
METU-EMar: An Agent-Based Electronic
Marketplace on the Web ?

Asuman Dogac, Ilker Durusoy, Sena Arpinar, Esin Gokkoca, Nesime Tatbul,
and Pinar Koksal

Software Research and Development Center
Dept. of Computer Eng.

Middle East Technical University
06531, Ankara, Turkey

asuman@srdc.metu.edu.tr

Abstract. In this paper, we describe a scenario for a distributed mar-
ketplace on the Web where resource discovery agents find out about
resources that may want to join the marketplace and electronic com-
merce is realized through buying agents representing the customers and
the selling agents representing the resources like electronic catalogs.
We propose a possible architecture which is based on the emerging tech-
nologies and standards. In this architecture, the resources expose their
metadata using Resource Description Framework (RDF) to be accessed
by the resource discovery agents and their content through Extensible
Markup Language (XML) to be accessed by the selling agents by using
Document Object Model (DOM). The marketplace contains Document
Type Definitions (DTDs) and a dictionary of synonyms to be used by
the buying agents to help the customer to specify the item s/he wishes to
purchase. Distribution infrastructure is CORBA and Web on which the
buying and selling agents find out about each other using Trading Ob-
ject Services. The modifications necessary to the proposed architecture
considering only the available technology are also discussed.

1 Introduction

Electronic commerce is a generic term that encompasses numerous information
technologies and services used to implement business practices ranging from
customer service to inter-corporation coordination. One of the most common
instances of electronic commerce is the exchange of goods and services over
the Internet. However, the electronic commerce services that are established so
far are still far from being mature. There is no real integration of the available
underlying technologies, and the provided services lack many important but also
more challenging features.
? This work is partially being supported by Middle East Technical University, the

Graduate School of Natural and Applied Sciences, Project Number: AFP-97-07.02.08
and by the Scientific and Technical Research Council of Turkey, Project Number:
197E038

C. Nikolaou, C. Stephanidis (Eds.): ECDL’98, LNCS 1513, pp. 777–790, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

778 A. Dogac et al.

One such feature is the automation of a marketplace on the Web through
agents. For such a marketplace, there is a need for a facility which enables the
semantic interoperability of resources on the Web so that buyers are able to reach
the sellers that can meet their needs and vice versa. In this respect, the currently
emerging standards like RDF and DTDs sound very promising. Furthermore,
after the resources are discovered, the process of interaction between buyers and
sellers (resources), that is commerce, should be automated. In other words, a
virtual marketplace on the Web should be created which not only makes buyers
and sellers meet but also helps the exchange of goods between them through
negotiations. Intelligent software agent and workflow technologies are the means
through which this automation can be achieved.

With these considerations in mind, we envision a scenario for an electronic
marketplace on the Web. The distribution infrastructure of the marketplace is
CORBA and Web. The marketplace, in addition to resource discovery agents,
contains templates of buying and selling agents, pointers to the Document Type
Definitions (DTDs), trader objects implemented through Trading Object Service
and an intelligent dictionary of synonyms.

In this scenario, resource discovery agents working in the background discover
resources. If a resource is willing to join the marketplace, the marketplace creates
a selling agent workflow template for the resource and registers it with the trader.
However if the resource already has a selling agent, that one is registered. If there
are any related buying agents already in the marketplace when the selling agent
is registered, the trader makes the selling agent aware of this buying agent.

When a customer specifies a service or an item s/he wishes to purchase from
the marketplace, a buying agent workflow template is created for the customer.
The customer may not know the right term (used in DTD) to use for the item,
therefore an intelligent dictionary of synonyms is used for this purpose. For
example, consider a computer shop using a computer DTD in describing its
service. If a customer wants to buy a CPU and uses the term ”Processor” and if
”CPU” is the term used in DTD, then dictionary of synonyms is to match the
word ”Processor” with ”CPU”. The buying agent contacts the marketplace and
obtains a form for the customer to specify the properties of the item s/he wants
to buy which contains the names and types of the properties of the item. Such
a form which is created using the information in the related DTD, is necessary
since the customer may not know in advance all the properties of the item.

