
Load Management and High Availability in the

Borealis Distributed Stream Processing Engine

Nesime Tatbul1, Yanif Ahmad2, Uğur Çetintemel2, Jeong-Hyon Hwang2,
Ying Xing2, and Stan Zdonik2

1 ETH Zürich, Department of Computer Science, Zürich, Switzerland
tatbul@inf.ethz.ch

2 Brown University, Department of Computer Science, Providence, RI, USA
{yna, ugur, jhhwang, yx, sbz}@cs.brown.edu

Abstract. Borealis is a distributed stream processing engine that has
been developed at Brandeis University, Brown University, and MIT. It
extends the first generation of data stream processing systems with ad-
vanced capabilities such as distributed operation, scalability with time-
varying load, high availability against failures, and dynamic data and
query modifications. In this paper, we focus on aspects that are related
to load management and high availability in Borealis. We describe our al-
gorithms for balanced and resilient load distribution, scalable distributed
load shedding, and cooperative and self-configuring high availability. We
also present experimental results from our prototype implementation
showing the effectiveness of these algorithms.

1 Introduction

In the past several years, data streaming applications have become very common.
The broad range of applications include financial data analysis [1], network traffic
monitoring [2], sensor-based environmental monitoring [3], GPS-based location
tracking [4], RFID-based asset tracking [5], and so forth. These applications
typically monitor real-time events and generate high volumes of continuous data
at time-varying rates. Distributed stream processing systems have emerged to
address the performance and reliability needs of these applications (e.g., [6], [7],
[8], [9]).

Borealis is a distributed stream processing engine that has been developed at
Brandeis University, Brown University, and MIT. It builds on our earlier research
efforts in the area of stream processing - Aurora and Medusa [10]. Aurora pro-
vides the core stream processing functionality for Borealis, whereas Medusa en-
ables inter-node communication. Based on the needs of recently emerging stream
processing applications, Borealis extends both of these systems in non-trivial and
critical ways to provide a number of advanced capabilities. More specifically, Bo-
realis extends the basic Aurora stream processing system with the ability to:

• operate in a distributed fashion,

• dynamically modify various data and query properties without disrupting
the system’s run-time operation,

Fig. 1. Borealis query editor

• dynamically optimize processing to scale with changing load and resource
availability in a heterogeneous environment, and

• tolerate node and network failures for high availability.

In this paper, we focus on two key aspects of distributed operation in Borealis.
Distributing stream processing across multiple machines mainly provides the
following benefits:

• Scalability. The system can scale up and deal with increasing load or time-
varying load spikes with the addition of new computational resources.

• High availability. Multiple processing nodes can monitor the system health,
and can perform fail-over and recovery in the case of node failures.

In the rest of this paper, we first present a brief overview of the Borealis
system. Then we summarize our work on three different aspects of distributed
operation in Borealis: load distribution (Section 3), distributed load shedding
(Section 4), and high availability (Section 5). Finally, we briefly discuss our
plans for future research and conclude.

2 Borealis System Overview

Borealis accepts a collection of continuous queries, represents them as one large
network of query operators (also known as a query diagram), and distributes
the processing of these queries across multiple server nodes. Sensor networks
can also participate in query processing behind a sensor proxy interface which
acts as another Borealis node [11].

Queries are defined through a graphical editor, while important run-time
statistics such as CPU utilizations of the servers, latencies of the system outputs,
and percent data delivery at the outputs are visualized through our performance
monitor [12]. Figure 1 provides a snapshot from the editor part of our system
GUI.

Transport Independent RPC (XML,TCP,Local)

QueryProcessor HA
MonitorCatalog

NH
Optimizer

Admin
LocalGlobal

IOQueues

Control DataMeta−data

Borealis Node

Load
Shedder

Local Optimizer
Priority

Scheduler

Storage
Persistent

Processor
Box

Storage Manager

Data Interface Control Interface

Query Processor
Catalog

Local

(Buffers and CP data)

Fig. 2. Borealis system architecture

Each node runs a Borealis server whose major components are shown in
Figure 2. The query processor (QP) forms the essential piece where local query
execution takes place. Most of the core QP functionality is provided by parts
inherited from Aurora [13]. I/O queues feed input streams into the QP and route
tuples between remote Borealis nodes and clients.

The admin module is responsible for controlling the local QP, performing
tasks such as setting up queries and migrating query diagram fragments. This
module also coordinates with the local optimizer to provide performance im-
provements on a running diagram. The local optimizer employs various tactics
including, changing local scheduling policies, modifying operator behavior on the
fly via special control messages, and locally discarding low-utility tuples via load
shedding when the node is overloaded.

The QP also contains the storage manager, which is responsible for storage
and retrieval of data that flows through the arcs of the local query diagram,
including memory buffers and connection point (CP) data views. Lastly, the
local catalog stores query diagram description and metadata, and is accessible
by all the local components.

Other than the QP, a Borealis node has modules which communicate with
their respective peers on other Borealis nodes to take collaborative actions. The
neighborhood optimizer uses local load information as well as information from
other neighborhood optimizers to improve load balance between nodes or to shed
load in a coordinated fashion. The high availability (HA) modules on different
nodes monitor each other and take over processing for one another in case of
failures. The local monitor collects performance-related statistics as the local
system runs to report to local and neighborhood optimizer modules. The global
catalog provides access to a single logical representation of the complete query
diagram.

