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Abstract. In this thesis, we are working on the optimized execution
of very large number of continuous queries de�ned on data streams.
Our scope includes both classical query optimization issues adapted
to the stream data environment as well as analysis and resolution of
overload situations by intelligently discarding data based on application-
dependent quality of service (QoS) information. This paper serves as a
prelude to our view of the problem and a promising approach to solve it.

1 Introduction

Recently, data has started to take more active roles than when it was sitting in
a database, waiting to be queried. It is becoming common to see many devices
or application programs that disseminate enormous amounts of data in the form
of continuous data streams. With data dressed up in streams, we are faced with
new forms of data management problems. There is an increasing need to easily
access and monitor such data, which is usually short-lived and to be immediately
consumed. Military applications that monitor readings from sensors worn by
soldiers, or �nancial analysis applications that monitor streams of stock data
reported from various stock exchanges are well-known examples.

Stream monitoring applications call for query facilities over potentially in�-
nite 
ows of data. Usually, stream data sources themselves have no or limited
data processing capability. Envision an environment with millions of such data
sources and a large number of user applications waiting to be activated when
data satisfying certain properties are received from those data sources. A con-

tinuous query can be de�ned for each such application which processes a set of
operations on the continuous data streams and presents the resulting stream to
the application.

In this thesis, we are working on the optimized execution of very large number
of continuous queries de�ned on data streams. Traditional query optimization
issues do not exactly �t with stream queries. We can still improve response time
by rewriting queries into more eÆcient ones while preserving their semantics.
However, stream data is usually to be handled in real-time, which brings a new
threat to query response time: stream arrival rates can get so high that even per-
fectly optimized queries can not keep up with them. In such situations, expecting
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good response time while at the same time preserving the query semantics be-
comes a luxury. We may have to live with inaccurate query results in exchange
of maintaining service quality.

Our objective is to develop intelligent load shedding techniques to avoid per-
formance degradation with minimal harm to query semantics and result quality.
Classical query optimization is a passive way to improve performance and lies on
one end of the spectrum where query semantics is completely preserved. Our ap-
proach includes both classical query optimization issues adapted to the stream
data environment as well as analysis and resolution of overload situations by
carefully discarding data based on application-dependent QoS information.

This paper presents an overview of the overload problem on data streams and
our load shedding approach to solve it. Section 2 describes the research problem
in detail and summarizes our solution proposal. In Section 3, a sketch of the
related research is given. We conclude by discussing the contributions and the
future directions in Section 4.

2 Problem and Approach

2.1 System and Data Model in Brief

Continuous queries over data streams are modeled as data 
ow diagrams con-
sisting of a sequence of primitive operators. We compile the individual queries
into a directed acyclic graph of query operators, called the query network. Input
data streams coming from the sources are fed into this query network and the
resulting streams are sent to the applications.

We model each data stream as a potentially in�nite set of tuples ordered
by a value designated as the index value. The order in which a data tuple is
generated at its source is maintained using this index. Indices are chosen from
totally ordered domains such as timestamps.

To express queries on streams, we have de�ned seven primitive operators.
Filter, �p, as in selection operator in relational algebra, �lters out stream ele-
ments which do not satisfy a given predicate. Map, �f , applies a function on
each stream element. Windowed map, �f;w, applies an aggregate function on a
window of stream elements, producing a single stream element. Merge, M , is a
binary operator which combines two streams into a single one. Another binary
operator is windowed join, 1p;f;w, which joins two streams based on a predicate.
Resample, �f;w, is our third windowed operator which can create non-existing
data values at required index positions based on an interpolation function. Fi-
nally, we use drop, Æk, to throw values from a stream based on their index values.
We have windowed operators in our model since streams are potentially in�nite
and the recent values are often more valid and interesting. Windows are de�ned
in terms of index values and consecutive windows are obtained by sliding them
by one index position. Details of this stream data model and algebra are in [1].

