
http1J/api.yelp.com'v.llbll1i...,,_ll..,,,rch

@ 2. R11questParam■ters

@ 3. AuthentlcatlonandHHdU

@ L RHponsaFlalds

@ 5. Paglnatlon

{"info" :{

),

"name" : "Yelp Search API" ,
"url" : "https://api.yelp.COII

/v3/businesses/sear<:h" ,

"parameters" :[{
"name" : "term" ,
"type· : ·string" ,
·value": "Restaurants" ,
"allowedValues" : "" ,
"displayedNair.es'" : "Search",
"description" : "SearchYelp" ,
•r~uired" :false ,
"displayed'" : true

},{ ... }]
'"responses" :[{ ... }],
'"authentication" :{ ...),
'"heillders" :[{ •.. }J,~
'"pagination " :{ . . . }~

ScrAPlr System

_ .,. P"CO
"

==1 1;;:, .. Bb:I< ::w
F<;i A!WoC

... p-Bo· ..-wl(;nl '-6

{"types" : {
"MusicPlaylist" :

),

' get" : {
"haapiDescription" : "
"apiEndpoint" :"https: .
"id" : "playlistid" ,

),
"create" : { .. },
"dele t e" : { .. }.
"update" : { . . },
'properties" : [{

"field" : "title" ,
"property" ; ' n0111e'
}, . .]

"VideoObject" : { .. },
"Pe rson " : { .. }

},
"si.teMethods" : [{

' opiEndpaint" : .l:lii· •
"hoapiDescriph •I •
},{ .. }]}

//Seorchd,rilyrootion ~
dailyrootion . search({"seorch" : I
, "channel" : ""})

dailyrootion .MusicPlaylist("ID")
//likJsicPlaylistproperties
ployli st . na11e
ploylist. creat or
await playltst .video
//likJsicPlaylist1rethods

//update a MusicPloylist
ploylist . na11e" "New nome"

//Create a new MusicPlaylist
playli st .MusicPlaylist.create(
{"name" :"" , "descriphon":""})

//DeleteaMusicPl~
ployli st. delete() ~

_,, ______ ,_

<dlV mv -opp.., - source-"shap,r"
...,-source- type-"~iOCoObject"
IIIV- source- serv ·ce- "do, tymotlon"
111V-sourcc-seor ch- " [search) ">

<input property-" seorch" I>
<div proper ty."vi6eos · ,,.,, . nJl t iple>

<img property• " th<Abna , lUr l "I>
<h2 property."ncne"><l~Z>
q, property-"desc,,.,_

<ld\ v,.

Mavo-Shapir

Systems to Democratize and Standardize Access to Web APIs
Tarfah Alrashed

MIT CSAIL
Cambridge, MA, USA

tarfah@mit.edu

Figure 1: Systems to democratize and standardize access to web APIs. ScrAPIr enables users to query and retrieve data from web
APIs without programming, and Shapir simplifes building interactive Web application that operates on web APIs.

ABSTRACT
Today, many web sites ofer third-party access to their data through
web APIs. However, manually encoding URLs with arbitrary end-
points, parameters, authentication handshakes, and pagination,
among other things, makes API use challenging and laborious for
programmers, and untenable for novices. In addition, each API
ofers its own idiosyncratic data model, properties, and methods
that a new user must learn, even when the sites manage the same
common types of information as many others. In my research, I
show how working with web APIs can be dramatically simplifed by
describing the APIs using a standardized, machine-readable ontol-
ogy, and building systems that democratize and standardize access
to these APIs. Specifcally, I focus on: 1) systems to enable users
to query and retrieve data through APIs without programming
and 2) systems that standardize access to APIs and simplify the
work for users—even non-programmers—to create interactive web
applications that operate on data accessible through arbitrary APIs.

CCS CONCEPTS
• Human-centered computing → Web-based interaction; •
Information systems → RESTful web services.

