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Abstract

Workflows are activities involving the coordinated exe-
cution of multiple tasks performed by different processing
entities, mostly in distributed heterogeneous environments
which are very common in enterprises of even moderate
complexity. In current commercial workflow systems, the
workflow scheduler is a single centralized component. A
distributed workflow enactment service on the other hand
should contain several schedulers on different nodes of a
network each executing parts of process instances. Such
an architecture would fit naturally to the distributed hetero-
geneous environments. Further advantages of distributed
enactment service are failure resiliency and increased per-
formance since a centralized scheduler is a potential bottle-
neck.

In this paper we present the design and implementation
of a distributed workflow enactment service based on the
work given in [12]. Yet by starting with a block structured
workflow specification language we avoid the very general
set of dependencies and their related problems. In this way
it is possible to present a simple algorithm for distributed
scheduling of process instances. Further benefits of the ap-
proach are the ease in testing and debugging the system and
execution efficiency through reduced number of messages.

1 Introduction

Workflows are activities involving the coordinated exe-
cution of multiple tasks performed by different processing
entities. Since they execute in distributed heterogeneous en-
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tific and Technical Research Council of Turkey, Project Number: EEEAG-
Yazilim5, by Motorola (USA) and by Sevgi Holding (Turkey).

vironments involving a variety of human and system tasks,
distributed scheduling of workflows is essential.

Distributed scheduling of workflows has been addressed
in [1, 3, 12]. In [1], a distributed workflow system is pro-
posed based on persistent message queues where the au-
thors assume that the processes are well-formed, i.e., they
do not have cycles or dependencies that may compromise
their execution. The authors further assume that the data
flow follows the ordering imposed by the control flow to
avoid race conditions. [3] proposes INCAs for distributed
workflow management. In this model, each execution of a
process is associated with an Information Carrier (INCA),
which is an object that contains all the necessary informa-
tion for the execution as well as propagation of the object
among the relevant processing nodes.

In this paper we describe the design and implementa-
tion of a distributed workflow enactment service based on
the work presented in [12]. Workflow enactment service
is the core component of a workflow management system.
It instantiates processes according to the process descrip-
tion and controls correct execution of activities interacting
with users via worklists and invoking applications as nec-
essary. Workflow enactment service maintains control data
and workflow relevant data and uses them to evaluate entry
and exit criteria for activity steps. It is also responsible for
supervisory actions of control, administration and audit [7].

The approach taken in [11, 12] for distributed schedul-
ing of workflow executions is based on the following ob-
servations and mechanisms: The main activity of a work-
flow is organization and coordination of tasks which might
be dependent on each other by their states. For exam-
ple start of one task may depend on the commitment of
another task. Since state changes of the tasks are repre-
sented as event generations, state dependencies can be de-
fined through event ordering. Therefore controlling the oc-
currences of events provides the coordination of the tasks.
In other words, intertask dependencies are represented by



the event dependencies. To make distributed execution of
workflow computations possible, occurrences of events are
not controlled in a central scheduler. Instead, each event
is made responsible for controlling its execution to decide
on the right time to occur. Required information for this
operation is obtained from the dependency expressions af-
ter a refinement process which is termed as guard compi-
lation. Guards are temporal expressions defined on events
and occurrences of events are permitted only if their guards
are true. When an event happens, messages announcing its
occurrence are sent to other related events. Tasks are in-
terfaced to the system through agents. An agent embod-
ies a coarse description of the task, including states and
transitions. In addition, an actor is instantiated for each
event. The actor for an event maintains its current guard and
manages communication of necessary messages. Guards of
events are determined by generating all possible computa-
tions relevant to each dependency. In evaluating a guard, the
intrinsic attributes of events must be taken into account. The
following event attributes are defined in [12]: (a) Normal
events that are delayable and rejectable (e.g. commit), (b)
Inevitable events that are delayable and nonrejectable, (c)
Immediate events that are nondelayable and nonrejectable
(e.g. abort), and (d) Triggerable events that are forcible (e.g.
start). The event attributes are taken into account during
guard generation [12].

