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ABSTRACT
In this paper, we propose a framework for adaptive admis-
sion control and management of a large number of dynamic
input streams in parallel stream processing engines. The
framework takes as input any available information about
input stream behaviors and the requirements of the query
processing layer, and adaptively decides how to adjust the
entry points of streams to the system. As the optimization
decisions propagate early from input management layer to
the query processing layer, the size of the cluster is mini-
mized, the load balance is maintained, and latency bounds
of queries are met in a more effective and timely manner.
Declarative integration of external meta-data about data
sources makes the system more robust and resource-efficient.
Additionally, exploiting knowledge about queries moves data
partitioning to the input management layer, where better
load balance for query processing can be achieved. We im-
plemented these techniques as a part of the Borealis stream
processing system and conducted experiments showing the
performance benefits of our framework.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
Data streams; Adaptive Admission Control; Parallelism

1. INTRODUCTION
Stream processing has matured into an influential technol-

ogy over the past decade. Numerous applications of stream
processing have emerged, ranging from the classical cases
such as financial market monitoring to more novel ones such
as social feed monitoring [25] or crowd-sourced sensing [27].
A common class of these applications is characterized by a
large number of autonomous streaming data sources that
are highly dynamic in nature, which leads to input data
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Figure 1: Classic Split-Merge parallelism model.

workloads that dynamically fluctuate over time. This dy-
namism can be due to several reasons, including: (i) inter-
mittent disconnection of data sources due to low connec-
tivity or power, lack of activity, etc.; (ii) variability of the
rates of each source both among each other and over time;
and (iii) the skew in the data values that they report. On
the other hand, the aggregate input volumes generated by
these sources can also get very high and can threaten the
quality-of-service (QoS) in a real-time stream processing en-
gine (SPE) by overloading its resources. Therefore, an SPE
must be equipped with adaptive admission control and query
processing techniques in order to be able to serve these ap-
plications in a scalable and resource-efficient manner.

There has been much recent work on scaling stream pro-
cessing using parallelization techniques [3, 11, 14, 15, 23, 30].
A significant portion of these rely on a classic partitioned
parallelism model, where input streams are partitioned and
routed to multiple processing units to be processed in paral-
lel [7]. Figure 1 shows the general parallelization framework
that these approaches follow.

While there has been much focus on stream partitioning
and parallel query evaluation (the middle part of Figure 1),
an important problem that has been ignored is the admission
control and management of large number of dynamic input
data streams. Since partitioned parallelism requires splitting
data streams to multiple processing nodes in a load-balanced
manner, it is usually assumed that all the input data streams
will arrive at a split stage as a single physical data stream
as shown in Figure 1. This model is not realistic, and it
introduces scalability issues in the split stage, which itself
might require parallelization [3, 30].

In this paper, we propose a general framework for explicit
management and admission control of input data streams as
first-class entities in a parallel SPE (the left half of Figure 1).
In a partitioned parallelism setting, this involves three main
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Figure 2: Skewed and dynamic behavior of data sources in the Uber trace.

tasks: (i) accepting and assigning individual input streams
to one or more split nodes; (ii) continuously monitoring be-
havior of each input stream; and (iii) setting the number of
split, query, and merge nodes accordingly. It has been shown
that binding all input streams to a single split node would in-
troduce scalability issues [30, 3]. On the other hand, binding
each stream to a separate split node would not be resource-
efficient. Thus, the first important goal in this problem is to
minimize the number of split nodes (and deciding the num-
ber of query and merge nodes accordingly). Furthermore,
the dynamic nature of the inputs require continuous mon-
itoring of the inputs and performing the admission control
tasks adaptively. However, changes in input stream assign-
ment would lead to delay and buffering penalties. Therefore,
the second important goal is to minimize the cost of stream
redirections.

Adaptive admission control and management of input str-
eams in parallel stream processing systems is important, as
it provides the opportunity to observe and react to high and
dynamically changing loads as soon as they are received by
the system, even before reaching the query processing stage.
If done right, it would maximize the scalability and resource-
efficiency of the system while maintaining QoS guarantees.

This problem is challenging for several reasons. First, op-
timal input stream assignment can be reduced to the bin-
packing problem, which is known to be NP-hard [6]. Second,
minimizing the cost of stream redirections requires having
knowledge about future behaviors of inputs, which is usually
not available in advance. Therefore, heuristic solutions that
predict these behaviors are needed.

Moreover, as our motivating example shall demonstrate,
forecasting is not the only way to learn the characteristics
of input streams. In many areas, such as financial markets,
there are quite well-known periods (i.e., opening-closing ho-
urs, crises times, etc.) when high-volume streams will stress
SPEs. In fact, many factors such as peak rates, periodic-
ity, rate behavior (rising/falling trend) can be known in ad-
vance. By declaratively integrating such knowledge about
streams as meta-data into the input stream management,
the system can be made more robust and resource-efficient.
The following example demonstrates the characteristics and
significance of applications that our framework addresses.

1.1 Motivating Application
Large-scale sensor network applications have been promi-

nent use cases of data stream processing. With the emer-
gence of smartphones that are capable of collecting a variety
of information such as GPS location, it is now possible to
treat everyone carrying a smartphone as a “sensor” in a wide

range of useful applications that are called “crowd-sourced
sensing applications”. For example, in crowd-sourced traf-
fic monitoring, smartphones or in-car GPS systems are used
as input data sources that report location information on a
continuous basis (e.g., Waze social mobile application [27]
or the Mobile Millennium project [12]). Real-time traf-
fic monitoring applications then rely heavily on continu-
ous spatio-temporal aggregation and deep analysis of high-
volume streams reporting vehicle location and speed. This
can be modeled using the following continuous query:

Input(Time, VehicleID, Long, Lat, Speed, ReportType)

SELECT getGridCoordinates(Long, Lat, @precision) AS AreaID,
COUNT(*), AVG(Speed), MAX(Speed), isQueueEnd(*)

FROM Input [RANGE 60 MINUTE SLIDE 1 MINUTE]
WHERE ReportType = ’traffic’
GROUP BY AreaID;

We have analyzed a publicly available real-world trace of
1.2 million GPS position reports from a black car dispatch-
ing company called Uber that operates in San Francisco [26].
In Figure 2, we plot the distribution of GPS readings from
this data trace over space (based on 100m x 100m or 1000m
x 1000m tiles over the city map) and time (based on differ-
ent times of day). While the distribution of GPS reports
for different tiles follows a highly skewed, Zipf-like distribu-
tion (cf. Figure 2(a)), it also varies significantly throughout
the day (cf. Figure 2(b)) due to the changing number of
data sources (cars in traffic sending reports) as well as their
update rates depending on the peak hours and locations.