KEYWORDS
Web APIs, API Description Languages, Semantic Web, Schema.org,
Data Standardization, Data Integration, Web Application

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8655-5/21/10.
https://doi.org/10.1145/3474349.3477587

ACM Reference Format:
Tarfah Alrashed. 2021. Systems to Democratize and Standardize Access to
Web APIs. In The Adjunct Publication of the 34th Annual ACM Symposium
on User Interface Software and Technology (UIST ’21 Adjunct), October 10–
14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3474349.3477587

INTRODUCTION
Nowadays, substantial amounts of valuable data on many web sites
can be accessed through web APIs (Application Programming Inter-
faces). Using these APIs, a programmer can create new applications
that present and manipulate the data on those web sites in new
ways. But using these APIs is a signifcant efort, even for skilled
programmers. Data from the application must be marshalled and
unmarshalled for delivery and proper API invocation URLs need
to be generated. While skilled programmers may be familiar with
this process in general, many newer and non-programmers will be
bafed by the complexity of API usage [7]. In addition, each API is
diferent, so even an author skilled in API usage must invest signif-
icant time reading documentation to learn any API they intend to
use [4]. In our lab experiments, we found that the time required to
learn and code to an API can be signifcantly larger than the rest of
the time needed to create a simple application.

In my thesis, I introduce two sets of systems that simplify the
work with web APIs by standardizing and democratizing access to
these APIs.
• The frst set of systems are part of the ScrAPIr ecosystem1 [1],
which enables end users to query and retrieve data from APIs
without programming, by providing three connected compo-
nents: 1) A standard ontology for describing an API in enough
detail to automatically build a graphical interface (GUI) to query
it, without per-API programming (HAAPI), 2) a tool that creates
such a GUI from any HAAPI description. And 3) a form-based

1http://scrapir.org

158

https://doi.org/10.1145/3474349.3477587
https://doi.org/10.1145/3474349.3477587
https://doi.org/10.1145/3474349.3477587
http://scrapir.org
https://Schema.org
mailto:tarfah@mit.edu

Search and Filter View, Save and Download Result Choose Columns

SearchNYTArtides

U.S. Elections

SortSY

relevance

Begin Cate

20190101

---# Title Author

0 Attorney General Nominee Promis... By Katie Benner

URL

htlps:/lwww.n)'

F.B.I . Opened Inquiry Into Whether. By Adam Goldman... https:/fwww.ny

Michael Cohen, Trump's F01TT1er L... By Maggie Haber.. https:/fwww.ny

3 Mana fort Accused of Sharing Trum.. By Sharon LaFrani... https:/fwww.ny

4 Judge Extends Term for Grand Jur... By Sharon LaFrani... htlps:/lwww.n)'

Review: 'Brexit' Offers an Unsubtle. By James Poniewo... https:/fwww.ny

20190131 Judiciary Hearing on Democrats' E... By Emily Cochrane https://www.ny

NUMBER OF RESULTS 7 Mitch McConnell Calls Push to Ma... By Matthew Haag hltps:/fwww.ny

Kansas Senator Pat Roberts Will .. ByJooathanMartin

FIOrida Governor Removes Palm . BySarahMervosh

- - 10 MaduroSoundsConciliatorybl.JtW ... ByAnaVanessaH ...

GGEIO • .,,.,.,,.11,00~

https:/fwww.ny

https:/fwww.ny

https:/fwww.ny

Columns

II URL

II TI T LE

II AUTHOR

UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA Tarfah Alrashed

tool that lets even non-programmers author HAAPI descriptions
of web APIs.

• The second set of systems are part of the Shapir ecosystem2 [2],
which allows a user, using only GUIs and HTML authoring, to
build a complete web application aggregating and interacting
with data provided by multiple APIs. Shapir provides three related
components: 1) A standardized, machine-readable API ontology
(WoOPI), which can be used to provide a description that wraps
the API with objects conforming to the canonical type defnitions
provided by Schema.org [5]. 2) A JavaScript library that uses a
WoOPI description to present the API’s data as typed objects
in the local environment. And 3) a graphical tool that lets even
non-programmers create the required WoOPI descriptions. We
integrated Shapir with Mavo [9, 10], an interactive declarative
HTML-based language, to empower a user to create applica-
tions interacting with APIs’ data by writing only HTML, with
no JavaScript programming required.

