learnability were 2 and 1.5 for
the two API tasks respectively.

Participants found the UI to be intuitive and easy to use. One
said “The UI was very easy to understand, the objects were easy to
map from Schema.org to the specifc API objects, really cool to see the
update/create/remove features built in to each object.” And another
said “The display with color coding seems user-friendly and I liked
how the matching worked. If I selected something from Schema.org
and the matches from Dailymotion didn’t make sense, then I knew
something was wrong with my selection”. Another said “I love the
block interface as it clearly shows the hierarchies and matches between
schema and the API. The search functionality and adding methods
are quite intuitive once you know how to access them by clicking on
the blocks.”

9 IMPLEMENTATION
Shapir consists of (1) a front end web interface (ShapirUI), built
using open Web technologies (JavaScript, HTML, and CSS), and
(2) a back end component, which stores the WoOPI descriptions,
built using the Firebase Realtime Database. ShapirJS reads a WoOPI
description from Firebase and uses it to generate standard functions
that can be used by users to access APIs. ShapirUI is a GUI that
can be used to create the WoOPI descriptions. ShapirUI uses a
cosine similarity algorithm to fnd relevant types and properties to
the web site’s API that the user is interested in accessing. Shapir
integrates with Mavo through a JavaScript plugin that adds Shapir
as a new Mavo backend. It takes care of translating HTML attributes
to ShapirJS function calls that allow HTML authors to query APIs
and retrieve their data.

10 DISCUSSION
Accessing data through web APIs has become essential to modern
applications. But it is also a signifcant obstacle: the complexity and
variability of these APIs means that even experienced programmers
need to spend signifcant time working to access each, and that
less-experienced and non-programmers might not be able to do so
at all. In this work, we have demonstrated a collection of related
tools that allow end users to treat data behind web APIs as local
objects in their own computational environments, dramatically
simplifying the authoring of simple applications for interacting with
that data. In combination with Mavo, our tools allow an author to
create complete web applications that access data behind these APIs,
entirely in HTML without authoring a single line of JavaScript.

Key to our approach is the idea of standardizing web APIs at a
higher level of abstraction than they currently support. We argue
that instead of arbitrary functional endpoints accepting and return-
ing primitive string and integer arguments, web APIs should be
modeled as methods, particularly the canonical create, read, update,
and delete quartet, and add and remove for collections, operating
over linked, typed objects with type-specifc properties. This is the
dominant abstraction for programmers in their local environment,
and extending it to web APIs can dramatically simplify the incor-
poration of those web APIs into applications.

1302

https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

UIST ’21, October 10–14, 2021, Virtual Event, USA T. Alrashed, L. Verou, D. R. Karger

We have developed WoOPI, a prototype standard schema for
describing web APIs according to this abstraction. This schema
is simple enough that even non-programmers can make WoOPI
descriptions using the ShapirUI GUI. Given a WoOPI description,
the ShapirJS library can expose the data behind the API as (proxy)
objects with readable and writeable properties in the local environ-
ment, allowing a programmer to access the data without consider-
ing the API itself at all. Shapir also uses the WoOPI description to
automatically generate documentation of the object model, along
with code snippets the developer can copy. Finally, integrating
Shapir with Mavo, which lets people author data management
applications in HTML, allows people to create fully functional ap-
plications over web APIs without writing a single line of JavaScript.

Our work also demonstrates the benefts of mapping APIs to
standard object types. Applications that are written to operate on
those standard objects types will work, unchanged, on any web
site whose WoOPI description exposes those standard object types.
Our ShapirUI leverages assorted heuristics to help authors map an
API to appropriate types from the Schema.org repository.

We advocate for standards over platforms. While many platforms
are emerging that proxy numerous APIs through one standard
meta-API, such approaches create unnecessary performance and
control bottlenecks. In a standards-based future, each website could
publish its own WoOPI description allowing any client program to
interact with web site directly.

10.1 Limitations and Future Work
We chose Schema.org as our repository of standard types.
Schema.org aims to shoehorn the entire web into these types, which
makes their schema rather “sloppy”. For example, many properties
of many types can be either (i) an object of some other type, (ii)
a collection of such objects, or (iii) a text string that somehow de-
scribes such objects. ShapirJS attempts to disambiguate, but can
be fooled. A more precise specifcation would be useful.