As this analysis demonstrates, real-time monitoring appli-
cations such as the traffic monitoring case described above,
impose a number of unique challenges for stream process-
ing. First of all, it is widely projected that the number
of smartphones and GPS devices used by drivers will im-
mensely increase over the next few years [8]. As such, these
applications typically involve a very large number of data
stream sources. Second, these data sources are highly dy-
namic and transient (i.e., they can join or leave in an unpre-
dictable way). Third, they may exhibit skewed workloads in
terms of their update rates and reported values (e.g., more
frequent reports from areas where the traffic is moving faster
or where mobile connectivity is stronger). Finally, in order
for the results to be useful, live reports must be aggregated
and analyzed in a correct and timely manner.

1.2 Scope and Contributions
In this paper, we propose a general framework for adap-

tive admission control and management of input streams for
parallel stream processing. The framework takes as input
any available information about input stream behaviors and
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Figure 3: Input stream admission and management.

requirements of the query processing layer, and adaptively
decides how to assign streams to split nodes. The frame-
work treats input streams as first-class citizens of the sys-
tem, thereby improving the efficiency and robustness of the
query processing layer. We also show how our framework
can extend a partitioned parallelism framework and effec-
tively be applied to parallelizing sliding window aggregation
queries in SPEs.

2. INPUT STREAM ADMISSION AND
MANAGEMENT

In data stream processing, workloads of long running que-
ries fluctuate over time with input rates sometimes increas-
ing by orders of magnitude (cf. Figure 2(b)). When work-
loads are so unpredictable, it is not possible to provision
required resources for query processing in advance.

Our adaptive input stream admission and management
framework tries to avoid over-provisioning of resources with-
out sacrificing QoS requirements for highly dynamic stream-
ing workloads. The first major problem for such work-
loads is the high number of distributed input sources with
time-varying input rates. This problem, which is more pro-
nounced in a parallel processing setting, requires dynami-
cally changing the entry points of individual streams to the
system. The second problem is that streams are also highly
transient, meaning they join/leave over time, which requires
an admission control mechanism. Finally, based on the over-
all volume of streams that enter the system, capacity of the
processing layer requires adjustment.

An overview of our framework is shown in Figure 3. In
contrast to a classic admission control, our framework even-
tually accepts all the streams and therefore admission is ex-
pected to be always successful. In doing so, the framework
utilizes knowledge from both sources and queries in a novel
manner. Streams are profiled at runtime and their statis-
tics are used for making forecasts. At the same time, users
can also specify meta-data about streams. On the other
hand, query knowledge such as windowing and grouping in-
formation are inferred from queries. Finally, query load in-
formation is also monitored at runtime. We describe the
framework and its interaction with the input streams layer
in detail in this section. Sections 3 and 4 describe its inter-
action with the query processing layer.

2.1 The Input Stream Assignment Problem
It is impractical to bind multiple, highly dynamic and

transient input streams to a single split node [3, 30]. How-
ever, binding only a single stream to each split node may
extremely overuse resources. Our solution is to periodically
check the behavior of streams along with their meta-data
and dynamically re-assign some of the streams to different
split nodes. The re-assignment of streams is driven by qual-
ity requirements of the query and the behavior of streams.

The problem can be formalized as follows. Assume we

are given N input streams with average rates {R1, . . . , RN}
over a certain period, where the maximum of rates is al-
ways less than the node processing capacity C, i.e. in the
worst case a single stream can be processed by a single split
node (∀iRi ≤ C + ε). We are also given M split nodes each
with capacity C, where M ≤ N . The problem is to parti-
tion streams (and rates) into a minimum number k of sub-
sets M1,M2, · · · ,Mk such that

∑
Ri∈Mj

Ri ≤ C + ε, ∀j =

1, . . . , k. This problem can be reduced to the bin-packing
problem, which is known to be NP-hard, but for which
there exist heuristic solutions with guaranteed performance
bounds [6]. Some of the well-known heuristic solutions are
First Fit Decreasing (FFD) and Best Fit Decreasing (BFD).
FFD first sorts items in decreasing order of size and then
inserts each item to the first bin that it fits. BFD on the
other hand keeps bins sorted in increasing order of free space.
Whenever something is inserted to a bin, the bin’s order on
the list changes with the remaining space.

2.2 Near-Optimal Input Stream Assignment
Time varying stream rates make our problem more chal-

lenging than bin-packing where optimization decisions have
to be checked periodically. BFD and FFD assume that all
bins are initially empty and items can be assigned to any
of them. In our context, applying BFD/FFD causes reopti-
mization from scratch, resulting in a reassignment of all the
streams regardless of their previous assignments. This is
clearly undesirable, since it has high cost – moving a stream
is not a cheap operation as it has delay and buffering penal-
ties on the client side as the experiments demonstrate (Sec-
tion 6.2). Hence, as a second goal of the optimization, we
also need to minimize redirections of streams, i.e., trade off
resource optimality against redirection overhead.

Algorithm 1 Input Stream Assignment Strategy Skeleton

1: for all split node S do
2: if S.isOverloaded() then
3: streamsToMove.add( S.pickStreamsToMove() );
4: else if S.acceptsNewStream() then
5: bins.add(S);
6: end if
7: end for
8: streamsToMove.add( getNewInputStreams() );
9: items ⇐ sort(streamsToMove, PlacementOrder());

10: modifications ⇐ runBFDVariant(items, bins);
11: for all n in modifications.newNodes do
12: addNewNode(n);
13: end for
14: for all m in modifications.streams do
15: if m.isNewStream() then
16: m.assignStream(m.destNode);
17: else
18: m.redirectStream(m.srcNode, m.destNode);
19: end if
20: end for

Algorithm 1 shows the skeleton of our optimization strat-
egy that is executed periodically. The algorithm iterates
through all the split nodes and moves away streams from the
overloaded nodes. The streams to be moved along with the
new streams are then connected to nodes that have enough
capacity. In case of insufficient capacity, new split nodes are
added to the system. The stream assignments to nodes are



carried out using a variant of the BFD bin-packing algorithm
with the goal of using as few nodes as possible. However, the
concrete strategy is driven by the heuristics used. Different
concrete optimization strategies can be created by customiz-
ing the implementation of underlined methods whose general
tasks are the following:

isOverloaded: Determines whether a node needs con-
sideration for moving some of its input streams because of
insufficient capacity.

pickStreamsToMove: On overload, some of the streams
must be moved away from the corresponding node. This
method identifies the order in which streams will be moved
away from the node until the capacity constraint is satisfied.

acceptsNewStream: Determines whether a given node
has enough capacity to accept new input streams (called
accepting node).

PlacementOrder: Identifies the order in which streams
that are waiting to be assigned are considered for placement
to accepting nodes.

Our framework’s concrete optimization strategy is a spe-
cialized implementation of the skeleton (i.e., it customizes
the underlined methods). The core of our strategy is based
on forecasting rates and utilizing meta-data about streams.
In the next two sub-sections, we describe these two compo-
nents and then finally our concrete optimization strategy.

max 
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low/high period 

transition: jump/trend 
burstiness: %, peak 

Figure 4: Modelling behavior of input streams.