The following points have been notified with this ap-
proach:

1. In [2], guard generation process is said to run into com-
binatorial explosion. The proposed process first deter-
mines all possible paths for a given dependency. There
are n! number of paths for a dependency involving n
events. Later in [12], it is proposed that by relaxing the
past and the future, the guards can be generated sym-
bolically without the need for determining all possible
paths.

2. The execution mechanism is based on message ex-
change between actors since guards on events require
notification messages to assimilate the event execu-
tions. This in turn might arise potential race conditions
and deadlocks. For example there could be two events
waiting for the occurrence of each other, resulting in
a deadlock. It is therefore essential to preprocess the
guards so as to detect and resolve the potential dead-
locks through promissory messages [12].

3. The guards may contain events that refer to the future,
however in actual execution we do not have the luxury
of looking into the future. In [12], various heuristics
are suggested, yet the completeness of the suggested
heuristics is left as a future work.

In order to confine the theory presented in [12] to a man-
ageable practical implementation, we started by designing
a block structured procedural workflow specification lan-
guage. In this way it becomes possible to express the work-
flow specification with a well-defined set of dependencies.
We show that these dependencies produce simple guard ex-
pressions which in turn makes it possible to give a simple
algorithm to generate the guards from the specification lan-
guage by also taking the event attributes into account.

The block structured nature of the specification language
makes it also possible to locate and handle the deadlocks
and race conditions without the need for preprocessing the
specification as explained in Section 3 .

Furthermore, in our workflow specification language,
because of its well-defined semantics, the references to the
future are known at compile time and can thus be easily han-
dled by a special software module ( a modified 2PC protocol
implementation) as explained in section 3.2.

The paper is organized as follows: In Section 2 the pro-
cess model and the semantics of different block types are
presented. In Section 3, first a formal definition of the
blocks are given in ACTA formalism which is then mapped
to two dependencies given in [8]. We then demonstrate the
guard simplification process and explain guard construction
through an example. Section 4 describes the distributed ex-
ecution environment. Finally conclusions are presented in
Section 5.

2 The Process Model

We define a workflow process as a collection of blocks,
tasks and other subprocesses. A task is the simplest unit of
execution. Processes and tasks have input and output pa-
rameters corresponding to workflow relevant data to com-
municate with other processes and tasks. We use the term
activity to refer to a block, a task or a process. Blocks dif-
fer from tasks and processes in that blocks are conceptual
activities which are present only to specify the ordering and
the dependencies between activities.

We have seven types of blocks, namely, serial,
and parallel, or parallel, xor parallel, contingency, condi-
tional and iterative blocks. The following definitions de-
scribe the semantics of these block types where B stands
for a block, A for an activity and T for a task.

Definition 1 B = (A��A��A�� ������An), where B is a serial block. Start
of a serial block B causes A� to start. Commitment of A� causes
start of A� and commitment of A� causes start of A�, and so on.
Commitment of An causes commitment of B. If one of the activ-
ities aborts, the block aborts. If the block aborts, then committed
activities in the block are compensated in the reverse order.

Definition 2 B = (A� & A� & ..... & An), where B is an and parallel
block. Start of an and parallel block B causes start of all of the ac-
tivities in the block in parallel. B commits only if all of the activities
commit. If one of the activities aborts, the block aborts. If the block



aborts, then committed activities in the block are compensated in
parallel.

Definition 3 B = (A�jA�j�����jAn), where B is an or parallel block. Start
of an or parallel block B causes start of all of the activities in the
block in parallel. At least one of the activities should commit for B
to commit but B can not commit until all of the activities terminate.
B aborts if all the activities abort.