Schema.org also is far weaker at describing standard meth-
ods than types. Although there is a canonical SearchAction,
Schema.org only specifes a single parameter—a query string. It
does not ofer any standardized names for the diferent parame-
ters that could refne this search, such as ordering or fltering on
certain attributes. The lack of standard attributes means that users
integrating multiple web sites’ search endpoints will be unlikely to
standardize the parameters. This means that (as we already saw in
our video search example) authors will need to specify such param-
eters on a site-by-site basis, harming portability. There could be
signifcant benefts to extending Schema.org to standardize methods
as well as types.

One limitation of mapping web APIs’ schemas to Schema.org,
or any other standard schema for that matter, is that there is no
way to validate this mapping (if these types/properties are the
right ones for those APIs). One challenge with this is that diferent
users might map diferent sites ofering the same type of data to
diferent types/properties. For example, Schema.org/VideoObject
has creator and author properties. Both properties can be used to
represent the owner of the video. Using the ShapirUI, a user might
choose creator for the Dailymotion video owner, and another
user might choose author for the YouTube video owner. To ensure

that users use the same types/properties for similar sites, a future
direction would be to show previous descriptions of similar sites to
the users and suggest they use the same schema.

Similarly, APIs that look similar still might not permit updat-
ing the same set of properties of a given object. One API might
allow changing both the description and the name of a playlist
and another might only allow changing the description. ShapirJS
provides these details about which object’s properties can be edited
for each API. However, this forces an author to keep the source of a
particular object in mind if they want to know which parts of it they
can edit. A future improvement would be to add error handling
when the user tries to edit a property that cannot be edited. In
addition, similar web sites might provide diferent types. For ex-
ample, YouTube, Vimeo and Dailymotion all provide VideoObject
objects, but only YouTube and Vimeo provide Comment as an ad-
ditional type that Dailymotion does not ofer. If a user creates a
Mavo application that shows YouTube and Dailymotion for videos
and their comments, Shapir will peacefully handle this by showing
comments with YouTube videos but none with Dailymotion videos
since Dailymotion does not support the Comment type.

Another limitation the Shapir obscures but does not resolve is
that each web site API is only designed for the data on that web
site. For example ShapirJS allows a user to fetch videos and put
them into playlists of a common schema.org type. But while the
schema seems to allow placing a video from Dailymotion into a
playlist from YouTube, ShapirJS would be unable to actually execute
this operation because YouTube would not accept the Dailymotion
video into its playlist. The user would therefore need to store such
a“mixed origin” playlist locally if they created one. It is exciting to
envision a future in which types have been standardized by WoOPI
such that data from one web site can be stored in a diferent web
site with the same schema.

11 CONCLUSION
This paper proposes WoOPI, a standardized, machine-readable on-
tology that can be used to simplify accessing web APIs. It presents
Shapir, a system that includes the ShapirUI GUI to make WoOPI
descriptions and the ShapirJS client library that presents all web
site objects as objects in the application’s local environment, which
can be manipulated by getting and setting object properties or
invoking apparently-local methods. We integrate ShapirJS with
Mavo to allow non-programmers to access web APIs through their
HTML-only Mavo applications. Our evaluations showed that pro-
grammers were able to access APIs and accomplish complex tasks
using ShapirJS 5.6 times faster on average than using a well-known
JavaScript library. Even non-programmers were able to create com-
plete applications that access multiple web APIs in just 4 minutes
using Shapir with Mavo.

REFERENCES
[1] Tarfah Alrashed, Jumana Almahmoud, Amy X Zhang, and David R Karger. 2020.

ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings of the
2020 CHI conference on human factors in computing systems. 1–12.

[2] Prompt API. 2021. Hassle-free API Marketplace. Retrieved July 18, 2021 from
https://promptapi.com/

[3] Tim Berners-Lee, James Hendler, Ora Lassila, et al. 2001. The semantic web.
Scientifc american 284, 5 (2001), 28–37.