The buying agent gets the filled form containing the values or ranges for
the properties of the item from the customer along with the criteria that s/he
wishes to be optimized in the negotiation phase and the required parameters. The
buying agent negotiates with the related selling agents to realize the transaction.
A comparative analysis of the available alternatives can also be presented to the
customer by the buying agent if the customer wishes so.

The rest of this paper describes the related technologies and an architecture
for realizing this scenario. Section 2 summarizes the technologies that can be used
as building blocks in implementing the proposed scenario. Section 3 describes

METU-EMar: An Agent-Based Electronic Marketplace on the Web 779

the architecture and discusses its feasibility and the advantages. In Section 4
related work is presented and the conclusions are given in Section 5.

2 Related Technologies

In this section we briefly summarize the advanced technologies and emerging
standards which constitute the building blocks of the proposed architecture.
In this respect, current distribution infrastructures, Trading Object Service,
agent technology, workflow agents, Knowledge Query and Manipulation Lan-
guage (KQML), Resource Description Framework (RDF), Extensible Markup
Language (XML), Document Type Definition (DTD), and Document Object
Model (DOM) are covered.

2.1 Distribution Infrastructure

Web itself and the distributed object platforms like CORBA or Active X/DCOM
provide a distribution infrastructure. It is possible to use the Web (HTTP,
HTML and Java) in conjunction with an object-oriented ”communication bus”
following Common Object Request Broker Architecture’s (CORBA) Object Re-
quest Brokers (CORBA 2.0 and IIOP). Indeed, these sets of technologies con-
stitute the basis of some of the major electronic commerce platforms like Net-
scape ONE (Open Network Environment), Oracle’s NCA (Network Computing
Architecture), IBM’s CommercePoint and Sun and JavaSoft’s Java Electronic
Commerce Framework [17].

Using CORBA 2.0 and IIOP with Web rather than using Web alone provides
the following advantages [16]:

1. In Web, method invocation is realized through HTTP and Common Gate-
way Interface (CGI) protocol. When this HTTP/CGI layer is replaced by
CORBA, since CORBA allows clients to directly invoke methods on a server,
a lot of overhead is avoided. Furthermore, any IDL defined method on the
server can be invoked and typed parameters can be passed instead of just
strings.

2. With CGI, a new instance of a program must be started every time an
applet invokes a method on the server. With CORBA, the same server object
receives successive calls from the client and preserves the state between these
invocations.

3. CGI is a stateless protocol, that is, CGI does not maintain information from
one form to the next. Therefore, hidden fields within a form are used to
maintain state on the client side. CORBA maintains the state between client
invocations avoiding this overhead, too.

4. CGI creates a bottleneck because it has no way to distribute the incoming
requests across multiple processes and processors. CORBA ORBs on the
other hand can create as many server objects as necessary. These server
objects can run on multiple servers to provide load balancing for incoming
client requests.

780 A. Dogac et al.

5. With CORBA, Java clients and applets can invoke a wide variety of IDL
defined operations on the server. In contrast, HTTP clients are restricted to
a limited set of operations.

6. CORBA provides a rich set of distributed object services that augment Java,
including trader, transactions, security, naming and persistence.

It should be noted that, like HTTP, CORBA’s IIOP uses Internet as the
backbone. This means that both IIOP and HTTP can run on the same networks.

As a summary, CORBA in conjunction with Web seems to be a very promi-
sing infrastructure for electronic commerce applications.

2.2 Trading Object Service

The OMG Trading Object Service [20] facilitates the offering and the discovery
of instances of services of particular types. A trader is an object that supports
the Trading Object Service in a distributed environment. It can be viewed as an
object through which other objects can advertise their capabilities and match
their needs against advertised capabilities. Advertising a capability or offering
a service is called ”export”. Matching against needs or discovering services is
called ”import”. Export and import facilitate dynamic discovery of, and late
binding to, services.

To export, an object gives the trader a description of a service together with
the location of an interface at which that service is available. To import, an
object asks the trader for a service having certain characteristics. The trader
checks against the service descriptions it holds and responds the importer with
the location of the selected service’s interface. The importer is then able to
interact with the service.