Figure 1 shows a very simple example query network consisting of two con-
tinuous queries receiving input from three data streams and outputting resulting



-

- - -

-

-

-

-

-

-

-

�hyd=0

�sid;time

�sid;time

M

O2(sid; time)

Replace

Soldier

1sid=sid;

�hr>150

�pos;time Soldier

S2(sid; hr; time)

S1(sid; pos; time)

concat;10

Report

S3(sid; hyd; time)

O1(pos; time)

Activity

Fig. 1: Example query network

streams to two applications. The �rst application reports soldier activity at the
positions where the heart rate of the soldier exceeds a certain value, whereas the
second application activates soldier replacement when a soldier has either high
heart rate or dehydration. We return to this example in the later sections.

2.2 Optimization of Stream Queries

In traditional query optimization, one of the primary objectives is to minimize
the number of iterations over large data sets. Statistics on data set sizes and
predicate selectivities are used to estimate the cost of possible query plans and
the minimum cost plan is chosen as the optimal way of executing the query. Cost
is usually measured in terms of number of disk accesses or processor time.

Stream-oriented operators in our model on the other hand, are designed to
operate in a data 
ow mode in which data elements are processed as they appear
on the input and the results are pipelined to successive operators as they get
generated. Streams are potentially in�nite in size, but operators work on either
an individual element or a window of elements basis. Thus, the amount of com-
putation required by an operator is usually quite small; however, we expect to
have a very large number of operators in the complete query network. Further-
more, variable stream data rates cause a dynamism that brings an additional
dimension to the optimization problem.

Inspired by classical query optimization methods, it is possible to rewrite
stream queries into semantically equivalent but more eÆcient forms. In scope
of this, we have explored operator reordering and combining possibilities by
investigating the algebraic properties of our operator set. Opportunities exist
but are limited. We have been working on a heuristic algorithm based on a cost
model which will allow us to rearrange our query network into a more eÆciently
executable one [1].

Optimizing stream queries at compile time makes the query network more
tolerant to run-time data load. However, it does not eliminate the potential
overload problem due to long-duration spikes in input data rates. In the rest of
this paper, we focus on this problem.



2.3 QoS-Driven Load Shedding

The query workload and the resource capacity of the system being constant,
the major source of load in a stream data management system is the increase
in data arrival rates. Data rates are subject to variation and can increase to
arbitrary levels for arbitrarily long periods during the course of system execution.
High data rates lead to an increase in service demand. When resource limits are
crossed, queues form and may even over
ow. Queue over
ow enforces the discard
of data which is then lost forever. This further changes the query semantics.
Moreover, delays are experienced at the output ends. Hence, query results are
aged and may lose validity. Furthermore, output data rates (i.e. throughput) also
decline. All these are indications of a degradation in the quality of the service
provided to the parties at the output ends.

A load control mechanism is needed which makes the system intelligently
react to overload situations. The system should be able to cope with any level
of data rates with possibly minimum degradation in overall service quality. We
propose to regulate the data rates by load shedding. We throw away some of the
incoming and intermediately produced data, but not at random.

Discarding data causes result inaccuracy. The query results are no longer
exact, but approximate. The e�ect of some data elements being discarded in
a query network with shared operations may be di�erent for di�erent output
parties. Therefore, load shedding has to be performed in a controlled way. The
major decisions that are involved in load shedding include: 1. when load shed-
ding is needed, 2. how much and which data should be thrown away, 3. how
throwing data a�ects query results and the quality of service, 4. when to stop
load shedding. In this thesis, we are aiming to develop a load shedding mecha-
nism which could make these decisions to achieve an optimal quality of service
for all the output parties at all load levels.

- Quality of Service: Load shedding is an optimization problem. However,
unlike the problems where the objective is either to minimize or maximize a
single quantity, its goal is to provide an optimal quality of service perceived
at the system exits. Quality of service may involve many factors, two of which
are response time and result quality. Often, these two quantities can not be
optimized at the same time; rather, a compromise has to be made. Shedding
load by discarding data, sacri�ces result accuracy for reduced latency.