2.3 Forecasting the Input Rate
Part of our solution for input stream assignments is based

on predictions about future behavior of input streams rather
than their history. History is only employed to make good
quality forecasts about future rates of streams. As forecasts
become more accurate, the system is better optimized until
a point in future instead of a point which lies in the past.

The forecasting model of our system is as follows. As-
sume that we are given a series of periodic observations of
an input stream’s rate, denoted by Xi for each period i.
The problem is forecasting, at period t, the rate at period
t + k, denoted by X̂t+k. We use Holt-Winters forecasting
technique [5], which is a type of exponential smoothing1.
We especially use Holt’s linear trend model (also known as
double exponential smoothing) that works particularly well
in practice for reasonable term forecasts. As observations
arrive, the value for the local mean level (L) and trend (T )
for the input rate is updated continuously as follows:

Lt = α ·Xt + (1− α)(Lt−1 + Tt−1)

Tt = γ · (Lt − Lt−1) + (1− γ) · Tt−1

1For a survey of time series forecasting, see [4].

Using the updated values of level and trend, the rate forecast
at time t, for period t+ k is computed as:

X̂t+k = Lt + k · Tt

The smoothing parameters α and γ can be selected by fitting
historical data (we refer the reader to [5] for details). As
we shall demonstrate in our experiments, this forecasting
technique works quite well for our framework. However, one
should note that any sophisticated forecasting technique can
be easily plugged into our system, and can be used instead.

2.4 Exploiting External Meta-Data of Streams
In many cases, input data streams often have predictable

or known characteristics. Thus, as a first step, our system
builds a model for each stream and tries to forecast future
rates. This is enabled by continuously monitoring the rate
and behavior of each stream. However, beyond that, certain
external knowledge can be exploited to improve the mod-
elling and forecasting of streams.

Figure 4 depicts the stream modelling mechanism that we
use in our system. Basically, ten essential characteristics of
streams are modelled by this mechanism as shown in Fig-
ure 4. In the beginning, before a stream is connected to the
system, the client can provide information about any of these
characteristics as meta-data of the stream. The more infor-
mation the client provides, the better will be the model in
improving the stream assignment optimizations. However,
if the client does not give any information about streams,
then the model is based on default values of these character-
istics that are based on average observations among existing
streams. For instance, if the client does not provide any in-
formation about the expected or average rate of the stream,
then the system assumes a value based on average rates of
all existing streams in the system. Among these characteris-
tics, period values give information regarding periodicity of
the stream behavior. On the other hand, transition behavior
is another important clue about the changes in stream rates.
Having information such as “transition=jump” means that
the stream rate will jump/fall to max/min value. This is
very valuable information since it is hard to forecast it by
any statistical model. When “transition=trend” is given,
we can expect that the transition between low and high val-
ues will occur with an observable trend, which also greatly
improves forecasting accuracy.

2.5 Delta Rate Forecasting with Meta-data
Our concrete optimization strategy for input stream ad-

mission and management is called the Delta Rate Forecasting
with Meta-data DRF-M. We employ the rate forecasting-
based heuristic (Section 2.3) in our strategy which is en-
hanced by utilizing stream meta-data. We begin describing
it by explaining the concrete implementations of the under-
lined methods in skeleton strategy shown in Algoritm 1:

isOverloaded: DRF-M implementation estimates the
latency using an exponentially weighted moving average win-
dow of queue size samples, and returns true when this value
goes beyond the given threshold, i.e., the QoS metric.

pickStreamsToMove: The main heuristic we employ in
DRF-M is to move the streams with highest expected rate
increase, as these are the ones that have the most potential
to cause trouble. We call this heuristic delta-rate-forecast
and it is defined as ∆RF = X̂t+k − X̂t+1. However, if there
are meta-data available about the stream, then meta-data



Info/Stream	   s1	   s2	   s3	   s4	   s5	   s6	  

Forecast	   2.8	   4	   4	   6	   6	   7	  

Meta-‐data	   2	  (trend)	   4	  (fixed)	   6	  (jump)	   6	  (fixed)	   5	  (max)	   7	  (fixed)	  s1: 3 
s3: 4 

s5: 5 

s6: 3 
s2: 4 

s4: 6 

N1 N2 N3 

Σ = 12 * Σ = 7 Σ = 6 

New streams = { s7 : (periodic, jump, max = 4, exp. = 1);  s8 : (exp. = 2);  s9 : (default) } 

 N1 is overloaded à N1.pickStreamsToMove(): 

Order	  by	  	  
curr.	  avg.	  

Order	  by	  
	  ΔRF	  

Order	  by	  	  
ΔRF-‐M	  

s1	  :	  3	  	   s5	  :	  (6-‐5)	  	  	  	  =	  1	   s3	  :	  (6-‐4)	  =	  2	  

s3	  :	  4	   s3	  :	  (4-‐4)	  	  	  	  =	  0	   s5	  :	  (5-‐5)	  =	  0	  

s5	  :	  5	   s1	  :	  (2.8-‐3)	  =	  -‐0.2	   s1	  :	  (2-‐3)	  =	  -‐1	  

1 streamsToMove = {s3, s7, s8, s9}  
à Order by PlacementOrder: 
BFD	   DRF	   DRF-‐M	  

s3	  :	  4	   s9	  :	  4	   s3	  :	  6	  

s9	  :	  4	   s8	  :	  4	   s7	  :	  4	  

s8	  :	  2	   s7	  :	  4	   s9	  :	  4	  

s7	  :	  1	  	   s3	  :	  4	   s8	  :	  2	  

2 runBFD(items={s3, s7, s9, s8}, bins={N2 = 7, N3 = 6}) 

s1: 2 

s5: 5 

N1 N2 N3 

s3: 6 

N4 

s7: 4 

s4: 6 

s9: 4 

s6: 3 
s2: 4 
s8: 2 

3

Capacity = 10 

Figure 5: Input stream admission and management in action.

based stream rate expectation is used instead of the forecast.
For example, if a meta-data about the maximum achievable
rate of an input stream is available, then that value can be
plugged into the equation instead of a forecast. Hence, in
this case ∆RF−M = Xm

t+k − X̂t+1, where Xm
t+k denotes the

meta-data based stream rate expectation at period t + k.
We then order all the streams of an overloaded node with
their ∆RF /∆RF−M and pick streams to move in this order
until total rate forecast falls below node processing capacity
(i.e., ΣRF ≤ C/ΣRF−M ≤ C).

acceptsNewStream: To determine whether a node can
accept new input streams, our implementation sums up rate
forecasts/expectations of a node’s input streams (ΣRF ) and
returns true if ΣRF is below a certain capacity level.