Due to the sheer number of service offers that will be available worldwide,
and the differing requirements that users of a trading service will have, it is
inevitable that a trading service will be split up and that the service offers will
be partitioned. Traders in different partitions interact with each other to answer
the needs of a client.

2.3 Agent Technology

Agents are programs that perform specific tasks on behalf of their users. Agents
are distinguished from other types of software because they are independent
entities capable of completing complex assignments without intervention, rather
than as tools that must be manipulated by a user.

The fundamental properties of software agents are as follows [22]:

Autonomy: Agents operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state.

Social ability: Agents interact with other agents (and possibly with humans) via
some kind of agent communication language.

METU-EMar: An Agent-Based Electronic Marketplace on the Web 781

Reactivity: Agents perceive their environment, (which may be the physical world,
a user via a graphical user interface, a collection of other agents, the Inter-
net, or perhaps all of these combined), and respond in a timely fashion to
changes that occur in it.

Pro-activeness: Agents do not simply act in response to their environment, they
are able to exhibit goal-directed behavior by taking the initiative.

The agents can be made more intelligent with the following additional pro-
perties:

Rationality: Agents select actions that follow from knowledge and goals.
Adaptivity: Agents are able to modify knowledge and behavior based on expe-

rience.
Collaboration: Agents can plan and execute multi-agent problem solving.

An earlier example of a software agent for electronic commerce is ShopBot
[7] which is a domain-independent comparison-shopping agent. Given the home
pages of several online stores, ShopBot automatically learns how to shop at these
vendors. Learning process involves extracting product descriptions from home
pages. This is not an easy problem because home pages may vary in format
and also contain other information like advertisements and links to other sites.
After learning, ShopBot is able to visit over a dozen of software vendors, extract
product information, and summarize the results for the user. Preliminary results
show that ShopBot enables users to both find superior prices and substantially
reduce Web shopping time. ShopBot relies on a combination of heuristic search,
pattern matching, and inductive learning techniques.

Yet ShopBot has several limitations. It works only on home pages that have
a searchable index. It expects product descriptions to start on a fresh line. Fur-
thermore, ShopBot heavily relies on HTML. If a vendor provides information
exclusively by embedding graphics or using Java, ShopBot will be unable to
handle that vendor. More importantly ShopBot shopper’s performance is linear
in the number of vendors it accesses which is not acceptable given the number
of resources on the Web.

2.4 Workflow Agents

Coupling agent technology with workflow systems seems to be a very promising
research direction since these technologies nicely complement each other. The
resultant ”intelligent workflow” will not only have the properties of intelligent
agents like being reactive, intelligent and adaptive but also will define an agent
consisting of processing steps with data and control flow among them. However,
to be used in agent construction, the current workflow technology must be im-
proved in several directions including better support for ad hoc workflows and
modifications at run time as well as truly distributed enactment service [5,6].

782 A. Dogac et al.

2.5 Knowledge Query and Manipulation Language (KQML)

One of the requirements for software agents to interact and interoperate effec-
tively is a common communication language (social ability property). KQML [8]
is an agent communication language and a protocol developed by the Knowledge
Sharing Effort (KSE) Consortium. It has been developed both as a message for-
mat and a message-handling protocol to support run-time knowledge sharing
among agents which may have different content languages. It is a communica-
tion language which expresses communicative acts and it is different from the
content language which expresses facts about the domain. The aim of KQML is
to support computer programs in identifying, connecting with and exchanging
information with other programs.

KQML language consists of three main layers: the content layer, the message
layer, and the communication layer. The content layer contains the actual con-
tent of the message in the program’s own representation language. This layer
enables KQML to carry any message written in any representation language.
The communication layer encodes a set of lower level communication parame-
ters to the message like the identity of the sender and recipient and a unique
identifier associated with the communication. The message layer is the core of
KQML and determines the kinds of interactions one can have with a KQML-
speaking agent. It identifies the protocol to be used to deliver the message and
supplies a performative which the sender attaches to the content (such as that
it is an assertion, a query, a command, or any set of known performatives). The
performatives comprise a substrate on which to develop higher-level models of
inter-agent interaction such as contract nets and negotiation. The set of perfor-
matives defined by KSE is extensible. A group of agents may agree on to use
additional performatives if they agree on their interpretation and the protocol
associated with each. The message layer also includes optional features which
describe the content language, the ontology, and some type of description of the
content. These features make it possible for KQML implementations to analyze,
route and properly deliver messages even though their content is inaccessible.