Definition 4 B = (A�jjA�jj�����jjAn), where B is an xor parallel block.
Start of an xor parallel block B causes start of all tasks in the block
in parallel. B commits if one of the activities commits, and com-
mitment of one activity causes other activities to abort. If all of the
activities abort, the block aborts.

Definition 5 B = (A�� A�� �����An), where B is a contingency block. Start
of a contingency block B causes start of A�. Abort of A� causes
start of A� and abort of A� causes start of A�,and so on. Commit-
ment of any activity causes commitment of B. If the last activity An
aborts, the block aborts.

Definition 6 B = (condition,A� � A�), where B is a conditional block.
Conditional block B has two activities and a condition. If the condi-
tion is true when B starts, then the first activity starts. Otherwise, the
other activity starts. The commitment of the block is dependent on
the commitment of the chosen activity. If the chosen activity aborts,
then B aborts.

Definition 7 B = (condition;A� �A�� ������An), where B is an iterative
block. The iterative block B is similar to a serial block, but start
of iterative block depends on the given condition as in a while loop
and execution continues until either the condition becomes false or
any of the activities aborts. If B starts and the condition is true, then
A� starts and continues like serial block. If An commits, then the
condition is reevaluated. If it is false, then B commits. If is true, then
A� starts executing again. If one of the activities aborts at any one of
the iterations, B aborts. If B aborts, then for all iterations, committed
activities in the block are compensated in the reverse order.

Definition 8 A = (Ac, AbortList(Ac)), where Ac is the compensation
activity of A. The compensation activity Ac of A starts if A has
committed and any of the activities in AbortList(Ac) has aborted.
AbortList is a list computed during compilation which contains the
activities whose aborts necessitate the compensation of A. If both an
activity and its subactivities have compensation, only the compen-
sation of the activity is used. If only the subactivities have compen-
sation, it is necessary to use compensations of the subactivities to
compensate the whole activity.

Definition 9 T = Tu, where Tu is the undo task of task T. The undo task
Tu of T starts if T fails.

In addition to activities, there is also assignment state-
ments in our language which access and update workflow
relevant data.

We have implemented a specification language based on
these structures, called METUFlow Definition Language
(MFDL), within the scope of the METUFlow project. The
following is an example workflow defined in MFDL:

TRANS_ACTIVITY register_patient (OUT int patient_id);
TRANS_ACTIVITY delete_patient(IN int patient_id);
USER_ACTIVITY examine_patient (IN int patient_id,

OUT int blood_test_type_list,
OUT int roentgen_list)
PARTICIPANT DOCTOR;

USER_ACTIVITY blood_exam (IN int patient_id,
IN int blood_test_type_list, OUT STRING result)
PARTICIPANT LABORANT;

USER_ACTIVITY roentgen (IN int patient_id,

IN int roentgen_list, OUT STRING result)
PARTICIPANT ROENTGENOLOGIST;

USER_ACTIVITY check_result (IN int patient_id,
IN string result1, IN STRING result2)
PARTICIPANT DOCTOR;

USER_ACTIVITY cash_pay (IN int patient_id)
PARTICIPANT TELLER;

USER_ACTIVITY credit_pay (IN int patient_id)
PARTICIPANT TELLER;

DEFINE_PROCESS check_up (IN int patient_id)
{
ACTIVITY register_patient register;
ACTIVITY delete_patient delete;
ACTIVITY examine_patient examine;
ACTIVITY blood_exam blood;
ACTIVITY roentgen roent;
ACTIVITY check_result check;
ACTIVITY cash_pay cash;
ACTIVITY credit_pay credit;
var int patient_id;
var STRING result1, result2;
var int blood_test_type_list, roentgen_list;

IF (patient_id == 0) register(patient_id)
COMPENSATED_BY delete(patient_id);

examine(patient_id, blood_test_type_list,
roentgen_list);

AND_PARALLEL
{ blood(patient_id, blood_test_type_list, result1);

WHILE (result2 == NULL)
roent(patient_id, roentgen_list, result2);