[4] API Blueprint. 2019. Retrieved August 10, 2019 from https://apiblueprint.org

1303

https://promptapi.com/
https://apiblueprint.org
https://schema.org
https://Schema.org/VideoObject
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

Shapir: Standardizing and Democratizing Access to Web APIs

[5] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset Search:
Building a search engine for datasets in an open Web ecosystem. In The World
Wide Web Conference. 1365–1375.

[6] Jill Cao, Kyle Rector, Thomas H Park, Scott D Fleming, Margaret Burnett, and
Susan Wiedenbeck. 2010. A debugging perspective on end-user mashup pro-
gramming. In 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing. IEEE, 149–156.

[7] Kerry Shih-Ping Chang and Brad A Myers. 2017. Gneiss: spreadsheet program-
ming using structured web service data. Journal of Visual Languages & Computing
39 (2017), 41–50.

[8] Kerry Shih-Ping Chang, Brad A Myers, Gene M Cahill, Soumya Simanta, Edwin
Morris, and Grace Lewis. 2013. A plug-in architecture for connecting to new
data sources on mobile devices. In 2013 IEEE Symposium on Visual Languages
and Human Centric Computing. IEEE, 51–58.

[9] Roberto Chinnici, M Gudgin, JJ Moreau, and S Weerawarana. 2004. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C Working
Draft. World Wide Web Consortium (2004).

[10] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Benatallah. 2009.
Data integration in mashups. ACM Sigmod Record 38, 1 (2009), 59–66.

[11] Milan Dojchinovski and Tomas Vitvar. 2018. Linked web APIs dataset. Semantic
Web 9, 4 (2018), 381–391.

[12] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefk. 2014.
How do API documentation and static typing afect API usability?. In Proceedings
of the 36th International Conference on Software Engineering. 632–642.

[13] Robert J Ennals and Minos N Garofalakis. 2007. MashMaker: mashups for the
masses. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. 1116–1118.

[14] Brad Fitzpatrick and David Recordon. 2014. Thoughts on the social graph, 2007.
URL http://bradftz. com/social-graph-problem/. Visited on 18, 05 (2014).

[15] Wael H Gomaa, Aly A Fahmy, et al. 2013. A survey of text similarity approaches.
International Journal of Computer Applications 68, 13 (2013), 13–18.

[16] GraphQL. 2019. GraphQL. Retrieved August 1, 2019 from https://graphql.org
[17] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org:

evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51.
[18] Marc Hadley. 2009. Web application description language. World Wide Web

Consortium Member Submission SUBM-wadl-20090831 (2009).
[19] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. 2007. Program-

ming by a sample: rapidly creating web applications with d. mix. In Proceedings
of the 20th annual ACM symposium on User interface software and technology.
ACM, 241–250.

[20] Austin Haugen. 2010. The open graph protocol design decisions. In International
Semantic Web Conference. Springer, 338–338.

[21] Aidan Hogan. 2020. The semantic web: Two decades on. Semantic Web 11, 1
(2020), 169–185.

[22] Adrian Holovaty. 2005. ChicagoCrime. org. Available at http (2005).
[23] David F Huynh, Robert C Miller, and David R Karger. 2007. Potluck: Data mash-up

tool for casual users. In The Semantic Web. Springer, 239–252.

UIST ’21, October 10–14, 2021, Virtual Event, USA

[24] IFTTT. 2021. IFTTT - Connect your apps and devices in new and remarkable
ways. Retrieved July 18, 2021 from https://ifttt.com

[25] Walter N Kernan, Catherine M Viscoli, Robert W Makuch, Lawrence M Brass,
and Ralph I Horwitz. 1999. Stratifed randomization for clinical trials. Journal of
clinical epidemiology 52, 1 (1999), 19–26.

[26] klazify. 2021. Klazify. Retrieved Marcth 27, 2021 from https://www.klazify.com
[27] James Lin, Jefrey Wong, Jefrey Nichols, Allen Cypher, and Tessa A Lau. 2009.

End-user programming of mashups with vegemite. In Proceedings of the 14th
international conference on Intelligent user interfaces. ACM, 97–106.