In addition to the basic node architecture shown in Figure 2, a certain Bore-
alis server can be designated as the coordinator node to perform global system
monitoring and to run various global optimization algorithms, such as global
load distribution and global load shedding. Thus, Borealis essentially provides

a three-tier monitoring and optimization hierarchy (local, neighborhood, and
global) that works in a complementary fashion [7].

3 Load Distribution in Borealis

Distributed stream processing engines can process more data at higher speeds by
distributing the query load onto multiple servers. The careful mapping of query
operators onto available processing nodes is critical in enduring unpredictable
load spikes, which otherwise might cause temporary overload and increase in
latencies. Thus, the problem involves both coming up with a good initial oper-
ator placement as well as dynamically changing this placement as data arrival
rates change. Borealis provides two complementary mechanisms to deal with this
problem:

• a correlation-based operator distribution algorithm, which exploits the rela-
tionship between the load variations of different operators, as well as nodes,
in determining and dynamically adjusting the placement of the operators in
a balanced way, and

• a resilient operator distribution algorithm, whose primary goal is to provide
a static operator placement plan that can withstand the largest possible set
of input rate combinations without the need for redistribution.

In this section, we briefly summarize these mechanisms.

3.1 Correlation-based Operator Distribution

To minimize end-to-end latency in a push-based system such as Borealis, it is
important, but not enough, to evenly distribute the average load among the
servers. The variation of the load is also a key factor in determining the system
performance. For example, consider two operator chains. Each chain consists of
two identical operators with cost c and selectivity 1. When the average input
rates of the two input streams (r1 and r2) are the same, the average loads of all
operators are the same. Now consider two operator mapping plans on two nodes.
In the first plan, we put each of the two connected operator chains on the same
node (Figure 3(a)). In the second plan, we place each operator of a chain on a
different node (Figure 3(b)). There is no difference between these two plans from
the load balancing point of view. However, suppose that the load bursts of the
two input streams happen at different times. For example, assume that r1 = r

when r2 = 2r, or r1 = 2r when r2 = r. Then these two plans result in very
different performance. In the connected plan, there is a clear imbalance between
the two nodes in both burst scenarios (Node1’s load is 2cr, when Node2’s load is
4cr, and vice versa); whereas in the cut plan, the load balance is maintained for
both of the scenarios (Both nodes have the load of 3cr in both cases). Since the
two bursts are out of phase, the cut plan which groups operators with low load
correlation together, ensures that the load variation on each node is kept small.
The simulation result presented in Figure 3(c), which shows that the cut plan

c c

Node 2

c c

Node 1

r2

r1

(a) Connected plan

c c

c c

Node 1 Node 2
r1

r2

(b) Cut plan

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Average Node CPU Utilization

A
ve

ra
ge

 E
nd

−
to

−
E

nd
 L

at
en

cy
 (

m
s)

CONNECTED
CUT

(c) Latencies

Fig. 3. Comparison of different operator mapping plans with fluctuating load

can achieve smaller latency with increasing load, also confirms this observation.
This simple example clearly shows that, not only the average load, but also the
load variation must be considered to achieve a good operator placement that
can withstand bursts.

In Borealis, we try to balance the average load among the processing nodes,
but we also try to minimize the load variance on each node. For the latter goal, we
exploit the correlation of stream rates across the operators. More specifically, we
represent operator load as fixed-length time series. The correlation of two time
series is measured by the correlation coefficient, which a real number between -1
and 1. Intuitively, when two time series have a positive correlation coefficient, if
the value of one time series at a certain index is relatively large in comparison to
its mean, then the value of the other time series at the same index also tends to
be relatively large. On the other hand, if the correlation coefficient is negative,
then when the value of one time series is relatively large, the value of the other
tends to be relatively small. Our algorithm is inspired by the observation that if
the correlation coefficient of the load time series of two operators is small, then
putting these operators together on the same node helps in minimizing the load
variance.

The intuition of correlation is also the foundation of the other idea in our
algorithm: when making operator allocation decisions, we try to maximize the
correlation coefficient between the load statistics of different nodes. This is be-
cause moving operators will result in temporary poor performance due to the
execution suspension of those operators. However, if the load time series of two
nodes have large correlation coefficient, then their load levels are naturally bal-
anced even when the load changes. By maximizing the average load correlation
between all node pairs, we can minimize the number of load migrations needed.

As we showed in an earlier paper [14], minimizing the average load variance
in fact also helps in maximizing the average load correlation, and vice versa.
Therefore, the main goal of our load distribution algorithms is to produce a
balanced operator mapping plan where the average operator load variance is
minimized or the average node load correlation is maximized. More formally,
assume that there are n nodes in the system. Let Xi denote the load time series

of node Ni and ρij denote the correlation coefficient of Xi and Xj for 1 ≤ i, j ≤ n.
We want to find an operator mapping plan with the following properties:

• EX1 ≈ EX2 ≈ ... ≈ EXk

•
1
n

n∑

i=1

varXi is minimized, or

•
∑

1≤i<j≤n

ρij is maximized.

Finding the optimal solution to this problem requires comparison of all pos-
sible mapping plans and is NP hard. Instead, we developed a number of greedy
heuristics which helps us find sub-optimal solutions in polynomial time, and
which can experimentally be shown to perform very close to the optimal.