}
check(patient_id, result1, result2);
XOR_PARALLEL
{ cash(patient_id);

credit(patient_id);
}
}

In MFDL, we have used five types of tasks. These are
TRANSACTIONAL, NON TRANSACTIONAL, NON-
TRANSACTIONAL with CHECKPOINT, USER and

2PC TRANSACTIONAL activities. USER activities are in
fact NON TRANSACTIONAL activities. They are speci-
fied separately in order to be used by the worklist manager
which handles the user-involved activities. The states and
transitions between these states for each of the activity types
are demonstrated in Figure 1. The significant events in our
model are start, commit and abort. The event attributes of
these tasks are shown in Table 1.

Note that the abort event of a 2PC transactional task af-
ter the coordinator has taken a decision is normal whereas
it is immediate before the coordinator has taken a deci-
sion. Triggerable and normal events are controllable be-
cause they can be triggerred, rejected or delayed while
immediate events are uncontrollable. We have chosen
to include a second type of non transactional activity,
namely, NON TRANSACTIONAL with CHECKPOINT,
in our model by making the observation that certain
non transactional activities in real life, take checkpoints so
that when a failure occurs, an application program rolls the
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Figure 1. Typical task structures

activity types start abort/fail commit/done

transactional triggerable immediate normal
2PC transactional triggerable normal,immediate normal
non transactional triggerable immediate immediate

non transactional with checkpoint triggerable immediate immediate

Table 1. Event Attributes

activity back to the last successful checkpoint.
These activity types may have some attributes such as

CRITICAL, NON VITAL and CRITICAL NON VITAL.
Critical activities can not be compensated and the failure
of a non vital activity is ignored [6, 4]. Besides these at-
tributes, activities can also have some properties like re-
triable, compensable, and undoable. A retriable activity
restarts execution depending on some condition when it
fails. Compensation is used in undoing the visible effects
of activities after they are committed. Effects of an un-
doable activity can be removed depending on some condi-
tion in case of failures. Some of these properties are spe-
cial to specific activity types. Undo conditions and activ-
ities are only defined for non transactional tasks, because
transactional tasks do not leave any effects when they abort.
Only 2PC transactional activities can be defined as critical.
Note that the effects of critical activities are visible to the
other activities in the workflow but the commitment of these
activities are delayed till the successful termination of the
workflow. An activity can be both critical and non vital at
the same time, but can not be critical and compensable.

In MFDL, activities in a process are declared using AC-
TIVITY reserved word. This declaration allows us to use
activities sharing the same activity definition with different
attributes and properties in the same workflow process.

3 Guard Construction

Our primary aim is to create a distributed execution en-
vironment for the activities in our workflow system. Since

our sytem is distributed on the basis of activities, each activ-
ity should know when its significant events like start, abort
and commit should occur without consulting to a top-level
central decision mechanism. For this purpose, we use tem-
poral expressions which define the conditions under which
an event should occur, called guards [12].

In this section, first the semantics of the block types are
defined using ACTA formalism. We then show that the two
dependencies provided in [8] are adequate to express the
specified block semantics and result in simple guard expres-
sions.

��� Semantics of the Block Types using
ACTA Formalism

We use the ACTA formalism [5] with slight modifica-
tions to express the semantics of block types�. The ACTA
dependencies used for this purpose are presented in the fol-
lowing:
Let ti and tj be two transactions.

� Commit Dependency(tj CD ti): if transaction ti commits, then tj
commits.

� Commit-on-Abort Dependency(tj CAD ti): if transaction ti
aborts, then tj commits.

� Abort Dependency(tj AD ti): if transaction ti aborts, then tj
aborts.

� Abort-on-Commit Dependency(tj ACD ti): if transaction ti com-
mits, then tj aborts.

� Begin Dependency(tj BD ti): if transaction ti begins executing,
then tj starts.