PlacementOrder: In the BFD algorithm, items to be
placed in bins are normally considered in decreasing order
of size [6]. In our strategy, we consider streams in order of
decreasing rate forecasts or meta-data based rate predictions
for the next period, X̂t+1 or Xm

t+k depending on availability.
Figure 5 illustrates the execution of our optimization strat-

egy in action. For this illustration, we assume 3 split nodes
(N1..N3) containing a total of 6 input streams (s1..s6) de-
ployed on them. The table on the top right shows the
forecasts along with meta-data based predictions for stream
rates. The capacity of each node is given in terms of tuples
that can be processed per unit time (which is 10) and the
rates of streams are given as number of tuples that flow per
unit time. As the first step of the algorithm, the load of each
split node is computed and N1 is found to be overloaded (12
> 10). The optimization strategy needs to pick streams from
N1 to be assigned to other nodes. Using forecasts and meta-
data based predictions from the table, ∆RF−M is computed
and s3 stream is chosen as the victim. Note that if only
∆RF or current average rates were used, the decision would
have been different (i.e., 1st and 2nd columns in step 1), and
much worse since the chosen streams (as we can see from the
meta-data information) are not likely to cause a problem for
their nodes, and their redirection is redundant. The second
step of the algorithm begins by considering the newly added
input streams (cf. line 8 in Algorithm 1) in addition to s3.
This time streams to be moved are ordered according to the
PlacementOrder heuristic using DRF and meta-data, which
is shown on the right-most column in the table. Note the

difference in order when using just DRF in the 2nd column
(i.e., no meta-data about new streams, hence all assume a
default rate of 4) or decreasing order of average rates (plain
BFD) in the 1st column. In the third step, the streams to
be moved are considered in the determined order from step
2 and the BFD bin-packing algorithm is executed. As a re-
sult, a new split node is added (line 12 in Algorithm 1) and
the new stream s7 and stream s3 are assigned to that node.
Other new streams s8 and s9 are assigned to nodes N2 and
N3, and one optimization period of the algorithm completes.

3. ADAPTIVITY IN PROCESSING LAYER

3.1 QoS Model
Our input stream admission and management framework

takes QoS requirements for queries as additional input and
uses them in determining the degree of parallelization. More
specifically, QoS is specified in terms of maximum result
latency (L time units) in the output stream.

We define result latency as the time difference between the
arrival timestamp of the last tuple contributing to a query
result tuple r and the generation of r’s timestamp. All result
tuples must have result latency of at most L time units.

3.2 Setting Number of Query and Merge Nodes
The modifications of streams (new assignments or redirec-

tions) may result in changing the number of split nodes. As
the aggregate input volume changes, this in turn requires
adjusting the number of processing nodes (i.e., query and
merge nodes) fed by the split nodes. Basically, the opti-
mization decision propagates from the input streams layer
to the query processing layer.

The QoS latency metric guides parallelization level (d)
adjustment. The optimization goal is to keep the latency
during period i+ 1 below the target. As a first step, the in-
put stream controller determines the number of split nodes
in period i+ 1 (ni+1

s ), by considering all streams with their
historical, forecasted, and meta-data predicted rates as de-
scribed in Section 2. Next, the optimizer utilizes total rate
expectations from the first step to identify the number of
required processing (ni+1

p ) and merge (ni+1
m ) nodes at pe-

riod i+ 1. The total rate forecasts of input streams, ΣRF or
ΣRF−M and the per-tuple processing cost of the query op-



SPE	  Node	  
	  
	  
	  
	  

Query	  
Processor	  

Catalog	   Pool	  of	  
Available	  
Nodes	  

Paralleliza:on	  Controller	  
	  
	  
	  
	  
	  

Global	  
Catalog	  

Input	  
Stream	  

Controller	  

Elas:c	  
Node	  Mgr	  

Sta:s:cs	  Mgr	  
Local	  

Monitor	  
Deployment 

Figure 6: The parallelization controller.

erator (cop) are used to determine the number of processing
nodes required for the next period, ni+1

p , using Equation 1a
(where H denotes processing headroom of SPE not used for
operator execution and Cop is the processing capacity of a
single node running the query operator).

ΣRF

ni+1
p

· cop = 1.0−H (1a)

ni+1
p · Cop

ni+1
m

· cmerge = 1.0−H (1b)

Similarly, the number of merge nodes, ni+1
m , is determined

using Equation 1b, assuming that all the processing nodes
will run close to saturation in the next period. After de-
termining ni+1

p and ni+1
m , the system adjusts parallelization

level of a query by instantiating/de-instantiating replicas of
the operators. This is supported by dynamic query modifi-
cations at runtime [24].

3.3 Architecture and Implementation
In order to implement the techniques proposed in Sec-

tions 2 and 3.2, we designed the Parallelization Controller
(PC) as a new component that is responsible for dynamic
resource management and continuous query optimization in
our framework. Figure 6 shows the general architecture of
the PC. Queries and streams are admitted to the system via
PC’s deployment sub-component. The PC has a statistics
manager that periodically collects runtime statistics from ac-
tive SPE (in our implementation, Borealis [1]) nodes. The
global catalog keeps track of all deployed queries with their
specifications and locations. The input stream controller
is responsible for admission and management of all input
streams and continuously optimizing their assignments to
split nodes. Lastly, the elastic node manager manages a
pool of available nodes and is responsible for handling node
add/remove requests by the PC. Next, we will briefly discuss
the implementation of stream redirection, dynamic query
modifications, and state handover.
Stream Redirection: To be able to dynamically redirect
streams to different nodes, our system needs to have control
over each external input stream. To achieve this, we attach
an interface to each stream with several methods. Essen-
tially, the external input client must implement the interface
and support its methods. The interface provides methods to
suspend/resume the data flow, to establish/drop a connec-
tion and to redirect a stream. Whenever a re-assignment of
the stream is required, PC calls necessary methods on the
relevant client.
Dynamic Query Modifications: Dynamic query modifi-
cations involve adding/removing operator replicas to/from
a running query and require suspending certain parts of the
pipeline. First, to add a new operator, the running split
operator is choked for a short period in order to modify it
at runtime. Next, a new output stream is added to the
choked split operator. After the modification, the split is

resumed without activating the new output stream until the
full query modification is complete. In the next step, the
new operator is instantiated by retrieving its replica’s spec-
ification and deployment description from the catalog. The
query processor in the new node deploys the operator, its in-
put/output streams and schemas locally. In the third step,
the merge operator is choked for a while to add the new input
stream. As the last step, merge is resumed and the inactive
new output stream of the split operator is activated. Tuples
begin flowing on the new stream path from split to merge.
Removal of an operator instance follows similar steps.
State Handover: In principle, our parallelization model
does not require migrating unprocessed input state during
adaptation or load-balancing. Query nodes process all their
existing input until the choke point and only ship their par-
tial results to the merge nodes as if they were executing nor-
mally, which is then followed by a stream_end punctuation
to inform the merge operator.