The Borealis coordinator periodically collects load statistics from all nodes,
orders nodes by their average load, and pairs them by grouping the ith node with
the (n − i + 1)th node in the ordered list. If the load difference between a node
pair is above a certain threshold, then operators need to be moved between those
nodes to balance their average load in a way that also minimizes their average
load variance. Given such a pair, the load movement can be either one-way or
two-way:

• In the one-way case, only the more loaded node is allowed to offload half
of its excess load to its mate; the purpose is to reduce the load movement
overhead. The operators of the more loaded node (say N1) are ordered based
on a score, and the operator with the largest score is moved across to the other
node (say N2) in a greedy fashion until the balance is achieved. The score
for an operator o represents the difference between the correlation coefficient
between o and the rest of the operators at N1, and the correlation coefficient
between o and the rest of operators at N2. A larger score makes o a desirable
candidate for movement, since this way, the average load variance for the
pair can be decreased.

• In the two-way case, all operators on both members of the pair can be moved
across freely. Initially, both nodes are treated as empty nodes. At each iter-
ation, we select an operator from the pool of unmapped operators with the
largest score and place it at the less loaded node. We continue until all op-
erators have been mapped to one of the nodes. This two-way algorithm can
result in a better mapping plan than the one-way algorithm; however, the
load movement overhead can be unnecessarily high, especially when the for-
mer mapping was relatively good. To address this problem, we add a selective
exchange step to our algorithm which would only allow the two-way move-
ment of operators whose score is above certain threshold. By varying this
threshold, we can control the tradeoff between the amount of load moved
and the quality of the resulting mapping plan.

The above correlation-based load redistribution algorithms can also be mod-
ified to handle the case of initial load distribution when all nodes are empty.

0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

System Load Level

La
te

nc
y

R
at

io

RAND−GLB
LLF−GLB
COR−GLB

(a) Latency ratio

0.8 0.85 0.9 0.95 0.98
0

0.05

0.1

0.15

0.2

0.25

System Load Level

A
ve

ra
ge

 L
oa

d
S

ta
nd

ar
d

D
ev

ia
tio

n

MINIMUM
COR−GLB
RAND−GLB
LLF−GLB

(b) Average load variance

Fig. 4. Performance comparison for correlation-based global algorithm with others

The algorithm is very similar to the two-way case except that the score for-
mula should be generalized to n nodes rather than considering a single pair. The
algorithm in this case is global rather than pair-wise.

In Figure 4, we compare our correlation-based load distribution algorithm
against two other load balancing alternatives (randomized load balancing (RAND-
GLB) and largest load first load balancing (LLF-GLB)). Figure 4(a) shows that
our algorithm maintains low latency with increasing load, and Figure 4(b) con-
firms that the resulting average load variance is also much smaller (and very
close to the optimal) for our algorithm. A detailed description of all of our dy-
namic load distribution algorithms along with their theoretical and experimental
performance evaluation can be found in our earlier work [14].

3.2 Resilient Operator Distribution

Dynamic load distribution techniques described in the previous subsection for
balancing load and minimizing latency in the face of unpredictable load vari-
ations are more suitable for medium-to-long term load variations, since they
persist for relatively longer periods of time and are thus rather easy to cap-
ture. Furthermore, the overhead of load redistribution is amortized over time.
On the other hand, short-term load fluctuations are both difficult to capture
due to their transient nature and too heavy-weight to handle through operator
redistribution. To give a concrete example, the base overhead of run-time op-
erator migration in Borealis is measured to be on the order of a few hundred
milliseconds (higher for operators with larger state) [15]. Thus, for these kinds
of scenarios where operator movement is rather prohibitive, Borealis provides a
static resilient operator distribution algorithm.

A resilient operator distribution (ROD) is one that does not become over-
loaded easily in the face of bursty and fluctuating input rates. This is achieved
by optimizing the system to handle as many load points as possible so that it
can tolerate those load conditions without the need for operator migration. More
specifically, we model the load of each operator as a function of operator costs,
selectivities, and system input stream rates. For given input stream rates and a

given operator distribution plan, the system is either feasible (i.e., none of the
nodes are overloaded), or infeasible (i.e., at least one node is overloaded). The
set of all feasible input rate combinations defines a feasible set. Thus, our goal is
to find an operator distribution plan that maximizes the size of this feasible set.

Our approach to this problem is based on a linear algebraic model. In this
model, we consider a multi-dimensional space of input stream rates, where each
processing node is represented by a hyperplane that consists of all input rate
points that render this node fully loaded. These node hyperplanes collectively
determine the shape and size of the feasible set. Thus, our goal is to find the
“ideal” hyperplane which gives us the largest feasible set size. We mathematically
showed that this “ideal” feasible set can be achieved if all node hyperplanes are
identical (i.e., if the load of each stream is perfectly balanced across all nodes)
[15]. However, the ideal feasible set may not always be achievable in practice.
Therefore, our main goal is to make the node hyperplanes as close to the ideal
hyperplane as possible.

Enumerating all possible operator distribution plans and comparing their
feasible set sizes to find an optimal plan is intractable when the number of inputs
or the number of operators is large [15]. Therefore, we developed a greedy ROD
algorithm which is driven by the following two heuristics:

• MaxMin Axis Distance (MMAD). Push the intersection points of the
node hyperplanes along each axis, towards those of the ideal hyperplane.

• MaxMin Plane Distance (MMPD). Push node hyperplanes directly to-
wards the ideal hyperplane.

Intuitively, MMAD tries to balance the load of each input stream across
the nodes in proportion to their CPU capacities, whereas MMPD focuses on
the combination of the impact of different input streams on each node to avoid
creating bottlenecks at certain nodes. In other words, MMPD tries to balance
the load of the nodes in proportion to their CPU capacities for multiple workload
points.

The ROD algorithm appropriately combines these heuristics and consists of
the following two steps:

• Operator Ordering. Sort the operators in descending order of their effect
on load.