THESIS STATEMENT
We can design standardized, machine-readable API descriptions
and build systems to enable users to access and manage web APIs’
data, and the use of these systems will empower users, even non-
programmers, to make use of web data in new and better ways.

SYSTEMS

Enable Data Query and Retrieval Through APIs
A common practice on the web is to extract and repurpose struc-
tured data from web sites. As far back as 2005, the HousingMaps
and Chicagocrime mashups showed the utility of presenting old
data in new visualizations. More recently, applications, articles,
and visualizations that repurpose data from sites like Twitter or
Wikipedia have become increasingly common [3]. But, a major
challenge has been to extract the needed data from its source sites.

Today, the strategies that programmers and non-programmers
employ to capture data from websites have diverged. Non program-
mers laboriously copy and paste data, or use web scrapers that
download a site’s webpages and parse the content for desired data;
many of the early mashups were created this way. But scrapers
are error prone as they must cope with ever more complex and
dynamic sites and webpage layout changes.

While programmers can and do use these non-programmer tac-
tics, they also fnd ever more sites ofering web APIs. Compared to
scrapers, APIs provide a more reliable way to access and retrieve
clean web data, since they do not rely on parsing complex or irreg-
ular web page structures. Many APIs also ofer advanced searches
and provide more extensive data than can be accessed by scraping
webpages [3].

However, a survey we conducted found three signifcant obsta-
cles to using APIs: 1) People need to write code to access APIs,
making them inaccessible to non-programmers, 2) Even for pro-
grammers, APIs can be hard to learn and use[7], and 3) Most modern
APIs return structured data in JSON and XML formats, which can
contain large and complex hierarchies that are difcult for people
to parse without writing code.

2http://shapir.org

Figure 2: An illustration of SNAPI for the NY Times API

To simplify API programming, eforts have been made to design
API description languages [1] that provide structured descriptions
of web APIs. The machine-readable descriptions can be used to
generate documentation for programmers and code stubs for con-
necting to the APIs through various languages. The most popular at
present is the OpenAPI specifcation [8]. While OpenAPI improves
the developer experience, it ofers no value to non-programmers
who still face the necessity of writing code to access APIs and parse
results.

To make these web APIs accessible to everyone, a query interface
that allows users to query and download APIs’ data, and hides the
complexity of these APIs is necessary. Building a query interface for
a couple of APIs can be manageable, only by programmers of course.
But there are tens of thousands of web APIs and these APIs are
diferent [6]. In addition, both programmers and non-programmers
need these APIs’ data. Creating a query interface on top of every
API is just infeasible.

A solution to this problem is to automate the process of cre-
ating a query interface for every web API. Although these APIs
are diferent, many of them are assembled from a small palette of
possible design choices. If we can enable users, programmers and
non-programmers, to describe those design choices in a machine-
readable fashion, then it would be possible to automatically generate
a query interface on top of these APIs and allow anyone to query
them.

To make this possible, we built ScrAPIr[1], an ecosystem that
empowers end users to query and retrieve data from APIs with-
out programming. ScrAPIr consists of three related components:
HAAPI, WRAPI, and SNAPI. HAAPI is a standard ontology for de-
scribing an API in enough detail to automatically build a graphical
interface (GUI) to query it, without per-API programming. HAAPI
extends the OpenAPI specifcation and describes the API’s query pa-
rameters (used to flter objects), their types, the authentication and
pagination methods (if any), and the structure of the returned data.
SNAPI is a search GUI to query and download data from any API
with a HAAPI description. SNAPI reads a HAAPI description and
presents a typical search form (through which a user specifes their
query0, invokes the relevant API, and shows results in a tabular
(spreadsheet) or other standard data format (Figure 2). And WRAPI
is a tool that empowers a user to author the HAAPI description
for an API simply by flling out a separate web form. WRAPI can
guide even non-programmers with little or no understanding of
APIs to unpack the necessary information from API documentation.
These three components are connected, as shown in Figure 1 (left).