�We treat fail/done event of non transactional activities as
abort/commit of transactional activities.



� Begin-on-Commit Dependency(tj BCD ti): if transaction ti com-
mits, then tj begins executing.

� Begin-on-Abort Dependency(tj BAD ti): if transaction ti aborts,
then tj begins executing.

Conditional dependencies are added to the ACTA depen-
dencies. These dependencies have an additional argument
which is ”condition”. For example, we express conditional
begin dependency as BD(C). If condition C is true, then BD
holds, else it does not hold.

Using these dependencies, we can formally restate se-
mantics of block types defined in the previous section.
Semantics 1 B = (A��A��A�� ������An), where B is a serial block.

� A� BD B

� Ai�� BCD Ai , � �i�n

� B CD An

� B AD Ai ,� � i �n

Semantics 2 B = (A� & A� & ..... & An), where B is an and parallel
block.

� Ai BD B ,� � i �n

� B AD Ai ,� � i �n

� �i(B CD Ai)

Semantics 3 B = (A�jA�j�����jAn), where B is an or parallel block.

� Ai BD B ,� � i �n

� �i (B CD Ai) � (�j((B CD Aj ) � (B CAD Aj ))), j��i

� �i(B AD Ai)

Semantics 4 B = (A�jjA�jj�����jjAn), where B is an xor parallel block.

� Ai BD B ,� � i �n

� �i (B CD Ai) � (�j(Aj ACD Ai)), i ��j

� �i(B AD Ai)

Semantics 5 B = (A�� A�� �����An), where B is a contingency block.

� A� BD B

� Ai�� BAD Ai, � � i�n

� B CD Ai, � �i�n

� B AD An

Semantics 6 B = (condition(C),A� � A�), where B is a conditional block.

� A� BD(C) B

� A� BD(�C) B

� B CD(C) A�

� B CD(�C) A�

� B AD(C) A�

� B AD(�C) A�

Semantics 7 B = (condition(C);A� �A�� ������An), where B is an iterative
block.

� A� BD(C) B

� Ai�� BCD Ai, � �i�n

� B CD(�C) An

� B AD Ai

Semantics 8 A = (Ac, AbortList(Ac)), where Ac is the compensation
activity of A.

� Ac BCD A

� Ac BAD AbortList(Ac)

Semantics 9 T = Tu, where Tu is the undo task of T.

� Tu BAD T

ACTA formalism specifies the transaction semantics of
a model by presenting transaction relations with predefined
dependencies. However, these dependencies are expressed
at the abstract level and therefore we will use the following
two primitives [8, 2] to specify intertask dependencies as
constraints on the occurrence and temporal order of events:

1. e� � e�: If e� occurs, then e� must also occur. There
is no implied ordering on the occurrence of e� and e�.

2. e� � e�: If e� and e� both occur, then e� must preceed
e�.

The ACTA dependencies we use in specifying the block se-
mantics are expressed in terms of these two primitives as
follows:

� Commit Dependency(tj CD ti):
�Committj 	 Committi � � �Committi � Committj �

� Commit-on-Abort Dependency(tj CAD ti):
�Aborttj 	 Committi � � �Committi � Aborttj �

� Abort Dependency(tj AD ti):
�Aborttj 	 Abortti� � �Abortti � Aborttj �

� Abort-on-Commit Dependency(tj ACD ti):
�Aborttj 	 Committi � � �Committi � Aborttj �

� Begin Dependency(tj BD ti):
�Starttj 	 Startti � � �Startti � Starttj �

� Begin-on-Commit Dependency(tj BCD ti):
�Starttj 	 Committi � � �Committi � Starttj �

� Begin-on-Abort Dependency(tj BAD ti):
�Starttj 	 Abortti � � �Abortti � Starttj �

The guards of events corresponding to these two primi-
tive dependencies are as follows [2, 12]:

For the constraint e� f, which corresponds to the depen-
dency D� � �e � �f � e � f , the guards are:

G�e� � TRUE

G�f � = ��e � �e

Note that�e means that e will always hold;�e means that e
will eventually hold (thus �e entails �e). At runtime e can
occur at any point in the history whereas f can occur only if
e has occurred or it is guaranteed that �e will occur.