• Operator Assignment. Iteratively assign each operator in the ordered list
to a node such that the reduction in the final feasible set size would be
minimal. Given an operator o, it is assigned to one of the nodes using a
combination of our MMAD and MMPD heuristics. More specifically, at each
assignment step, we first separate the nodes into two classes. In Class I, we
include those nodes that will not lead to a reduction in the final feasible set
size, whereas in Class II, we have the remaining ones. If Class I is not empty,
then we choose a node from this class (either randomly or based on another
orthogonal criteria [15]), and assign o to this node. Otherwise, o is assigned
to the node from Class II which will bear the maximum plane distance. In

25 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Operators

A
ve

ra
ge

 F
ea

si
bl

e
S

et
 S

iz
e

R
at

io
 (

A
 /

Id
ea

l)

A = ROD
A = Correlation−Based
A = LLF−Load−Balancing
A = Random
A = Connected−Load−Balancing

(a) Resiliency

1 2 3 3.5
0

50

100

150

200

250

Input Stream Rate Multiplier

A
ve

ra
ge

 E
nd

−
to

−
E

nd
 L

at
en

cy
 (

m
s)

ROD
Correlation−Based
LLF−Load−Balancing
Max−Rate−Load−Balancing
Random
Connected−Load−Balancing

(b) Average latency

Fig. 5. ROD performance

other words, when we assign operators to Class I nodes, we push the axis
intersection points closer to those of the ideal hyperplane as in the MMAD
heuristic. On the other hand, when we assign them to Class II nodes, we
follow the MMPD heuristic and select the node which has the largest plane
distance.

In Figure 5, we show two base results from our performance study on the Bo-
realis prototype running on 10 homogeneous server nodes. We used aggregation-
based network traffic monitoring queries. Figure 5(a) compares the feasible set
size achieved by different operator distribution algorithms (relative to the ideal).
ROD clearly outperforms all of the other alternatives, including our correlation-
based load balancing algorithm that was summarized in Section 3.1. As the
number of operators increases, ROD approaches to the ideal case and most of
the other algorithms also improve because there is a greater chance that the load
of a given input stream will be spread across multiple nodes. Figure 5(b) com-
pares average end-to-end latency achieved as a result of applying various load
distribution algorithms as the CPU utilization is increased from 26% to 79%
(corresponding to input rates multipliers of 1 and 3.5, respectively). Since ROD
produces the largest feasible set size and since it balances the node loads consid-
ering multiple input rate combinations, it performs and scales better than the
other alternatives. Our results demonstrate that, for a representative workload
and data set, ROD (i) sustains longer and is more resilient than the alternatives,
and (ii) despite its high resiliency, it does not sacrifice latency performance.

We have also extended our ROD algorithm to handle nonlinear load models,
to exploit additional workload information, and to consider communication costs.
Details of ROD and its extensions together with their detailed performance
results can be found in our earlier work [15].

4 Distributed Load Shedding in Borealis

Data streams can arrive in bursts and provisioning the system for the worst-
case load (which can be orders of magnitude higher than the average load) is
in general not economically sensible. On the other hand, bursts in data rates
may create overload on servers which slows down processing and causes delayed
outputs. This is unacceptable in terms of quality of service of real-time stream-
ing applications, where low-latency is a major requirement. Borealis provides
load shedding techniques to make sure that all servers always operate below
their processing capacity limits. This is achieved by inserting load reducing drop
operators at selected arcs of the query network. Dropped tuples result in ap-
proximate answers. Therefore, the main goal in our load shedding algorithms is
to minimize the degradation in answer quality 3.

In a distributed stream processing system, each node acts like a workload
generator for its downstream nodes. Therefore, resource management decisions
at any node will affect the characteristics of the workload received by its children.
Because of this load dependency between nodes, a given node must figure out
the effect of its load shedding actions on the load levels of its descendant nodes.
Load shedding actions at all nodes along the chain will collectively determine the
quality degradation at the outputs. This makes the problem more challenging
than its centralized counterpart [16].

To illustrate, consider the simple query network in Figure 6, with two queries
that are distributed onto two processing nodes A and B. Each small box repre-
sents a subquery with a certain cost and selectivity. Cost reflects the CPU time
that it takes for one tuple to be processed by the subquery, and selectivity rep-
resents the ratio of the number of output tuples to the number of input tuples.
Both inputs arrive at the rate of 1 tuple per second. Potentially each node can
reduce load at its inputs by dropping tuples to avoid overload. Let’s consider
node A. Table 1 shows various ways that A can reduce its input rates and the
consequences of this in terms of the load at both A and B, as well as the through-
put observed at the query outputs (Note that we are assuming a fair scheduler
that allocates CPU cycles among the subqueries in a round-robin fashion). In all
of these plans, A can reduce its load to the capacity limit. However, the effect

3 In this work, we focus on total query throughput as the quality metric to maximize.

cost = 1
sel = 1.0 sel = 1.0

sel = 1.0
cost = 1 cost = 3

cost = 2

sel = 1.0

Node BNode A

r1 = 1

r2 = 1

Fig. 6. Motivating example

Plan Reduced rates at A A.load A.throughput B.load B.throughput Result

0 1, 1 3 1/3, 1/3 4/3 1/4, 1/4 originally, both nodes
are overloaded

1 1/3, 1/3 1 1/3, 1/3 4/3 1/4, 1/4 B is still overloaded

2 1, 0 1 1, 0 3 1/3, 0 optimal plan for A,
but increases B.load

3 0, 1/2 1 0, 1/2 1/2 0, 1/2
both nodes ok,
but not optimal

4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

Table 1. Alternate load shedding plans for node A of Figure 6

of each plan on B can be very different. In plan 1, B stays at the same overload
level. In plan 2, B’s load increases to more than twice its original load. In plan
3, B’s overload problem is also resolved, but throughput is low. There is a better
plan which removes overload from both A and B, while delivering the highest
total throughput (plan 4). However, node A can only implement this plan if it
knows about the load constraints of B. From A’s point of view, the best local
plan is plan 2. This simple example clearly shows that nodes must coordinate in
their load shedding decisions to be able to achieve high-quality query results.