4. INPUT- AND QUERY-AWARE STREAM
PARTITIONING

In this section, we describe the integration of stream par-
titioning techniques and query-awareness into the admission
and management of input streams. Stream partitioning and
query knowledge is extracted from queries and utilized at
the input stream management layer that provides an oppor-
tunity to observe and react to dynamic fluctuations in inputs
as early as possible. Furthermore, the integration results in
robust load-balancing in the processing layer, which is a key
requirement for effective parallelization.

There are two main approaches to stream partitioning in
the literature: (i) content-insensitive, (ii) content-sensitive.
The former applies to queries with windows and takes only
windowing semantics (i.e., size and slide) into account with-
out considering the values that appear in those windows,
while the latter applies to queries with key-based process-
ing (e.g., GROUP-BY aggregates) and divides the streams
according to the values of those keys.

Given queryQ, if it includes key-based processing, then we
apply content-sensitive partitioning (“frequency-aware hash-
based partitioning”). Otherwise, we apply content-insensitive
partitioning (rate-aware pane-based partitioning”).

4.1 Frequency-aware Hash-based Partitioning
For queries where evaluation is inherently done on logical

partitions identified by keys (e.g., GROUP-BY attributes),
typically a hash function is applied over the relevant at-
tributes to identify a processing node for each tuple. This
technique can distribute data in a load-balanced manner
when the hash function is carefully chosen and the data are
uniformly distributed.

In a dynamic setting where there can be a large num-
ber of dynamically changing data sources, processing nodes
and time-varying fluctuations in the distribution of the data,
traditional hashing would result in relocation of keys every
time data sources or processing nodes change and would not
suffice to achieve load-balancing (cf. Figure 13). What we
need, instead, is a hashing technique that not only preserves
load-balance in the presence of a data skew, but also mini-
mizes the change in key assignments to processing nodes as
data sources or processing nodes join/leave. We, therefore,
utilize a consistent-hashing [16] based technique in a novel



manner to balance load among processing nodes. It is im-
portant to note that using consistent hashing alone does not
completely solve the data skew problem. It provides uniform
distribution of keys to nodes, where each node will have the
number of keys close to the mean number of keys per node.
Under data skew, some of the keys appear more frequently
than others over a time interval. In this case, nodes that are
assigned the more frequent keys end up receiving more load
than the others. In order to deal with the data/frequency
skew problem, we propose a revised consistent hashing tech-
nique where the most frequent keys are divided into sub-keys
in a more fine-grained manner and are assigned to multiple
processing nodes. We call this stream partitioning approach
frequency-aware hash-based partitioning.

Our algorithm proceeds in periods of fixed-size time in-
tervals. During each interval, we maintain the frequencies
of the K most frequent keys. We partition each such key i
into pi parts, where pi is proportional to key i’s frequency.
As tuples arrive for key i, we suffix them with a partition
number from 1 to pi in a round-robin fashion (i.e., key i
becomes i#j, 1 ≤ j ≤ pi). This generates pi distinct keys
from each key i, which are treated as if they were separate
keys in assigning their corresponding tuples to the process-
ing nodes in the consistent hash table (see Figure 8). It is
important to note that this process is carried out on each
split node independently so that there is no need for extra
communication among the split nodes and hence the mech-
anism does not need a fully distributed hash table as in
peer-to-peer systems. Note that our frequency-aware hash-
based partitioning technique is general enough to be applied
in other domains that employ consistent hashing (e.g., in
distributed key-value stores like Cassandra [18], where tem-
porally skewed accesses are also commonplace).

4.2 Rate-aware Pane-based Partitioning
Our content-insensitive stream partitioning makes novel

use of the pane-based technique for parallel processing of
sliding window queries. Given a query with window size w
and slide s, the main idea is to divide windows into non-
overlapping panes of size gcd(w, s) as shown in Figure 7.
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Figure 7: Panes.

Pane-based partitioning is
a better approach than
window-based partitioning
when windows overlap. In
this case, independent par-
titions can be created with-
out replicating the overlap-
ping tuples across partitions
[3]. In pane-based parti-
tioning, each tuple belongs
to exactly one pane.

In our framework, we assign window-id’s and pane-id’s
to tuples in the split operator (like in [19]), and then dis-
tribute panes to the query nodes in a round-robin order.
Distributing tuples on a pane-by-pane basis does not work
well when input streams are bursty. The reason is that,
for time-based windows, bursty or fluctuating input rates
may lead to uneven window and pane sizes in terms of num-
ber of tuples contained. In this case, we lose control of
load-balance over query nodes. This problem is similar to
the skew problem in traditional parallel databases, except
that, in our case the skew is due to input rates instead of
input data distributions. To remedy this problem, we pro-
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Figure 8: Consistent hashing with further key par-
titioning.

pose a rate-aware pane-based partitioning technique. The
rate-awareness comes from the fact that the system contin-
uously monitors the expected window and pane sizes and
their statistical properties by keeping track of “recently” ar-
rived tuples and their rates. In our approach, a pane is
further partitioned into sub-panes if its size is larger than
the average size of“recently”arrived panes plus the standard
deviation. In this case, the tuples exceeding this average are
sent to the next query node in the round-robin sequence.
On the other hand, for panes whose size is smaller than this
average, our algorithm compensates by routing additional
panes/sub-panes to the processing node where such small
panes are assigned. This solution smoothly integrates into
our framework and automatically preserves load-balance of
pane-based partitioning. The overhead we pay in return is
continuously maintaining an estimate for average pane size
and standard deviation over recent stream history, which is
relatively small.

5. QUERY PROCESSING IN ACTION
In this section, we show how our framework can extend a

partitioned parallelism model and be effectively applied to
parallelizing sliding window aggregation queries in SPEs.

5.1 Query Types
We assume a generic parallelism model as shown in the

middle part of the Figure 1. We focus on Select-Map-Aggre-
gate (SMA) queries as our workload to demonstrate the ef-
fectiveness of our techniques, as illustrated by the example
query of Section 1.1. This query involves a Selection with
predicate ReportType = ’traffic’, a Map with a user-de-
fined transformation function getGridCoordinates(Long,-

Lat,@precision), and a time-based window with size and
slide of 60 and 1 minutes, respectively, over which a distribu-
tive (COUNT()), an algebraic (AVG()), a distributive (MAX())
and a user defined aggregate function isQueueEnd() are ap-
plied. The user-defined Map function transforms given GPS
coordinates and precision level to a geodetic coordinate sys-
tem. The user-defined aggregate detects whether a given
road segment has a traffic queue-end [9].

5.2 Pane and Window Meta-data
In our framework, split nodes also take part in query pro-

cessing. Split nodes annotate tuples with meta-data to in-
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Figure 9: Parallel aggregation pipeline.

form the downstream query, merge, and union nodes about
pane- and window-related information that is needed in query
evaluation. These include pane-id’s and window-id’s that
are added to the tuples [19], as well as pane-close or window-
close punctuations (i.e., additional tuples injected into the
streams) signalling the end of a given pane or window.