For the constraint f � e, which corresponds to the de-
pendencyD� �

�f � e, the guards of events are:
G�e� � TRUE

G�f � � �e

These guards state that e can occur at any time in the his-
tory; f can occur if e has happened or will happen.



dependency e f G(f) G(e)

A BD B Bst Ast �Bst TRUE
A BCD B Bcm Ast �Bcm TRUE
A BAD B Bab Ast �Bab TRUE
A CD B Bcm Acm �Bcm TRUE

A CAD B Bab Acm �Bab TRUE
A AD B Bab Aab �Bab TRUE

A ACD B Bcm Aab �Bcm TRUE

Table 2. Guards corresponding to the dependency set

��� Guard Construction Steps

We use the dependencies BD, BCD, BAD to compute
start guards, AD, ACD to generate abort guards and CD,
CAD to compute commit guards of activities. Note that
all of these dependencies are in the form of an expression
which contains one subexpression with� primitive and the
other with � primitive with a conjunction in between them
such as (f � e) � (e � f). We present the construction of
guards of events e and f for this dependency in the following
[12]:

G�e� = TRUE

G�f � � G�D�� f ��G�D�� f � � �e� ���e ��e� � ��e���e��

��e ��e� � F � ��e � �e� � �e

Note that after simplification, the guard of f turned out to be
�e. In other words, the occurrence of event f only requires
event e to have already happened. This result facilitates the
computation of the guards drastically. The guards of events
of the dependency set corresponding to our workflow spec-
ification language are computed as presented in Table 2.
Note that from this result, we conclude that if we want to
compute the guard related to an activity A�, we must con-
sider only ”A� ACTA DepA�” type dependencies, not ”A�

ACTA Dep A�” type dependencies. The reason is that in
the latter, the guard of any event related with A� is already
TRUE from Table 2.

If we summarize, by starting from a block structured
workflow specification language, we obtain a well defined
set of dependencies, all in the form (f � e) � (e � f). This
dependency produces straightforward guards for events.
This makes it possible to compute the guards directly from
the process definition with a simple algorithm. The com-
plete guard generation process is outlined in Figure 2.

A process tree is generated from the workflow specifi-
cation in MFDL. The process tree consists of nodes repre-
senting processes, blocks and tasks, and is used only during
compilation time, execution being completely distributed.
Each of the nodes is given a unique label to refer it in the
execution phase. These activity labels make it possible for
each task instance to have its own uniquely identified event

Workflow
Compiler

Construction
Guard specifies

generates

Business and Process ModelWorkflow Definition Language

Process Trees Intertask Dependencies

Temporal Algebra Specification Guards on Events

Figure 2. Guard generation process
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Figure 3. Process tree of the example MFDL

symbols. This tree explicitly shows the dependencies be-
tween the activities of the workflow. In fact, with the Table
2 at hand, it is possible to generate the guards of a process
from its process tree. In the following we describe the guard
construction process through an example.

In Figure 3, the process tree corresponding to MFDL ex-
ample of Section 2 is given. The nodes shown in dashed
lines are the compensation activities for the corresponding
nodes.