Following are the main advantages of KQML as an agent communication
language:

– KQML messages are declarative, simple, readable and extensible,
– Since KQML has a layered structure and since KQML messages are unaware

of the content of the message they carry, KQML can easily be integrated with
other system components,

– KQML imposes no restrictions about the transport protocol and the content
language.

In addition to these, KQML has the potential to enhance the capabilities
and functionality of large-scale integration and interoperability efforts in com-
munication and information technology such as OMG’s CORBA, as well as in
application areas like electronic commerce [8].

METU-EMar: An Agent-Based Electronic Marketplace on the Web 783

2.6 Resource Description Framework (RDF)

As ShopBot’s limitations given in Section 2.3 clearly demonstrated, there is a
need for machine understandable information on the Web. An emerging solution
to letting automated agents surf the Web is to provide a mechanism which
allows a more precise description of the resources that are available on the Web
[11]. The Resource Description Framework (RDF) [21] by the World Wide Web
Consortium (W3C) is a standard for metadata that provides interoperability
between applications that exchange machine-understandable information on the
Web.

RDF [21] defines both a data model for representing RDF metadata, and an
XML-based syntax for expressing and transporting metadata. RDF is a model for
representing named properties and their values. These properties serve both to
represent attributes of resources and to represent relationship between resources.
The RDF data model is syntax independent way of representing RDF expressions
and in [21], three representations of the model are given, that is, representation
as 3-tuples, as a graph and in XML. In 3-tuple representation, a property is a
three tuple consisting of the resource being described, a property name or type,
and a value. A collection of property triples describing the same resource is
called an assertions. In graph representation, the resources being described and
the values describing them are nodes in a directed graph, with the edges being
labelled by the property names. An RDF statement can itself be the target node
of an arc (i.e., the value of some property) or the source node of an arc (i.e., it
can have properties). In these cases, the original property (i.e., the statement)
must be reified; that is, converted into nodes and arcs. Reified properties are
drawn as a single node with several arcs emanating from it representing the
resource, property name and value [13].

It is clear that RDF will provide the much needed information for the agent
technologies working on the Web. Agents can use RDF not only for describing
their capabilities and negotiating the terminologies used in communication, but
also the other resources on the Web.

2.7 Extensible Markup Language (XML) and Document Type
Definitions (DTDs)

World Wide Web Consortium’s (W3C) Extensible Markup Language (XML) [19]
defines a simple subset of SGML (the Standard Generalized Markup Language).
Unlike HTML, which defines a fixed set of tags, XML allows the definition of
customized markup languages with application specific tags [14]. That is, XML
provides support for the representation of data in terms of attribute/value pairs
with user defined tags.

XML differs from HTML in three major respects [2]:

1. Information providers can define new tag and attribute names at will.
2. Document structures can be nested to any level of complexity.
3. Any XML document can contain an optional description of its grammar for

use by applications that need to perform structural validation.

784 A. Dogac et al.

Document Type Definitions (DTD) which are defined for user groups provide
a formal definition of documents for that group, that is, they define what names
can be used for elements, where they may occur and how they all fit together in
an XML file.

2.8 Document Object Model (DOM)

W3C’s Document Object Model (DOM) [18] defines an object-oriented API for
HTML and XML documents which a Web client can present to programs that
need to process the documents [14]. DOM represents a document as a hierarchy
of objects with proper inheritance relationship among them, called nodes, which
are derived (by parsing) from a source representation of a document (HTML or
XML). In other words, the DOM object classes represent generic components of
a document, and hence define a document object meta model. The major DOM
classes are: Node, Document, Element, Attribute, Text, Processing Instruction,
and Comment. The representation of a Web page in terms of objects makes it
easy to associate code with the various subcomponents of the page. For example,
Document object has a ”documentType” method which returns DTD for XML
documents (and ”null” for HTML and XML documents without DTDs) and a
”getElementsByTagName” method which produces an enumerator that iterates
over all Element nodes within the document whose ”tagName” matches the input
name provided. Thus DOM provides a general means for applications to access
and traverse documents written in HTML and XML without having themselves
to perform complex parsing.