Since our problem is not based on a single max/min criteria, we call for an
explicit representation of how quality factors relate to the perceived quality, or
utility. Currently, we consider the following QoS factors:

(a) message %: what % of the messages are being provided at an output

(b) response time: how much the data is delayed at an output

(c) data value: which output data values are more important.

Figure 2 illustrates what the QoS representations may look like. For simplicity,
each factor is provided on a separate graph by an application administrator who
manages the corresponding output application. The graphs should be normalized
and the threshold values provided on the graphs should be feasible.
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- Static vs Dynamic Load Shedding: Load shedding techniques can be em-
ployed for both avoidance and resolution of overload. We can statically analyze
a query network and compute the maximum throughput that could be achieved
if all resources were being deployed to their limits. Furthermore, if expected
input rates to the system are known, we can also judge whether the system is
correctly sized to cope with the expected load. If not, we can take measures to
shed potential run-time load statically at compile time. Static load shedding is
based on the QoS graphs on message % since response times or data values have
not been observed yet.

Even though static load shedding maintains service quality against expected
data arrival rates, dynamic load shedding is still needed as a reaction to unex-
pected real-time load. Besides, static load shedding may not be always feasible
if the expected data rates are not known in advance. Dynamic load shedding is
mainly based on QoS graphs on delay and data values.

- Dropping vs Filtering: The naive approach to load shedding is to repeat-
edly drop data elements at random points in the query network until enough
data is discarded. Network routers throwing away packets that over
ow a �xed-
length queue is an example. This way, response time can be improved but result
accuracy is degraded in an uncontrolled way. Randomly placed drops do not
guarantee minimal accuracy degradation. Moreover, it is hard to express how
the semantics of the queries change. We can do load shedding in a more intelli-
gent way by using the QoS graphs.

We alternatively employ two of our query operators for load shedding: drop
and �lter. Filter can only be used for dynamic load shedding if value-based QoS
graphs are provided. Load shedding by �ltering is a semantic approach since it
discards data based on its content. This further makes it easier to account for
how query result di�ers from an exact answer. For static load shedding and the
dynamic cases where value-based graphs are not available, we use drop. Hence,
load shedding by dropping is based on either delay or message-based QoS graphs.



2.4 An Overview of the Load Shedding Algorithms

Due to lack of space, we describe our load shedding algorithms on the example
query network given in Figure 1.

Static Analysis and Shedding

Given the expected input arrival rates, costs and selectivities of the operators, we
can identify the points on the query network where data discarding is certainly
necessary to avoid queues. Consider the query associated with the \Replace Sol-
dier" (RS) application. Assume that S3 arrives at a rate of r = 10 tuples per
second; the cost of the �lter box (�hyd=0) is c = 0:5 seconds per tuple with a
selectivity of s = 1

3 . The �lter box can process at most 1
c
= 2 tuples per second.

Since r > 1
c
, a queue starts to form. To avoid this we need to insert a drop box to