159

http://shapir.org
https://Schema.org

Systems to Democratize and Standardize Access to Web APIs UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA

Any user can frst use WRAPI to author a HAAPI description of
any web API. Once this is done (just once per API), any other user
can use SNAPI to query this API and download its response data.
ScrAPIr thus empowers users who want data to standardize and
access data-query APIs without demanding any cooperation from
the sites providing those APIs.

We conducted user studies providing evidence that it is easy
for users to use the (quite typical) SNAPI search form to retrieve
data from HAAPI descriptions. More signifcantly, we also fnd that
novices and even non-programmers who are unfamiliar with the
concept of an API, using the guidance provided by WRAPI, are able
to create HAAPI descriptions for APIs that they had never seen
or used before. We also show that programmers can perform the
wrapping and query tasks on average 3.8 times faster using ScrAPIr
than by writing code.

In addition, we evaluated how well the HAAPI ontology is able to
describe query-based APIs. We sampled the ProgrammableWeb [6]
list of available web APIs and found that 97% (with a 95% confdence
interval of 0.93 ± 0.062) of search APIs can be described by HAAPI
such that SNAPI can query them.

We extended ScrAPIr to support describing APIs that modify
data, empowering end users to edit web data through APIs without
programming. In addition, we built a library for ScrAPIr that lets
programmers access APIs, described using HAAPI, and retrieve/-
manage these APIs’ data directly in their code.

Standardize and Democratize Access to Web APIs
While ScrAPIr provides tools to enable users to access and interact
with web APIs, it only allows users to describe individual API
endpoints, ScrAPIr thus does not support data integration within
the same or diferent APIs. In addition, ScrAPIr does not standardize
the data models of web APIs, building an application using one API
will not work with another API ofering the same types of data.

Consider a user who wants to create a small application for col-
lecting videos they fnd on the web, organizing them into playlists,
and playing them. They likely start with a mental model of their
data: videos with titles, creators, creation dates, and

vide

vide

o

o

data

data
links; and playlists, each with a title, a creation time, and

a

a

colle

colle

c-

c-
tion of videos in the playlist. It would be relatively

straightfor

straightfor

war

war

d

d
to create a basic web application for managing this

data

data

mo

mo

del,

del,
presenting forms that allow the author to view and edit

the

the

infor-

infor-
mation about each video and move videos among

playlists.

playlists.

Inde

Inde

e

e

d,

d,
with an HTML templating tool like Mavo [10] the author w

ould

ould

not

not
even really need to write any JavaScript code: they would

cr

cr

eate

eate

an

an
HTML document that looks like the desired application,

then

then

add

add

a

a
small amount of Mavo markup which indicates which

elements

elements

of

of
the HTML are editable data, and the Mavo library would r

ead

ead

those

those
annotations and provide the relevant data editing, pr

esentation,

esentation,
and storage capabilities.

But suppose the user wanted to enrich their

application

application

by

by

en-

en-
abling it to search for videos and playlists on Dailymotion,

and

and

pull

pull
the resulting information into their application to manage

it?

it?

No

No

w

w
the task becomes signifcantly harder. ScrAPIr can help the

user

user

to

to
search Dailymotion for videos or playlist, but the user

will

will

hav

hav

e

e
to write JavaScript code connecting the playlists with

their

their

vide

vide

os.

os.
Then they would need to write more code translate the data coming

back from Dailymotion to match the schema they have chosen for
their application (and to translate back if they are sending updates
in the opposite direction), as it is unlikely that Dailymotion has
selected the same property names and values as they did.