3 METU-EMar Architecture

A possible architecture realizing the scenario given in Section 1 that uses the
technology summarized in Section 2 is described in the following (Figure 1):

PHASE I: The resource discovery agents working in the background find out
about the resources providing products and services. If the resources want
to join the marketplace, the marketplace provides them a template workflow
of a selling agent. If the resource already has a selling agent, this one is
registered to selling trader through Trading Object Service.
We expect resources to expose their semantics by using the Resource Descrip-
tion Framework (RDF) [12] and the Extensible Markup Language (XML)
[19]. As briefly summarized in Section 2.6, RDF defines both a data model
for representing RDF metadata, and an XML-based syntax for expressing
and transporting the metadata.
Since resources use RDF to expose their metadata, the resource discovery
agents do not need intelligence in extracting information from the resources.
However, they do have other properties of agents like being autonomous,
reactive and proactive.
The buying and the selling agents which are autonomous, reactive and pro-
active with negotiation ability, should be defined as workflows since they

METU-EMar: An Agent-Based Electronic Marketplace on the Web 785

Buying Trader & Selling Trader
Intelligent Dictionary of Synonyms

765
9

3

8

4 10

Selling Agent

Buying Agent

Marketplace:

DTDs (Document Type Definition)

Phase III: 7. Marketplace provides the OIDs of the matching selling agents

Phase IV: 9. Buying agents and selling agents go into direct negotiation through KQML

Phase I: 1. Resource Discovery Agents (RDA) find out about resources using RDF
2. RDA informs of the resource to the marketplace
3. If the resource has already a selling agent, this is registered with the selling trader
4. Else a selling agent is created by the marketplace and is registered with the selling trader

6. Marketplace provides a form to the buying agent using the related DTD

8. Marketplace provides the OIDs of the matching buying agents

10. Selling agents access the resources through DOM

2

1

Resource Discovery Agent

Phase II: 5. Buying agent, created upon a customer request, provides the item name to the marketplace

Resource:
DOM (Document Object Model)

RDF (Resource Description Framework)
XML (Extensible Markup Language)

Fig. 1. The Architecture of METU-EMar

consist of processing steps with data and control flow among them communi-
cating with resources, with the customer and among themselves. A workflow
system to be used in modelling a buying or a selling agent should have the
following properties:

– The scheduler of these workflows must be truly distributed in the sense
that the workflow should be able to execute in any node of the network
without consulting to a top level central control [5,6]. This is essential
since the domain of the workflow contains all the Web resources regi-
stered to the marketplace. Also, since the distribution infrastructure is
CORBA, these resources must have an ORB. It should be noted that it
is possible for different ORBs to communicate through IIOP.
The other components of the workflow, like the history management used
for logging and recovery purposes, should also be handled in a distributed
way to exploit the advantages brought by a distributed scheduler [9].

786 A. Dogac et al.

– The workflow should be defined as a template that can be enriched or
reduced (skipping parts of the prespecified workflow skeleton) so that the
customer or the resource can adapt it to its capabilities and requirements.
Run time modifications to the workflow should also be possible since
improvisations may be necessary in the negotiation phase among the
agents.

– The buying agents and the selling agents may include other subprocesses,
for example the payment process for the buying agent and the shipment
process for the selling agents. In other words independently designed
workflows (such as payment workflow) may have to be added to the
agents’ workflow as subprocesses and therefore the workflow specification
method must support this kind of composability [15].