We model the distributed load shedding problem as a linear optimization
problem. In our formulation, each server node is represented with a linear load
constraint, written in terms of operator costs, selectivities, and input rates. The
objective function to maximize is the total output rate at the query end-points,
written in terms of operator selectivities and input rates. The drop selectivities
(i.e., the fraction of tuples to be kept at the designated drop arcs) appear as the
variables in both of these formulas. The goal is to solve the linear program to as-
sign the optimal values to these variables that would satisfy the load constraints
on all servers while maximizing the total throughput objective [17].

Our solution to the distributed load shedding problem consists of four steps:
(i) advanced planning, (ii) load monitoring, (iii) plan selection, and (iv) plan
implementation. In the first step, we precompute a series of load shedding plans
for various input rate combinations, each corresponding to an overload condition.
The idea is to prepare the system against any potential overload scenario by
doing most of the computational work in advance. Next we start periodically
measuring the system load. If an overload is detected in one or more of the
servers, we select a plan from the previously computed ones and modify the
query network according to this plan.

We architect our solution in two alternative ways:

• Centralized Approach. In the centralized solution, all load shedding steps
are performed at one central server (designated as the “coordinator node”)
except the plan implementation step. The coordinator contacts all the other
servers in order to collect information on their query network topology and
run-time statistics (e.g., operator costs and selectivities). Based on the col-
lected global metadata, the coordinator generates a series of load shedding

plans for other servers to apply under certain overload conditions. Here, we
use the GNU Linear Programming Toolkit (GLPK) 4 to generate the plans.
These plans are then uploaded onto the associated servers together with their
plan-id’s. Then the coordinator starts monitoring the input load. If an over-
load situation is detected, the coordinator selects the best plan to apply and
sends the corresponding plan-id to the other servers in order to trigger the
distributed implementation of the selected plan.

• Distributed Approach. In the distributed solution, all four load shedding
steps are performed at all of the participating nodes in a cooperative fashion.
The collective actions of all the servers result in a globally effective load shed-
ding plan. The neighboring servers coordinate through metadata aggregation
and propagation. As a result of this communication, each node identifies what
makes a feasible input load for itself and its server subtree, and represents
this information in a table that we call the Feasible Input Table (FIT). FIT
is then propagated to the upstream parent. The parent aggregates the FITs
from all of its children, eliminating the table entries that are infeasible for
itself. Finally, the parent propagates the resulting FIT to its own parents.
This propagation continues until the input nodes receive the FIT for all their
downstream nodes. Then using its FIT, a node can shed load for itself and
for its descendant nodes.

In the rest of this section, we describe how we perform the advance planning
step for the above alternative approaches.

4.1 Solver-based Advance Planning

Our goal in the advance planning step of the centralized, solver-based approach
is to produce load shedding plans for a set of infeasible input rate combinations,
which will make them feasible for all the servers in the system. The number
of such combinations to consider could be potentially very large, and it would
be too costly to call the LP solver for each such combination. Instead we use
the following, more efficient strategy: We consider a multi-dimensional space of
input rates. We systematically search this space to pick a subset of the possible
points for which we will call the solver. For the rest of the points, we approx-
imately reuse the solver-generated plans. To be more specific, we assume that
an error threshold in quality, ε is defined. Given any infeasible point s that
lies between two other infeasible points r and q (i.e., r < s < q) for which
we have already computed the optimal load shedding plan using the solver, if
(q.quality − r.quality) ≤ ε ∗ q.quality, then s can use the plan for r with a mi-
nor modification. For example, consider the two-dimensional example in Figure
7(a), each dimension representing an input stream. Assume that s = (60, 75)
lies within ε-distance from r = (50, 50) and q = (100, 100). Then s can use the
plan at r, with the additional modification that input1 and input2 must be re-
duced by an additional factor of 50

60 and 50
75 , respectively. Based on this idea, we

4 http://www.gnu.org/software/glpk/glpk.html

r = (50, 50)

s = (60, 75)

p = (0, 0)

EC

G D

F H

K

J

M

L

q = (100, 100)

(a) Space division for Solver

B

J K L M

F G H

C D E

A

I

(b) Space index for Solver

Fig. 7. Quadtree-based space division and index for Solver

take the input rate space and divide it in a region quadtree-like fashion. For
each region, the solver is called for the top-most and the bottom-most points.
We stop dividing a region either when all points in that region turn out to be
within the ε bound, or the top-most point is in fact a feasible point. The result
of this process is a collection of input rate subspaces with a load shedding plan
assigned to each subspace. These subspaces can be very conveniently placed into
a quadtree-based index during the space division process described above. For
example, Figure 7(b) shows the index that corresponds to the space division of
Figure 7(a). At run time, we will use this index to locate the region into which an
observed infeasible rate point falls and will use the corresponding load shedding
plan.