[28] Node-RED. 2013. Retrieved August 15, 2019 from https://nodered.org
[29] Peter F Patel-Schneider. 2014. Analyzing schema. org. In International Semantic

Web Conference. Springer, 261–276.
[30] Postman. 2019. Postman. Retrieved August 10, 2019 from https://www.

getpostman.com
[31] ProgrammableWeb. 2005. ProgrammableWeb Search Category. Retrieved

September 1, 2019 from https://www.programmableweb.com
[32] Mark Pruett. 2007. Yahoo! pipes. O’Reilly.
[33] Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2017. IFTTT

vs. Zapier: A comparative study of trigger-action programming frameworks.
arXiv preprint arXiv:1709.02788 (2017).

[34] RAML. 2019. RAML. Retrieved August 10, 2019 from https://raml.org
[35] RapidAPI. 2021. RapidAPI. Retrieved March 20, 2021 from https://rapidapi.com
[36] Martin P Robillard. 2009. What makes APIs hard to learn? Answers from devel-

opers. IEEE software 26, 6 (2009), 27–34.
[37] Swagger Specifcation. 2019. OpenAPI Specifcation. Retrieved August 15, 2019

from https://swagger.io/specifcation
[38] Swagger. 2019. Swagger. Retrieved August 10, 2019 from https://swagger.io
[39] Swagger. 2021. Swagger Client. Retrieved Marcth 29, 2021 from https://github.

com/swagger-api/swagger-js
[40] Swagger. 2021. Swagger Editor. Retrieved Marcth 29, 2021 from https://swagger.

io/tools/swagger-editor
[41] Max Van Kleek, Daniel A Smith, Heather S Packer, Jim Skinner, and Nigel R

Shadbolt. 2013. Carpé data: supporting serendipitous data integration in personal
information management. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2339–2348.

[42] Lea Verou, Tarfah Alrashed, and David Karger. 2018. Extending a Reactive Expres-
sion Language with Data Update Actions for End-User Application Authoring.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 379–387.

[43] Lea Verou, Amy X Zhang, and David R Karger. 2016. Mavo: creating interactive
data-driven web applications by authoring HTML. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. ACM, 483–496.

[44] Jefrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards
end-user programming for the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 1435–1444.

[45] Zapier. 2021. RapidAPI. Retrieved July 18, 2021 from https://zapier.com

1304

https://graphql.org
https://ifttt.com
https://www.klazify.com
https://nodered.org
https://www.getpostman.com
https://www.getpostman.com
https://www.programmableweb.com
https://raml.org
https://rapidapi.com
https://swagger.io/specification
https://swagger.io
https://github.com/swagger-api/swagger-js
https://github.com/swagger-api/swagger-js
https://swagger.io/tools/swagger-editor
https://swagger.io/tools/swagger-editor
https://zapier.com
http://bradfitz

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Approach

	2 Related Work
	2.1 One Standard API
	2.2 API Description Languages
	2.3 Mashup Tools
	2.4 Data Integration
	2.5 API Integration Platforms

	3 Background
	3.1 ScrAPIr
	3.2 Mavo
	3.3 Schema.org
	3.4 Unification

	4 THE SHAPIR ECOSYSTEM
	5 WOOPI: A WEB OF OBJECTS PROGRAMMING INTERFACE
	5.1 Surveying Web APIs
	5.2 Designing WoOPI to Expose Objects
	5.3 Designing WoOPI to Transform to Standard Types
	5.4 WoOPI Evaluation

	6 SHAPIRJS: SHAPIR JAVASCRIPT LIBRARY
	6.1 ShapirJS Design
	6.2 ShapirJS Evaluation

	7 END-USER APPLICATION AUTHORING WITH SHAPIR AND MAVO
	7.1 Mavo-Shapir Design
	7.2 Mavo-Shapir Evaluation

	8 SHAPIRUI: A VISUAL AUTHORING TOOL FOR WOOPI
	8.1 ShapirUI Design
	8.2 ShapirUI Evaluation

	9 Implementation
	10 Discussion
	10.1 Limitations and Future Work

	11 Conclusion
	References