PHASE II: When a customer specifies a service or a product s/he wishes to
purchase from the marketplace, a buying agent workflow template is created
for the customer. The buying agent is registered to the buying trader through
Trading Object Service. The buying agent contacts the marketplace and
obtains a form which contains the names and types of the properties of the
item. The marketplace uses Document Object Model (DOM) [18] to access
the related DTD to obtain names and types of attributes of the product to
prepare the form containing this information to be given to the customer.
Document Type Definitions (DTDs) which are defined for customer groups
provide a formal definition of documents for that group, that is, DTDs define
what names can be used for elements, where they may occur and how they
all fit together in an XML file as described in Section 2.7. In our case, all the
merchants use the same definition in their DTDs for the item accessed by the
selling agent. Therefore, there is no need for a translation among terminolo-
gies (which is necessary when XML files have different DTDs and different
customers define their own ways of using attribute/value pairs to represent
the same information). Marketplace contains references to the DTDs and
uses the Document Object Model to access and manipulate parsed DTDs as
a collection of objects.
Different names can be provided for the same product by the customers, in
other words, the customers may not know the standard terms used in DTDs.
Therefore, a dictionary of synonyms is necessary in the marketplace. This
dictionary of synonyms may be implemented to contain some intelligence in
the sense that whenever an item or service is not found in the dictionary, the
customer may be asked to provide synonyms and these terms can be added
to the dictionary for later use.

PHASE III: The buying agents and the selling agents find out about each other
through the related trader objects. Having two trader objects (buying and
selling) makes the process symmetric, that is, both buying objects and selling
objects can locate all the related agents as soon as they join the marketplace.
A buying agent may contact all related selling agents, to determine a buying
strategy. For example, if a selling agent with a bargaining facility is already
giving a lower price than a selling agent without a negotiation facility, the
second is eliminated. Such a strategy is also possible for the selling agents.

METU-EMar: An Agent-Based Electronic Marketplace on the Web 787

In other words, the buying and selling agents are playing a game where each
is trying to satisfy its goal. The buying agents are on the customers’ side
and the selling agents are on the resources’ side.

PHASE IV: The buying agents go in direct negotiation with selling agents pro-
vided by the marketplace. In this respect, RDF is used in encoding resources
and query capabilities and KQML [10] is used to communicate RDF among
agents.
The buying and selling agents in the marketplace act autonomously, that
is, once released in the marketplace, they negotiate and make decisions on
their own, without requiring customer intervention. They are proactive in
contacting the other interested agents and reactive to the changes in the
marketplace like new agents.
The resources should provide semantic information about their content to
the selling agent. In this respect, the resources should be defined in XML.
DOM is used by the selling agents in processing XML pages to obtain specific
product data, like the price of the product. The selling agents should be aut-
horized to invoke certain applications at the resource to obtain the bargaining
strategy and its parameters which implies that the resources should provide
this information through a standard interface. The negotiation strategies as
described in [3] can be used in the negotiation phase. Several parameters
can be specified, like the desired date to sell (buy) the item, desired price,
lowest (highest) acceptable price and a decay function if the agent wants to
decrease (increase) the price over its given time frame. However there is a
need for more solid bargaining algorithms [1].

When CORBA and Web is used as the distribution infrastructure, all the
agents in the system can be implemented as CORBA objects. Document Object
Model defines its interfaces already in IDL which makes it possible to access the
resources as CORBA objects, too. Furthermore, using CORBA as the infrastruc-
ture provides the opportunity to use OMG’s Trading Object Service as a part of
the marketplace. The selling agents of the resources as well as the buying agents
can be registered to the related trader objects through the ”Register” interface
of this service and the buying agents find out about the selling agents through
the ”Lookup” interface and vice versa. Trading Object Service is distributed in
the sense that several traders can be linked through the ”Link” interface and
can be searched depending on the prespecified policies.

As an extension to this scenario, the buying agent can be activated from
an application program through the API of the buying agent. Note that the
application might itself be a workflow. In this case, the application program
should be designed to be able to fill in the form produced by the marketplace.

3.1 Feasibility

The technological requirement of the architecture proposed is the semantic in-
teroperability of the Web resources. The building blocks for this, although have

788 A. Dogac et al.

already been defined or are being defined mostly as standards, are at their in-
fancy. For example, work is underway to define XML-based data exchange for-
mats in both the chemical and the health care communities. A number of in-
dustry groups defined SGML DTDs for their documents (e.g. the US Defense
Department, which requires much of its documentation to be submitted accor-
ding to SGML DTDs)[14]. A large US project aims to define specific attribute
names for specific elements in computer industry that can possibly be imple-
mented through XML DTDs [4].