Consider a query with window size w and window slide s.
For count-based windows, a tuple with index i is a window-
closer if ((i ≥ w) ∧ ((i − w) mod s ≡ 0)). For time-based
windows, the same condition can be checked by using i’s
time field’s values. However, when there are multiple tu-
ples with the same time value, the first tuple following a
sequence of tuples holding this condition should actually
signal a window-close event. A similar discussion applies
to pane-close events. Once a tuple is seen that meets the
window-close or the pane-close condition, a corresponding
punctuation tuple is broadcast to all query nodes. If there
are n split nodes, a query node should close a window/pane
upon receiving a total of n such punctuations to ensure that
all inputs contributing to that window/pane (each might be
coming through any one of the n split nodes) are considered.

5.3 Evaluation of Aggregates
Pane-based aggregation decomposes a given query into

two sub-queries: (i) pane-level sub-query (PLQ) that runs
over the panes, and (ii) window-level sub-query (WLQ) that
runs over the results of the panes. The decomposed evalua-
tion enables parallel processing of a window aggregation as
follows. We first partition the input tuples of a window into
d partitions. Each of the partitions is processed by a query
node that contains a copy of the aggregate operator. Each
query node proceeds as if the tuples received for the parti-
tion represent the complete window, and generates a partial
aggregate for its entire window. This computation benefits
from the sharing of pane results and moreover needs reduced
internal buffering for distributive and algebraic aggregates.
Let us explain this mechanism with an example.

Figure 9 illustrates a parallel aggregation pipeline with 2
query nodes and 1 merge node. The query is a user-defined
aggregate with w = 12 and s = 4 tuples. Therefore, each
pane has wp = sp = gcd(12, 4) = 4 tuples and there are 3
panes per window. For this example, the stream is parti-
tioned with a simple tuple-by-tuple round-robin partition-
ing. Every query node receives its subset of tuples for cor-
responding pane partitions (pi) as a stream from the split
operator and is responsible for locally computing the PLQ’s
for those. PLQ results, (pi, value) pairs, are stored in a
Panes table. On the other hand, a Windows table keeps

track of window results as (wij , value) pairs that are evalu-
ated from the PLQ results by applying the merge function,
i denoting the window-id and j denoting the index of the
node. A Panes table entry has a complete result after all
the pane_close punctuations arrive. A Windows table en-
try becomes ready for output when all of its n panes have
complete results in the corresponding Panes table. In the
example, partial window results w11 and w12 will be out-
put to the merge node from query nodes 1 and 2, respec-
tively. After all query nodes send a win_close punctuation
to the merge node, the corresponding Windows table entry
becomes ready for final output.

6. EXPERIMENTAL EVALUATION
The goal of this experimental study is to investigate how

well our framework achieves its goals. The results demon-
strate that: (i) the number of processing nodes that our
system uses is close to optimal, (ii) load is balanced at all
times with low overhead, and (iii) the adaptivity layer meets
QoS bounds.

6.1 Experimental Setup
We implemented our adaptive input stream admission and

management techniques as an extension to the Borealis dis-
tributed stream processing engine [1]. Additionally, we en-
riched the query execution framework of Borealis by inte-
grating our techniques for a data partitioned evaluation of
SMA queries.

All the experiments were conducted on a shared-nothing
cluster of machines, where each machine has an IntelR© XeonR©

L5520 2.26 Ghz Quadcore CPU and 16GB of main memory.
The nodes, each running Debian Linux, are connected by a
Gigabit Ethernet.

6.1.1 Workloads
To evaluate our system, we used the query from the mo-

tivating example introduced in Section 1.1. The query is a
fairly expensive SMA query, which includes a costly map-
ping function (getGridCoordinates()) doing floating point
intensive transformation on geographic coordinates and it
evaluates four aggregations, one of them being fairly com-
plex (isQueueEnd()). Lastly, in order to have a represen-
tative number of panes, we fixed the ratio of window size
to slide at 100, where actual sizes are varied based on the
chosen input rate.

The workload data that we used for our experiments is
adapted from the real world traces of Uber [26] that is pub-
licly available [13]. The data is a sample of 1.2M position
reports collected from black cars in San Francisco. However,
it misses some of the attributes such as Speed, ReportType
given in the schema described in Section 1.1 and hence we
artificially generated these values (assuming 100% selectiv-
ity for the predicate). In order to increase input rates, we
replayed the real trace in a faster way. As a result, the data
we used in the experiments follow the real trace in terms of
skew with the only difference being the input rates.

Additionally, we also synthetically generated different tem-
poral patterns based on the distributions of the real dataset.
The constant workload (constw) consists of k streams with
uniformly distributed rates between a min and a max rate.
Tuples arrive with exponentially distributed inter arrival
times with the mean equal to the chosen average rate. Pair-
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Figure 10: (a) Mean number of client redirections, (b) mean number of buffered tuples, and (c) redirection
delay at client side.

step (psfcw) and pair-trend (ptfcw) fluctuating constant
workloads consist of k streams that fluctuate in pairs but
opposite of each other while the total load stays constant.
We created two workloads where the total load varies. In
the step fluctuating version (sfvar), rates suddenly change
between high and low, whereas in trend fluctuating (tfvar)
the switch happens with an observable trend. Lastly, for the
bursty workload, we used the classical on-off model. During
an active period, tuples arrive periodically with a certain
rate, whereas in an idle period no data arrives. Duration of
active and idle periods follow an exponential distribution.
As the total number of streams, we have picked 80. Finally,
we define the load level as the number of machines that
can handle the entire load at hand.

6.1.2 Optimization Strategy Variations
The main optimization strategy of our framework, DRF-

M, is described in Section 2.5. For comparison, we im-
plemented other strategies by customizing the optimization
algorithm shown in Algorithm 1. The baseline algorithm
is called Plain Average Rate BFD (PAR), which simply
considers all streams as moveable and all nodes as initially
empty. Moreover, it uses only last period average rates in-
stead of forecasts. The other algorithms we consider dif-
fer from our strategy in the way they pick streams. Aver-
age Rate Increasing BFD (ARI) picks streams in increasing
order of their last period average rates, whereas Average
Rate Decreasing BFD (ARD) picks them in decreasing or-
der. Both rely on last period average rates instead of rate
forecasts. Lastly, in order to demonstrate the effectiveness
of the meta-data information about streams, we have also
implemented DRF which relies on just delta-rate-forecast
heuristic without considering meta-data about the streams.

6.2 Performance of Input Stream Admission
and Management

In this experiment, we demonstrate the effectiveness of our
input stream admission and management technique DRF-
M. We discuss the performance in terms of the number of
client redirections, the buffering amount at the client, and
the delay contribution in the overall query evaluation.