4.2 FIT-based Advance Planning

Our goal in the advance planning step of the distributed 5, FIT-based approach
is to represent a set of feasible input rate combinations (for each server and its
subtree) with a table. To briefly summarize, given a node with m inputs, the FIT
for this node is a table with m + 2 columns. The first m columns represent the
rates for the m inputs; the (m+1)th column represents the complementary local
load shedding plan that must be used together with that input entry (this plan
may be needed to handle query sharing [17]); and the last column represents the
resulting output quality score. Again, for efficiency, we do not want to consider
all possible rate combinations. Instead, we use the ε threshold as follows: From
each input dimension, we pick FIT points that are at most some distance apart,
we call this distance “spread” for that dimension. If input dimension i has a
maximum feasible rate mi, then the spread for that dimension can be computed

5 Although FIT is a distributed algorithm by design, its centralized implementation
is also available [17].

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
C−FIT

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(a) Solver and C-FIT

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
Solver−W

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

(b) Solver and Solver-W

Fig. 8. Plan generation performance for different query networks

as ε ∗ mi. Next, we must map potential infeasible points to our feasible points
in FIT. This means that, if we observe a certain infeasible point q, then we
will reduce it to a feasible point p using proper drop values. In general, an
infeasible point q that is greater than a feasible point p on all dimensions can be
mapped to p. However, we would like to use the best mapping. Our algorithm
divides the input rate space accordingly to make sure that this assignment is
done to guarantee the highest quality for all infeasible points. The resulting set
of subspaces are again placed in a quadtree-based data structure to facilitate
search at run-time. Further details about how FIT points are generated and
how this table is propagated between neighboring nodes are described in our
earlier work [17], [18].

In Figure 8, we show a basic experimental result that compares the load
shedding plan generation time for our alternative approaches on five different
query networks. These networks differ in the way they apportion the query load
across different query paths. In Figure 8(a), we are showing that centralized
implementation of FIT outperforms Solver and it is also less sensitive to query
load imbalance. The performance difference is mainly due to the time Solver
spends in searching the space of infeasible points, while FIT only deals with
the feasible points. In Figure 8(b), we compare Solver with its variation Solver-
W. Solver-W essentially takes workload knowledge into account and tries to
meet a given expected error threshold for the average case. In other words,
some infeasible points are known to be less likely than others. Errors of such
points contribute less to the average error. Therefore, the algorithm spends less
time exploring the corresponding subspaces. The result is some improvement in
plan generation performance. Further experimental results can be found in our
previous work [17].

5 High-Availability in Borealis

In a distributed stream processing system, servers may fail and this can signif-
icantly disrupt or even halt overall stream processing. In case of failures, large
amount of transient information may be lost and the servers downstream from

a failed one may stop making any progress. Therefore, a distributed stream
processing system must provide high-availability (HA) mechanisms that allows
processing to continue in spite of server failures. These mechanisms must take
correctness (e.g., data loss, duplicates) and performance (e.g., latency introduced
during regular processing and during recovery time) requirements of the appli-
cations into account.

5.1 Basic HA Models

In Borealis, we define three types of recovery guarantees to address different HA
requirements:

• Precise Recovery. Post-failure output is exactly the same as the output
without failure. Many financial services applications have such strict correct-
ness requirements.

• Rollback Recovery. The output produced after a failure is “equivalent”
to that of an execution without failure, but not necessarily to the output
of the failed execution. The output may also contain duplicate tuples. Thus,
information loss is avoided, but the output can still be imprecise. Event
detection applications such as fire alarms, theft prevention are examples.

• Gap Recovery. This is the weakest form of recovery where data loss is ac-
ceptable for better performance. Sensor-based environment monitoring where
recent data is more important is an example.

Each primary server has an associated backup server. A backup server runs
its own stream processing engine and has the same query network fragment as
its primary, but its state is not necessarily the same as that of the primary. If a
primary server fails, its backup server immediately detects the failure and takes
over the operation of the failed server.

Borealis provides four recovery approaches that can provide one or more of
the above recovery guarantees. These approaches mainly differ in how primary
and backup servers prepare for failures. Each approach uses a different combi-
nation of redundant processing, checkpointing, and remote logging. As a result,
they offer different tradeoffs between run-time overhead and recovery perfor-
mance.

• Amnesia. This approach does not involve any preparation for failures. As
soon as the backup server detects that the primary has failed, it restarts the
failed query network from an empty state.

• Passive Standby. Each primary server periodically checkpoints (i.e., reflects
its state updates) to its backup server. The backup server takes over from
the latest checkpoint when the primary fails.

• Active Standby. The backup server processes all tuples in parallel with its
primary. The output tuples of the backup server are not sent downstream;
instead they are logged at the output queues. If the primary fails, the backup

takes over by sending the logged tuples to all downstream neighbors and then
continuing its processing.

• Upstream Backup. Upstream servers preserve tuples in their output queues
while their downstream neighbors are still processing them. If a server fails,
an empty backup server rebuilds the latest state of the failed primary from
the logs kept at the upstream server.

The amnesia approach can only provide gap recovery guarantee, while the
other approaches provide rollback recovery in their simplest forms and can be
extended to provide precise recovery. In principle, the guarantee of precise re-
covery requires a higher run-time cost than other weaker recovery guarantees.
Furthermore, the query operators may also affect recovery semantics and asso-
ciated cost requirements. Some Borealis operators are deterministic (i.e., they
produce the same output stream every time they start from the same initial
state and receive the same input tuples), while others are arbitrary due to de-
pendence on time or arrival order. Thus, deterministic ones are less costly to
provide better guarantees [19].