The architecture we describe requires the DTDs for the user groups to be
available. Note that since RDF assertions use properties defined in the schemas,
i.e., DTDs, the use of RDF also depends on the availability of standard DTDs.
Until the standard DTDs become available and the RDFs start using these sche-
mas, there is a need for the following modifications in METU-EMar architecture
in realizing the proposed scenario:

1. The resource discovery agents utilize machine understandable information
(RDF) and therefore can not be implemented easily when the standard vo-
cabulary (DTDs) used by RDF is not available. In this case, resource disco-
very agents should either be more intelligent or include heuristic techniques
to understand the content of the resources.

2. When XML files have different DTDs (i.e., different users define their own
ways of using attribute/value pairs to represent the same information), there
is a need for a mechanism to identify associations among the terminologies
of the XML files. This can be achieved through a translation mechanism
between terminologies. This translation is also needed in the negotiation
phase among the buying and the selling agents.

Also as stated previously, more solid bargaining algorithms must be develo-
ped [1] to better exploit the scheme described.

3.2 Advantages

It is clear that in a marketplace as large as the one provided by the Web, the
service provided by the proposed architecture is invaluable. It will not only
help to locate better opportunities for both the buyers and the sellers but it
will also save a lot of their time in negotiations. In other words, the proposed
marketplace aims to find the best conditions for its clients and help to overcome
the limitations of direct communications between customers and suppliers. The
marketplace enables the customers to reach various suppliers whose existence
they are unaware of and hence it would be impossible for them to reach otherwise.
Symmetrically, the marketplace also gives the suppliers the chance to contact to
a much wider range of customers.

4 Related Work

One of the earliest examples of an electronic marketplace is Kasbah [3] where
users create autonomous agents that buy and sell goods on their behalf in the

METU-EMar: An Agent-Based Electronic Marketplace on the Web 789

marketplace. Kasbah’s selling agents are pro-active, they contact interested par-
ties (namely, buying agents) and negotiate with them to find the best deal.
A selling agent is autonomous in that, once released into the marketplace, it
negotiates and makes decisions on its own, without requiring user intervention.
Marketplace’s job is to facilitate interaction between the agents by letting buying
and selling agents know each other and by ensuring that they speak a common
language and use a common terminology to describe the goods.

Kasbah has a simple prototype implemented in CLOS using Harequin Lisp
to test the basic concepts of negotiation. In Kasbah, all agents are locally built
and thus are made to communicate via a predefined set of methods.

A CORBA based electronic broker (OFFER) is described in [1]. The bu-
siness model consists of suppliers, customers and electronic brokers (e-broker).
Suppliers and e-brokers offer services which can be accessed over the Internet
and which are procured by customers. The interfaces of these services are descri-
bed in OMG’s Interface Definition Language (IDL). Therefore, there is a need
in establishing an interface standard on which all suppliers of a certain product
category agree.

Suppliers offer an e-catalog to the customer; suppliers can also register with
the e-broker. The e-broker can either maintain its own database of registered e-
catalogs or it can use services of an Object Trader implemented through Trading
Object Services of OMG. Hence, a customer can search for a service either
directly in the catalog of a supplier or can use the e-broker to search in all the
e-catalogs of all the suppliers which are registered with this broker. An IDL
interface is specified for the e-catalogs and for the e-broker which they should
conform. The electronic broker described supports search in underlying catalogs
and it provides a centralized marketplace with the possibility to use an auction
mechanism to buy or sell goods.

5 Conclusions

The Internet is revolutionizing commerce. However, closed markets that cannot
use each other’s services, incompatible applications and frameworks that can not
interoperate or build upon each other are hampering the progress of electronic
commerce [17].

The need for semantic interoperability of the resources on the Web resulted
in a series of standardization efforts from the World Wide Web Consortium. In
this paper, we present an electronic market that exploits these standards as well
as some other emerging technologies like workflow agents. The realization of this
architecture depends on the availability of DTDs for different user groups. We
also present the modifications to the architecture when DTDs are not available.