6.2.1 Client Redirections and Buffering
Figure 10(a) shows mean client redirections and Figure

10(b) shows mean client buffering caused by different strate-
gies under different workloads. First, PAR considers re-
assignment of all streams at each period regardless of the
workload. As a result, it shuffles around most of the streams
(note that the total number is 80) all the time causing high

amount of client side buffering. Second, the DRF strategy
moves streams early by utilizing the forecasts and prevents
the problems in advance. This reduces stream movement,
as initial movements are provisioned for future rates. As a
result, client side buffering is also reduced. The benefit of
forecasting is apparent in comparing sfvar and tfvar work-
loads where forecasts are more accurate in tfvar. Compar-
ing ARI and ARD, we see that ARI performs slightly worse
than ARD as it first considers moving low rate streams,
which dictates it to move more streams around. Compared
to all other techniques, DRF is much better in reducing the
number of client redirections and the amount of buffering
at the client side. Furthermore, DRF-M, which integrates
meta-data knowledge about streams, performs even better.
In this experiment, we provided information about peak-
rates, trend of rates and burstiness period. In cases where
predictions do not perform sufficiently well (i.e., psfcw, sf-
var and bursty), DRF-M further improves the performance
compared to DRF.

6.2.2 Delay Contribution
Figure 10(c) shows average accumulated delays caused

by stream redirections per optimization period. We only
include ARI, DRF and DRF-M as others have extremely
high delays. The delays are in line with the other experi-
ments, fewer number of redirections and buffering in DRF
and DRF-M keep the accumulated delay lower than others.
Additionally, DRF-M becomes more robust by integrating
meta-data even with a bursty workload.

6.3 Resource Efficiency
In this experiment, we investigate how different strategies

perform in terms of resource usage compared to the opti-
mal case that requires solving an instance of the bin-packing
problem at each optimization period. To find the optimal
number of nodes (i.e. bins), we used an approximate method
called wasted-space residual optimality [17] that provides a
tight bound for optimal number of bins required.

Figure 11 shows the result of this experiment. PAR per-
forms very close to the optimal. The reason is that it applies
a global optimization in stream assignment by considering
all streams at once and does not consider the previous as-
signments of streams. However, despite being close to op-
timal in terms of resource efficiency, we have shown in Sec-
tion 6.2 that global optimization in PAR performs unaccept-
ably poor for admission and management of input streams.
Second, rate forecasting can be negative in terms of resource
usage as forecasts often tend to overestimate the input rates.
DRF can perform similar to the non-forecasting versions



constw psfcw ptfcw sfvar tfvar bursty
0%

4%

8%

12%

16%

20%

workload

%
ov

er
o
p
ti

m
a
l

PAR ARD ARI DRF DRF-M

Figure 11: % resource utilization above optimal.

(ARD, ARI) when forecasting is more accurate, for instance
in workloads with an explicitly observable trend (ptfcw, tf-
var). Overall, DRF only needs around 15% more resources
than optimal to handle a fluctuating workload with trend.
More importantly, our main optimization strategy DRF-M
performs even closer to the optimal for psfcw, sfvar and
bursty workloads where using meta-data proves better than
just forecasts.

To summarize the results of Sections 6.2 and 6.3, the DRF-
M strategy is very successful in keeping the delay below
a certain threshold by avoiding excessive stream reassign-
ments in a running query, while it requires only ≈ 5-10%
more resources than other strategies and ≈ 15% more than
the optimal.

6.4 Impact of Query-awareness in Stream
Management for Parallelization

In this section, we evaluate the integration of stream par-
titioning techniques and query-awareness into the admission
and management of input streams. The experiments in this
section demonstrate the effectiveness of these techniques in
terms of robust load-balancing and low overhead, which are
key requirements for effective parallelization.

6.4.1 Content-insensitive Partitioning
Content-insensitive partitioning utilizes window size and

slide information from the query and introduces use of panes
as discussed in Section 4.2. In this experiment, we evalu-
ate our pane-based partitioning techniques. We use a single
splitter node with either plain or rate-aware pane partition-
ing to compare them. The metric used in the experiment
is the load-balancing ratio defined as the ratio of mean
and standard deviation of CPU loads observed over 16 nodes
that split feeds. As the workload, which is specific to this ex-
periment, we use an input stream with a rate uniformly dis-
tributed between 18K and 22K for every second. To model
the rate-skew, the input rate transiently jumps to 5 times
the current rate with a probability of 0.1 at each second.
Figure 12 shows the workload at the bottom and the results
at the top. First, in both cases the load-balancing ratio is
high at the beginning as nodes are idle and most of them
do not have enough data to process. However, this period
is longer in rate-aware partitioning as it needs a warm-up
period to statistically estimate the number of tuples in a
pane. After that, rate-aware pane partitioning continuously
keeps track of pane-size statistics and dynamically further
partitions a pane if there is need. As a result, the load-
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Figure 12: Load-balancing in content-insensitive
partitioning.

balancing ratio is slightly affected by the rate-skew prob-
lem and, after the warm-up, the system is able to keep the
average load-balancing ratio below 7 % during the entire
run. However, plain pane partitioning is highly sensitive
to rate-skew problem as seen in Figure 12. Whenever the
rate jumps, the load-balancing ratio also jumps up to 100 %
causing a high load-imbalance. During the entire run, the
average load-balancing ratio is ≈ 60 %.

6.4.2 Content-sensitive Partitioning
Content-sensitive partitioning utilizes key-based constr-

ucts from the query (i.e., GROUP-BY statement in our case)
as discussed in Section 4.1. In this experiment, we study
the load-balancing performance of our key-based partition-
ing technique under varying skew. In each experiment, af-
ter a warm-up period for collecting key frequency statistics,
we measure the mean and the standard deviation of load
on the processing nodes. In all experiments, the maximum
number of distinct keys is 16K. In the first experiment, we
used the real data distributions from the motivating exam-
ple. In the other ones, we vary the frequency of keys at
each experiment by using a Zipf distribution with different
parameters. Figure 15 shows the load-balancing property
of our key-based partitioning technique on both real data
trace and synthetic data with different Zipf and top-K pa-
rameters. K on x-axis indicates the number of the most
frequent keys that are considered for further partitioning.
The percent shown on the y-axis denotes the load-balancing
ratio. First of all, as shown previously in Figure 2(a), the
real data trace follows a highly skewed Zipfian-like distribu-
tion and, not surprisingly, the load-balancing performance
of our techniques work equally well on real trace and syn-
thetic data generated with a Zipf distribution. Second, as
the skew increases, variation of load between different pro-
cessing nodes increases significantly if we do not apply fur-
ther partitioning (i.e., K = 0). Since there are a few hotspot
keys, choosing K = 5 reduces the ratio below 50 % in all the
cases. When K increases, e.g., at K = 100, the variation
of load decreases tremendously, almost nearing the keys per
node ratio. However, increasing K beyond a certain point
does not help as the load-balancing ratio is determined by
the keys per node ratio. As a conclusion, by only monitoring
and further partitioning the 100-200 most frequent keys we
can achieve robust load-balancing even under extreme skew.