If the user then decided to incorporate Vimeo videos into their
application as well, they would have to repeat the entire process:
learn an entirely diferent API and translate those results (using a
diferent dictionary) into their own preferred schema.

This task demands a signifcant amount of labor with little cre-
ative or intellectual content. The user knows from the beginning
that these sites have videos and playlists, but must labor to learn
about and translate between multiple inconsistent website API
syntaxes and data models. It takes the user far away from their
initial simple model of video and playlist objects with readable and
writeable properties, and the simple application they build with
elementary programming (or, if using Mavo, writing nothing but
HTML).

To eliminate much of this labor overhead, we designed a new
API description language, the Web of Objects Programming Interface
(WoOPI), a simple schema for (i) modeling an API’s data as a collec-
tion of typed objects with read/write properties and methods, and
(ii) describing how to implement that model via appropriate calls to
the site’s API. We designed WoOPI by analyzing a random sample
of web APIs from the ProgrammableWeb to understand what was
common among them. We then built Shapir[2], an ecosystem that
signifcantly simplifes the work for users—even non-programmers—
to create interactive web applications that operate on standardized
data accessible through arbitrary web APIs.

Shapir (Figure 1 (Right)) provides a graphical interface (ShapirUI)
that permits any user (even a non-programmer) to describe any
web API using a WoOPI ontology that maps the website objects to
standard data types and methods found on Schema.org [5], which of-
fers a common set of schemas for describing objects on the web and
is supported by major search engines. Given such a WoOPI descrip-
tion, Shapir automatically generates a JavaScript library (ShapirJS)
that presents all the API objects as objects in the application’s local

// Get the playlist
let playlist = await vimeo.MusicPlaylist("8274189");
// Read playlist information
console.log(playlist.name, playlist.description);
// Get the playlist videos
let videos = await playlist.video;
// Get the comments of the 8th video
let videoComments = await videos[7].comment;
// Search Vimeo
videos = await vimeo.search("Adele",{sort:"relevant",

filter:"trending", numberOfItems:100});
// Create a new playlist
playlist = await vimeo.MusicPlaylist.create({

name:"New", description:"New", layout:"player"});
// Update the playlist's description
playlist.description = "Still New";
// Delete the playlist
playlist.delete();

Figure 3: An example of the Vimeo API with ShapirJS

160

https://Schema.org

Bootleg Special SaltieGirl
659 reviews .w'),,j . .,,..,. EJ T 42.35, -11.01 1,135 reviews ·...rw·.....,.-.,, mJ f 42.35, -71.08

Atlantic Fish Co Luke's Lobster Back Bay
2,583 reviews ',,,,(),,,i',-,(',,,(l!!J ' 42.35, -7 1.08 1,779 reviews '),(),,c''J,(),(m , 42.35, -1, .aa

<div mv-app mv-source="shapir" mv-source-search="[search]"
mv-source-service="yelp, foursquare" >

<input property="search" />
<div property="businesses" mv-multiple>

<h2 property="name"></ h2>
 revi ews
</ span>
</ span>
,
</ span>

</div>
</div>

UIST ’21 Adjunct, October 10–14, 2021, Virtual Event, USA

environment, which can be manipulated by getting and setting
object properties or invoking apparently-local methods. Listing 3
shows a ShapirJS code snippet for accessing the Vimeo API via a
WoOPI that maps to Schema.org MusicPlaylist and VideoObject
types. MusicPlaylist is a Schema.org type that returns an object of
type MusicPlaylist which includes name, description and video
properties. The video property of MusicPlaylist is a collection of
VideoObject objects. Every VideoObject has a comment property
that returns an array of Comment objects. Users can search Vimeo
using the vimeo.search() method. All objects returned are “live”,
meaning developers can create, delete, and update MusicPlaylist
objects by manipulating the array returned or its contents.

With ShapirJS, a programmer unfamiliar with APIs can author
their applications as if the data they are manipulating is already
in their hands. Because the provided data types ft the Schema.org
standard, an application written over one API will work, unchanged,
for any other API providing semantically-equivalent data.