References

1. Bichler, M., Beam, C., Segev, A., ”Offer: A Broker-centered Object Framework for
Electronic Requisitioning”, in Proc. of Intl. IFIP Working Conference: Trends in
Electronic Commerce, Hamburg, Germany, June 1998.

790 A. Dogac et al.

2. Bosak, J., ”XML, Java, and the Future of the Web”,
http://sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.html.

3. Chavez, A., Maes, P., ”Kasbah: An Agent Marketplace for Buying and Sel-
ling Goods”, Proc. of the First Intl. Conference on the Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology, London, UK, April
1996, http://agents.www.media. mit.edu:80/groups/agents/Publications/kasbah-
paam96.ps.

4. Danish, S., Personal Communication.
5. Dogac, A., Gokkoca, E., Arpinar, S., Koksal, P., Cingil, I., Arpinar, B., Tatbul, N.,

Karagoz, P., Halici, U., Altinel, M., ”Design and Implementation of a Distributed
Workflow Management System: METUFlow”, in [6].

6. Dogac, A., Kalinichenko, L., Ozsu, T., Sheth, A., (Edtrs.), ”Advances in Workflow
Management Systems and Interoperability”, Springer-Verlag, 1998.

7. Doorenbos, R. B., Etzioni, O., Weld, D. S., ”A Scalable Comparison-Shopping
Agent for the World- Wide Web”, ACM Agents ’97 Conference, 1997.

8. Finin, T., Labrou, Y., Mayfield, J., ”KQML as an agent communication language”,
in Jeffery M. Bradshaw, editor, Software Agents, MIT Press, 1995.

9. Koksal, P., Arpinar, S., Dogac, A., ”Workflow History Management”, ACM Sigmod
Record, Vol. 27, No. 1, March 1998.

10. Labrou, Y., Finin, T., ”A Proposal for a new KQML Specification”, Report
TR-97-03, Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County. Available on-line as http://www.cs.umbc.edu/-
∼jklabrou/publications/tr9703.ps.

11. Lassila, O., ”RDF Metadata and Agent Architectures”, http://www.objs.com/-
workshops/ws9801/papers/paper056.html.

12. Lassila, O., Swick, R. R. ”Resource Description Framework (RDF) Model and
Syntax”, Working Draft, World Wide Web Consortium. Available on-line as
http://www.w3.org/TR/WD-rdf-syntax/.

13. Manola, F., ”Towards a Web Object Model”, http://www.objs.
com/OSA/wom.htm.

14. Manola, F., ”Towards a Richer Web Object Model”, ACM Sigmod Record, Vol.
27, No. 1, March 1998.

15. Muth, P., Weissenfels, J., Weikum, G., ”What Workflow Technology Can Do for
Electronic Commerce”, in Current Trends in Database Technology, Dogac, A.,
Khosrowpour, M., Ozsu, T., Ulusoy, O., (Edtrs.), Idea Group Publishing, 1998.

16. Orfali, R., Harkey, D., ”The Essential Client/Server Programming with JAVA and
CORBA”, John Wiley, 1997.

17. Tanenbaum, J. M., ”Eco System: An Internet Commerce Architecture”, IEEE
Computer, Vol. 30, No. 5, May 1997.

18. Document Object Model (DOM), http://www.w3.org/DOM/.
19. Extensible Markup Language (XML), http://www.w3.org/XML/.
20. OMG’s Trading Object Service. OMG Document orbos/96-05-06, Version 1.0.0,

May 10, 1996.
21. Resource Description Framework (RDF), http://www.w3.org/Metadata/RDF/.
22. Woolridge, M., Jennings, N, ”Intelligent Agents- Theory and Practice”, Knowledge

Engineering Journal, June 1995.

	Introduction
	Related Technologies
	Distribution Infrastructure
	Trading Object Service
	Agent Technology
	Workflow Agents
	Knowledge Query and Manipulation Language (KQML)
	Resource Description Framework (RDF)
	Extensible Markup Language (XML) and Document Type Definitions (DTDs)
	Document Object Model (DOM)

	METU-EMar Architecture
	Feasibility
	Advantages

	Related Work
	Conclusions
	References