An in-depth algorithmic analysis of all of the above basic HA alternatives to-
gether with results from our experimental study showed that each HA approach
poses a clear tradeoff between recovery time and processing overhead [19]. In
fact, each approach covers a complementary portion of the solution space. To
summarize:

• Active standby has high run-time overhead, but provides very fast recovery.

• Passive standby performs worse than active standby both in terms of recovery
time and run-time overhead. However, it is the only approach that easily
provides precise recovery for arbitrary query networks. Additionally, it can
flexibly trade off between run-time overhead and recovery speed by adjusting
the checkpoint interval.

• Upstream backup provides precise recovery for most query networks with the
lowest run-time overhead, but at the cost of a longer recovery, depending on
the amount of logged data to process during recovery.

5.2 Cooperative and Self-Configuring HA for Server Clusters

A server cluster is a popular form of shared-nothing computing architecture
where commodity servers are connected by fast local area networks. Borealis may
distribute its processing load onto such a cluster for better scalability. For such
environments, we designed and implemented a self-configuring HA approach that
enables fast recovery as well as minimal slow-down for regular processing. Unlike
our basic HA mechanism described in Section 5.1 where each server is assigned
one other backup server, in this case, each server is backed up by multiple servers
in a cooperative fashion. Each of these backup servers are in charge of a disjoint
query network fragment (called an “HA unit”) of the primary server. Thus, they
can take over the failed execution in parallel, which speeds up the recovery time
of rebuilding the latest state of the failed server. Furthermore, HA tasks are

performed when servers are idle, which reduces the interference with regular
stream processing.

In this work, we focused on checkpoint-based passive standby as the recovery
approach. This choice is mainly due to the fact that checkpointing works for a
larger set of workload and usage scenarios than the other alternatives. Below
we briefly summarize the important features of this approach; more technical
details can be found in our previous work [20].

• The HA Mechanism. Query network on each server is partitioned into HA
units. Each such unit is assigned to a different backup server. The preparation
for failures involves two HA tasks, namely capture and paste, to be performed
during idle periods. Capture is performed by the primary server, while paste
is performed by the backup server. In capture, the primary selects one of its
HA units, prepares a checkpoint message for it that includes all the state
changes since the last checkpoint, and sends this message to the associated
backup server. In paste, the backup selects one of the checkpoint messages
that it has received from a primary, copies the message to the corresponding
backup image, and notifies the sender primary that the checkpointing request
has been completed. Each server is periodically pinged by another designated
server. If a failure is detected, then this is broadcast to other servers in the
cluster. Each of these notified servers immediately pastes any checkpoint
messages from the failed server to the corresponding backup images. Then
the execution of these backup images start while the necessary input and
output streams are redirected so that stream processing can continue at the
backup servers. This HA mechanism provides precise recovery because each
backup image can obtain the tuples that the primary has processed since
the last checkpoint. This is achieved by keeping output queues at the output
of each HA unit to retain those tuples that the downstream backups are
currently missing. These output queues are pruned when the downstream
server processes them and checkpoints the effect onto the backup server.

• Checkpoint Scheduling. A server can be a primary for some HA units and
can be a backup for others. Therefore, when it is idle, it can perform either a
capture task, or a paste task. The recovery time can be significantly reduced
by a careful scheduling of these HA tasks. We developed an algorithm called
the “Min-Max Checkpoint Scheduling Algorithm”. The idea is to schedule
the HA task that would minimize the maximum recovery load among the
ones that are in the task queue. This algorithm first finds the best capture
task, i.e., the capture of the HA unit with high processing load and low
checkpointing cost. Similarly, it finds the best paste task that would help the
HA unit with the largest recovery load. Finally, it performs the best task
found.

• Dynamic Backup Assignment. Assignment of HA units to backup servers
can also affect the recovery time. For example, a server which is assigned
too many HA units for backup may become a bottleneck. Furthermore, an
existing backup assignment may need to be changed with varying system

0 50 100 150
0

1

2

3

4

5

6

7

8

time (sec)

re
co

ve
ry

 ti
m

e
(s

ec
)

active standby
whole checkpointing (passive standby)
round robin
min max

(a) Recovery time

0 50 100 150
0

0.5

1

1.5

2

2.5

3

time (sec)

la
te

nc
y

(s
ec

)

no HA / active standby
whole checkpointing (passive standby)
mim max/ round robin

(b) End-to-end latency

Fig. 9. Performance of min-max checkpoint scheduling

conditions (e.g., changing input rates). Therefore, our approach periodically
runs a “Backup Reassignment Algorithm”. This algorithm detects the worst
point of failure (i.e., the server whose failure would cause the longest recov-
ery), and balances its backup load with another server whose failure would
cause the shortest recovery.

• Delta Checkpointing. HA tasks can be performed more efficiently using
operator-specific delta-checkpointing techniques. This is important for state-
ful operators such as aggregate and join. We use dirty bits for aggregate
groups and windows to mark whether they were created after the last check-
point or not. Dirty windows are fully captured/pasted while others are par-
tially captured/pasted. For join, only the tuples that entered the window
after the last checkpoint are captured.

We performed various experiments on the Borealis prototype in order to
evaluate the performance of the above techniques [20]. Figure 9 is a basic result
that shows how our min-max checkpoint scheduling algorithm effectively reduces
the recovery time while being minimally intrusive to regular query processing.
In this experiment, 16 aggregates were deployed on each of 5 identical servers,
and input stream rates were increased at time point 150 seconds, when each
server became around 90% utilized for query processing. Figure 9(a) shows that
min-max algorithm provides the fastest recovery even after the system load is
increased. Figure 9(b) shows how HA tasks affect query processing performance.
Our finer-grained checkpoint technique disrupts processing much less than the
standard whole checkpointing approach.