6.4.3 Why basic hashing would not suffice?
One might tend to think that basic hash-partitioning may

suffice for adaptive parallelization. Assume a hash function
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titioning under skew.

h(k) = hash(k)%N where N denotes the number of nodes.
We use the same workload as shown in the lower part of
Figure 14, where the number of processing nodes changes
significantly over time. As N changes at each optimization
point, the value of the hash function changes frequently as
well. We call each such change a key relocation , which
causes tuples of a pane to be distributed to excessively many
nodes. In an extreme case, no significant aggregation might
be done on processing nodes. Even a single pane result must
be produced by merging many sub-pane results from several
nodes, which in turn increases the merge cost. Figure 13
shows the experiments we conducted to study this effect.
Figure 13(a) shows the percentage of all keys that are relo-
cated. In basic hashing, almost all of the keys are relocated
as the number of nodes changes. Our technique keeps the
number of relocated keys significantly lower. As a result,
our technique achieves a lower load level on merge nodes as
shown in Figure 13(b).

6.4.4 Load-balancing Overhead
Frequency-aware partitioning needs to keep track of the

most frequent K keys for further partitioning. At the imple-
mentation level, we use an approximate frequency estima-
tion algorithm on a sample of the stream. In the split node,
average per tuple processing cost overhead in comparison
to basic hashing is ≈ 17 %. On the other hand, pane-based
partitioning with rate-awareness needs to keep track of pane
size statistics. In this case, per tuple processing cost over-
head compared to plain round-robin is only ≈ 4 %. Overall,
the load is balanced at all times for a small overhead.

6.5 Adaptivity and QoS Preservation
In this experiment, we study adaptivity, in particular the

end-to-end latency behavior when our optimization strat-
egy (DRF-M) is used. For comparison, we use ARD since
it is one of the best. The workload used in this experiment
is a fluctuating workload with a trend. It begins with a
workload saturating 4 machines and goes up to 32. Inspired
by the Linear Road Benchmark [2], the QoS metric chosen
has a maximum latency of 5 seconds. Results are shown
in Figure 14. At the beginning, all the generated streams
are assigned randomly, which causes a spike. Latency drops
later until load begins to increase. The major difference
between the two algorithms is that DRF-M looks at the fu-
ture (by forecasts), while ARD looks at the past (by average
values). Using forecasts, DRF-M optimizes early and keeps
the latency low. The early optimizations cause transient
peaks but reduce latency later. ARD performs optimizations
even earlier than DRF-M, which causes latency to be higher
and peaks to be lengthy. When the load-level reaches the
max, both algorithms need to shuffle around many streams
to achieve optimal assignment. During that time, streams
are very fast and this causes a lot of buffering on the clients
and nodes resulting in short QoS violations. Finally, we also
include the latency measurements with a static cluster of 32
nodes in which nodes are never dynamically added/removed
to/from the query. As expected, it has a lower latency but
comes with extremely high resource usage. For example, it
uses 32 nodes at times when only 3 nodes would suffice for
the workload at hand.

6.6 Summary
The experiments show that our system can meet the QoS

requirements of fluctuating workloads of highly dynamic and
transient input streams while being resource efficient. In-
tegration of input meta-data and query-awareness into the
input management enabled our partitioning techniques to
achieve robust balancing of load for skewed data and rates
with low overhead for maximum utilization of parallelism.

7. RELATED WORK
The advances in parallel processing platforms and the

emergence of the pay-as-you-go economic model of the new
cloud-based infrastructures motivate the need for elastic scal-



ability in stream processing systems. In order to address this
requirement, Recent works introduce capabilities into SPEs
to allow flexible scaling up and down of the processing ca-
pacity in response to the workload fluctuations [10, 11, 21].

In general, the elastic scalability feature is tightly coupled
with the parallelization model. Pipelined parallelism is one
of the common models to provide inter-operator/inter-query
parallelism (e.g., [29]). In this case, load-balancing/adapti-
vity requires moving operators and state across different
nodes. In order to provide elastic parallelism during run-
time, Gulisano et al. [10, 11] use a similar model to pipelin-
ing by proposing a technique to split queries into subqueries
for allocating them to independent sets of nodes.

The partitioned parallelism model, by contrast, splits in-
put streams into disjoint partitions, each of which is pro-
cessed by a replica of the query in a parallel fashion. Par-
titioning usually provides fine-granular intra-operator par-
allelism and achieves much better load-balancing. In order
to provide elastic parallelism in an SPE, Schneider et al.
[21] use a partitioned parallelism model that proposes meth-
ods for streaming operator elasticity on multi-core CPUs.
In one of the earlier works in this area, Flux generalizes
the Exchange and RiverDQ approaches of traditional par-
allel databases to provide online repartitioning of streaming
operators such as group-by aggregates [23]. Ivanova et al.
[14] instead focus on data partitioning for content-insensitive
streaming operators such as windowed aggregates. Very re-
cently, to address the unscalability of partitioning in this
work, Zeitler et al. [30] propose a parallelized stream split-
ting operator (parasplit) for massive-volume streams. In ad-
dition, once data parallelism is identified, extracting it from
queries automatically with a compiler and runtime system
constitutes an important step [22].

In terms of admission control, a recent work discusses an
auction-based “query admission” to a cloud-resident SPE to
increase the system’s economic utilization [20]. However,
this work mainly focuses on the admission of different user’s
queries and does not discuss any issues related to the ad-
mission control and management of input streams. Another
closely related work discusses resource management and ad-
mission control for SPEs [28]. By treating the input streams
as dummy nodes, the problem of admission control is trans-
formed into a routing and resource-allocation problem with
the objective of maximizing the overall system utility. How-
ever, the assumptions of this work are rather restrictive,
including a fixed-size cluster without elasticity, fixed-rate
streams, and no consideration of input stream characteris-
tics. Lastly, Gulisano et al. [11] provide on-demand provi-
sioning for computing resources based on past observations
of node loads. However, they also do not consider multiple
input streams and their characteristics in their problem.

8. CONCLUSIONS
In this paper, we presented a framework for adaptive ad-

mission control and management of input streams for paral-
lel data stream processing. The main goal of this framework
is to treat large numbers of dynamic external input streams
as first-class citizens of a stream processing engine. By
explicitly controlling their admission and managing them,
SPEs can better and timely react to dynamically changing
workloads. Our main contributions include a near-optimal
input stream assignment technique that employs forecast-
ing and meta-data, stream partitioning and adaptivity tech-

niques that employ query knowledge early in the input layer
for automatically minimizing the size of the cluster and
maintaining load balance. Our results show that these tech-
niques are effective in achieving the goals of our framework.
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