Consider node 3 of Figure 3 which is a compensation
task. Using Semantics 8:

D� : 3 BAD 0

D� : 3 BCD 2

D : D� �D�

Note that AbortList of 3 is f0g, because the compensation
of 2 is needed only when 0 aborts. From Table 2,

G(D�, �st) = ��ab
G(D�, �st) = �	cm



label start start condition abort commit commit condition

0 TRUE ��ab � �
ab ���ab � ���ab � ���ab ���cm
1 ��st patient id == 0 �	ab �	cm
2 ��st TRUE TRUE
3 ��ab � �	cm TRUE TRUE
4 ��cm TRUE TRUE
5 �
cm ��ab ��
ab ��cm � �
cm
6 ��st TRUE TRUE
7 ��st result2 == Null ��ab ���ab ��cm result2 != Null
8 �
st TRUE TRUE
9 ��cm TRUE TRUE

10 ��cm TRUE TRUE
11 ���cm ��	ab ����ab ��	cm � ���cm
12 ���st ���cm ���ab
13 ���st ��	cm ��	ab

Table 3. Guards of the example workflow definition

G(D, �st) = G(D�, �st) � G(D�, �st) = ��ab � �	cm.

This guard states that task 3 should be started when process
itself (node 0) is aborted while task 2 has committed.

In Figure 3, there is a restart node labeled as 9. This node
is special to iterative block. Restart node is treated like the
other children of the iterative node during execution. Its
role is to prepare the block for the next iteration while the
iteration condition is true. After restart node commits, the
iteration condition is checked. If it is true, the next iteration
starts. Otherwise, the iterative node commits, as stated in
Semantics 7 (An corresponds to restart node). Note that
this cyclic dependency in arbitrary tasks is handled in [11]
by resurrecting a guard under appropriate conditions. Ours
is a practical implementation of this formal concept.

The Table 3 shows the start, abort and commit guards for
all the nodes of the example process tree given in Figure 3.

It should be noted that in Table 3, some of the guards
are set to TRUE right away. This is because either the oc-
currences of these events do not depend on the occurrence
of any event or they are immediate events. Also note that,
xor parallel blocks identify a race condition without a need
for preprocessing. For example, from Table 3, it is clear
that abort of 12 is dependent on the commitment of 13 and
commitment of 13 is dependent on the abort of 12. Obvi-
ously, this creates a deadlock situation. We implemented a
modified 2 Phase Commitment protocol to handle this case.
When xor parallel block starts, all of its immediate chil-
dren are registered to the coordinator object belonging to
this block. The coordinator keeps track of status of these
children to ensure that only one of them commit. In this
case, the abort and commit guards are not constructed any
more for the immediate child nodes.

4 The Execution Environment

After the guards are constructed, an environment in
which these guards are evaluated through the event occur-
rence messages they receive is created. Our approach as-
sociates a guard handler with each activity instance which
contains the guard expressions for the significant events of
that activity instance. Also, there exists a task handler for
each activity instance which embodies a coarse description
of the activity instance including only the states and tran-
sitions (i.e. events) that are significant for coordination.
The task handler acts as an interface between the activity
instance and its guard handler. A guard handler provides
the message flow between the activity’s task handler and
the other guard handlers in the system. According to the
message it receives from the guard handler, a task handler
causes the events related with that activity to occur.

Each node in the process tree is implemented as a
CORBA [13, 9] object with an interface for the guard han-
dler to receive and send messages, as shown in Figure 4.
The reason for creating objects for each node rather than
only for leaf nodes, which correspond to the actual tasks, is
that carrying block semantics to the execution reduces the
number of messages to be communicated. This is explained
in the following example:

Assume that we have a process segment like:

serial {
and_parallel {

T1();
T2();
...
Tn();

}
and_parallel {

T1();
T2();
...
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Tn();
}

}

Without a block abstraction during execution, the start
guard of each activity in the second and parallel block
must contain the commit event of each task of the first
and parallel block. Obviously this necessitates to com-
municate the commit event of each of the n tasks in the
first and parallel block to each of the n tasks in the second
and parallel block. Hence without a block abstraction, the
number of messages to be communicated is n�, as shown in
Figure 5.

When block abstraction is used during execution as
shown in Figure 6, the start guard of the second and parallel
block contains the commit event of the first and parallel
block. Thus the commit guard of the first and parallel block
contains the commit events of each of its n tasks; the start
guards of each of the tasks in the second and parallel block
contain the start event of the second and parallel block. For
this case, the number of messages communicated reduces to
2n + 1, as shown in Figure 6.