6 Conclusions and Future Work

This paper provides an overview of the Borealis system and three of its features
that are key for its scalable and reliable distributed operation. With our resilient
operator distribution algorithm, Borealis can withstand high degrees of load
without the need for any operator migration. Beyond that, our correlation-based

operator distribution algorithm can dynamically balance server loads by taking
the relationship between load variations of operators and nodes into account.
Our work on distributed load shedding has focused on the load dependency
between different servers, and has proposed two alternative solution architectures
for removing CPU overload, where scalable coordination between neighboring
servers can be achieved in a centralized or a distributed way. Finally, our work
on high availability has explored various recovery guarantees and models that
may be demanded by different applications, and has shown the existing tradeoffs
between performance and correctness. This work has further explored efficient
checkpoint-based recovery techniques for server clusters based on cooperation
among multiple servers and automatic self-configuration with changing load. All
of these algorithms have been implemented and experimentally evaluated on our
system prototype. The latest Borealis prototype code can be downloaded from
http://www.cs.brown.edu/research/borealis/.

We are currently working on a replication-based stream processing scheme
that will provide Borealis with faster and more reliable operation over wide-area
networks [21]. Other future work items include support for richer data types
(such as video streams) in the form of multi-dimensional arrays, and seamless
integration of stream processing with large-scale data collection and dissemina-
tion.

Acknowledgements. We thank all members of the Borealis project for their
support. This research has been sponsored by the NSF under the grants IIS-
0086057 and IIS-0325838.

References

1. Whitney, A.T., Shasha, D.: Lots o’ Ticks: Real-Time High Performance Time Series
Queries on Billions of Trades and Quotes (Demo). In: ACM SIGMOD Conference,
Santa Barbara, CA (2001)

2. Babu, S., Subramanian, L., Widom, J.: A Data Stream Management System for
Network Traffic Management. In: ACM Workshop on Network-Related Data Man-
agement (NRDM), Santa Barbara, CA (2001)

3. Stefanidis, A., Nittel, S., eds.: Geosensor Networks. CRC Press (2004)
4. Leonhardt, U., Magee, J.: Multi-sensor Location Tracking. In: International Con-

ference on Mobile Computing and Networking (MobiCom), Dallas, TX (1998)
5. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E.,

Cooper, O., Edakkunni, A., Hong, W.: Design Considerations for High Fan-In
Systems: The HiFi Approach. In: CIDR Conference, Asilomar, CA (2005)

6. Shah, M.A., Hellerstein, J.M., Brewer, E.: Highly-Available, Fault-Tolerant, Par-
allel Dataflows. In: ACM SIGMOD Conference, Paris, France (2004)

7. Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.,
Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik,
S.: The Design of the Borealis Stream Processing Engine. In: CIDR Conference,
Asilomar, CA (2005)

8. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-Aware Operator Placement for Stream-Processing Systems. In: IEEE
ICDE Conference, Atlanta, GA (2006)

9. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive Control of
Extreme-scale Stream Processing Systems. In: IEEE ICDCS Conference, Lisboa,
Portugal (2006)

10. Zdonik, S., Stonebraker, M., Cherniack, M., Çetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa Projects. IEEE Data Engineering Bulletin
(Special Issue on Data Stream Processing) 26(1) (2003)

11. Abadi, D., Lindner, W., Madden, S., Schuler, J.: An Integration Framework for
Sensor Networks and Data Stream Management Systems (Demo). In: VLDB Con-
ference, Toronto, Canada (2004)

12. Ahmad, Y., Berg, B., Çetintemel, U., Humphrey, M., Hwang, J., Jhingran, A.,
Maskey, A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., Zdonik,
S.: Distributed Operation in the Borealis Stream Processing Engine (Demo). In:
ACM SIGMOD Conference, Baltimore, MD (2005)

13. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for
Data Stream Management. VLDB Journal 12(2) (2003)

14. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic Load Distribution in the Borealis
Stream Processor. In: IEEE ICDE Conference, Tokyo, Japan (2005)

15. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing Resiliency to Load
Variations in Distributed Stream Processing. In: VLDB Conference, Seoul, Korea
(2006)

16. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M.: Load
Shedding in a Data Stream Manager. In: VLDB Conference, Berlin, Germany
(2003)

17. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying FIT: Scalable Load Shedding
Techniques for Distributed Stream Processing. Technical Report CS-06-13, Brown
University, Computer Science (2006)

18. Tatbul, N., Zdonik, S.: Dealing with Overload in Distributed Stream Process-
ing Systems. In: IEEE International Workshop on Networking Meets Databases
(NetDB), Atlanta, GA (2006)

19. Hwang, J.H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik,
S.: High-Availability Algorithms for Distributed Stream Processing. In: IEEE
ICDE Conference, Tokyo, Japan (2005)

20. Hwang, J.H., Xing, Y., Çetintemel, U., Zdonik, S.: A Cooperative, Self-Configuring
High-Availability Solution for Stream Processing. In: IEEE ICDE Conference,
Istanbul, Turkey (2007)

21. Hwang, J.H., Çetintemel, U., Zdonik, S.: Fast and Reliable Stream Processing
over Wide Area Networks. In: IEEE International Workshop on Scalable Stream
Processing Systems (SSPS), Istanbul, Turkey (2007)