Figure 4: A Mavo application that integrates and displays
standardized data from Yelp and Foursquare APIs

We integrated our JavaScript library with Mavo making it pos-
sible for users to create standalone web applications that manipu-
late data over (multiple) web APIs without writing a single line of
JavaScript. Listing 4 shows a Mavo application to search both Yelp
and Foursquare and list their restaurants.

Tarfah Alrashed

We evaluate the success of these components through a series
of user studies: one in which users use ShapirUI to create WoOPI
descriptions, another in which users program simple web applica-
tions in JavaScript over the WoOPI-generated library, and a third
in which users write HTML to create Mavo applications that in-
teract with the websites’ data using the WoOPI description. From
our user studies, we found that programmers are able to create
simple data management applications that require multiple HTTP
requests 5.6 times faster on average using the Shapir generic library
than using the popular Swagger API integration library3. Using our
Mavo integration, non-programmers were able to build functioning
data management applications that access multiple web APIs in
just 4 minutes. In addition, we evaluated WoOPI against a random
sample of 60 APIs, and we found that 90% (with a 95% confdence
interval of 0.90 ± 0.076) of these APIs can be fully described by
WoOPI such that a ShapirJS library can be generated to query them
and manipulate their objects.

CONCLUSION
My dissertation presents systems and ontologies for supporting
and simplifying the access and use of web APIs. Specifcally, my
work supports: Data query and retrieval—any user can query and
download APIs’ data without programming; Reusability—a user
can build one application for a Schema.org type that would work
with any API exposing that type; and Data integration—the user
can pull semantically-equivalent data from multiple APIs in one
application. And learnability, no need to learn additional APIs.
Through this research, I hope to empower more people to make
use of the valuable data provided by web APIs.

ACKNOWLEDGMENTS
I am grateful to my advisor David Karger for his continual guidance
and feedback. This work was supported in part by KACST and MIT.

REFERENCES
[1] Tarfah Alrashed, Jumana Almahmoud, Amy X Zhang, and David R Karger. 2020.

ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings of the
2020 CHI conference on human factors in computing systems. 1–12.

[2] Tarfah Alrashed, Lea Verou, and David R Karger. 2021. Shapir: Standardizing and
Democratizing Access to Web APIs. Conditionally Accepted at UIST 2021: ACM
Conference on User Interface Systems and Technology Symposium.

[3] Kerry Shih-Ping Chang and Brad A Myers. 2017. Gneiss: spreadsheet program-
ming using structured web service data. Journal of Visual Languages & Computing
39 (2017), 41–50.

[4] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefk. 2014.
How do API documentation and static typing afect API usability?. In Proceedings
of the 36th International Conference on Software Engineering. 632–642.

[5] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. 2016. Schema. org:
evolution of structured data on the web. Commun. ACM 59, 2 (2016), 44–51.

[6] ProgrammableWeb. 2005. ProgrammableWeb Search Category. Retrieved
September 1, 2019 from https://www.programmableweb.com

[7] Martin P Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE software 26, 6 (2009), 27–34.

[8] Swagger Specifcation. 2019. OpenAPI Specifcation. Retrieved August 15, 2019
from https://swagger.io/specifcation

[9] Lea Verou, Tarfah Alrashed, and David Karger. 2018. Extending a Reactive Expres-
sion Language with Data Update Actions for End-User Application Authoring.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 379–387.

[10] Lea Verou, Amy X Zhang, and David R Karger. 2016. Mavo: creating interactive
data-driven web applications by authoring HTML. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. ACM, 483–496.

3https://github.com/swagger-api/swagger-js

161

https://www.programmableweb.com
https://swagger.io/specification
https://3https://github.com/swagger-api/swagger-js
https://Schema.org
https://Schema.org
https://Schema.org
https://Schema.org

	Abstract
	Acknowledgments
	References