At compile time the guards are generated and stored lo-
cally with the related objects. The objects to which the
messages from this object are to be communicated are also
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recorded. For example for task 3, since its start guard con-
tains an abort event of the process, the abort message list
of the process contains the object identifier of task 3 to indi-
cate that the start guard of task 3 should be informed of the
abort of the process. When an object receives an event to be
consumed, it is placed in the occurred events queue of the
related significant event of the object. Figure 4 explicitly
shows the source and the destination of the messages.

A guard handler maintains the current guard for the sig-
nificant events of the activity and manages communications.
When a task handler is ready to make a transition, it at-
tempts the corresponding event. Intuitively, an event can
happen only when its guard evaluates to true. If the guard
for the attempted event is true it is allowed right away. If it is
false, it is rejected. Otherwise, it is parked. Parking an event
means disabling its occurrence until its guard simplifies to

true or false. When an event happens, messages announc-
ing its occurrence are sent to the guard handlers of other
related activities. Persistent queues are used to provide re-
liable message passing. When an event announcement ar-
rives, the receiving guard handler simplifies its guard to in-
corporate this information. If the guard becomes true, then
the appropriate parked event is enabled.

When it comes to maintaining workflow relevant data
and history management, note that data about workflow
events arise at different sites where workflow activities are
executed. Currently in METUFlow, the history of each ac-
tivity instance and each workflow relevant data are imple-
mented as CORBA objects.

All the information about an activity instance is stored
in a history object to be used for monitoring and data min-
ing purposes. These objects are linked through their ob-
ject identifiers according to the process tree. Each activ-
ity instance is responsible from its own history object and
knows the object identifier of its parent activity instance. A
child activity instance invokes a method to pass the object
identifier of its own history object to its parent object. A
parent activity instance object establishes the links between
its own history object and its child’s history object. Using
these links a history tree is constructed when necessary. In
a workflow relevant data object, the information about this
data like the time it is created, its initial value, and its ver-
sions is stored. All the activities can reach these objects
through CORBA without having the knowledge of at which
site they are created.

5 Conclusions

In this paper a distributed workflow enactment service
based on the work presented in [11, 12] is described. Main
contributions of the paper are as follows:

� A block structured procedural workflow specification
language is presented. This made it possible to avoid
the very general set of dependencies and their related
problems during distributed scheduling of process in-
stances. More specifically the following advantages
are obtained in this respect:

– A very simple mechanism for guard construction
and execution is provided.

– Race conditions and deadlocks are avoided and
references to future are detected at the compile
time and are handled easily.

– The abstraction provided by the block structures
is exploited during execution and this abstraction
reduces the number of messages necessary for
the distributed enactment service.



� It should be noted that MFDL has the expressive power
of ECA rules since it includes such a construct through
its conditional block.

� A block not only clearly defines the data and control
dependencies among tasks but also presents a well-
defined recovery semantics, .i.e., when a block aborts,
the tasks that are to be compensated and the order in
which they are to be compensated are already provided
by the block semantics.

� Distributed nature of the enactment service provides
for failure resiliency; a failed node effects only those
nodes waiting a message from it; execution can con-
tinue in other nodes.

� History and workflow relevant data management are
handled in a distributed fashion.

� And finally, ease in testing and debugging is pro-
vided. As noted in [10], state-of-the-art workflow
specification languages are unstructured and/or rule
based. Unstructured specification languages make de-
bugging/testing of complex workflow difficult and rule
based languages become inefficient when they are used
for specification of large and complex workflow pro-
cesses. This is due to the large number of rules and
overhead associated with rule invocation and manage-
ment. Our approach prevents these problems.

The futurework for this project includes incorporating tem-
poral dependencies and concurrency control dependencies
into guards.
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