the left of the �lter box, with selectivity 1
r�c

= 1
5 . Then the expected rate of data

traveling from the �lter box to the map box (�sid;time) is
1
c
�s = 2

3 . Based on the
cost and selectivity of the map box, we repeat the same analysis. Finally, we can
calculate the expected throughput from this query to the output application. We
can also estimate how much CPU time is required for this query at steady state,
based on costs, selectivities and the expected data rates. Taking an aggregation
of the CPU requirements for the whole query network and comparing it with the
CPU capacity of the system, we can decide if further load shedding is needed. If
so, we select the output with the smallest negative slope on the message-based
QoS graph, i.e., the one which will reduce the throughput the most with the
least degradation in utility (see Figure 2(a)). Assume that the output for RS is
chosen. We are initially at 100% point on the x-axis for both of the QoS graphs.
Now we move on the x-axis, reducing the percentage, until the other graph starts
to have smaller negative slope. The di�erence gives us the selectivity of the drop
box to be inserted. Assume that we moved right to the 75% point. Then we
create a drop box with 0.25 selectivity; insert it at the output end of RS query.
In general, we try to move the drop boxes as early in the stream as possible so
that redundant computation is avoided for the data items that will eventually be
dropped. We have to stop at split points, because beyond that point the stream
becomes shared among multiple output applications. Back to our example, we
move the drop box through the merge box and both of the maps. We can further
move it through �hyd=0, but not through �hr>150. Consequently, we insert two
drop boxes with selectivity 0.25: one right at the source of S3 and another be-
tween �hr>150 and �sid;time. Now, we calculate the CPU cycles recovered. If the
system requirements are still above the capacity, we repeat the load shedding
algorithm by comparing slopes.

Dynamic Analysis and Shedding

Run-time load can be detected by monitoring the delays at the output ends.
Delay-based QoS graphs (see Figure 2(b)) suggest that delays are acceptable up
to a certain threshold Æ. Monitoring the delays at each output for suÆciently



long, we can decide to shed load for the ones where Æ is crossed. As mentioned
before, dynamic load shedding can be achieved by dropping data, based on
message and delay-based QoS information; or by �ltering data, based on value-
based QoS information. The algorithm for the former method is very similar
to the static load shedding algorithm, except that delay-based QoS graphs are
used instead of the message-based ones and on delay-based QoS graph, we would
be interested in identifying the output with the largest negative slope (i.e., the
output that would yield the maximum increase in utility when delay is reduced
the least).

The �ltering approach is more interesting and provides a more controlled
way to load shedding by dropping less important data rather than random ones.
Based on the delay graphs, we �rst detect an overload situation. Take the exam-
ple in Figure 1 with value-based QoS de�ned on sid attribute for RS application.
Assume that, according to the QoS graph, the soldiers with sid � 100 are em-
ployed in a high-risk region and therefore their replacement is more important
than other soldiers. When an overload is observed, we �rst identify the out-
put with the lowest utility interval. An interval's utility is obtained by taking a
weighted sum of utility values in the range, weights being the frequencies of the
values observed and stored in output value histograms. Assume that the lowest
utility interval turned out to be [1; 99] at RS. We create a �lter box with the
predicate sid � 100 and place it at the RS output. Once more, we try to move
this box as farthest upstream as possible. This strategy, which we refer to as
backward interval propagation has limited scope because it requires the applica-
tion of the inverse function for each operator passed upstream. Our operators
do not necessarily have inverses. As alternatives, we can also use forward inter-

val propagation or a combination of the two strategies [1]. Fortunately, in our
example, new �lter box can be easily moved through the merge and the project-
ing map boxes without any changes on the predicate. However, as in the static
case, we have to stop at the split point. Consequently, we place a �sid�100 both
at the source of S3 as well as between �hr>150 and �sid;time. Then we check if
the overload conditions still persist. If so, repeat shedding based on the second
lowest utility interval on the value-based QoS graphs.

3 Related Work

In computer networks, when the demand is in excess of the available resources
(such as bandwidth, processing capacity and bu�er space), congestion occurs.
Many algorithms are proposed for congestion control in the past two decades
[2]. In general two main categories exist under di�erent names: open loop vs
closed loop, avoidance vs recovery, preventive vs reactive, or static vs dynamic.
The approaches in the �rst category try to make sure that congestion never
happens by employing preventive techniques at design time, whereas second
category solutions monitor the running system to detect congestion situations
and dynamically attempt to recover from them [3]. [4] states that congestion is
a dynamic problem and can not be solved with static solutions alone.



Packet drop policy or load shedding is a closed loop demand reduction so-
lution, employed at the network layer in packet-switching networks. There are
several approaches to load shedding based on choosing which packets to drop.
The simplest approach is dropping randomly. Alternatively, this decision can
be made in an application-dependent way. For real-time applications such as
multimedia applications [5], new data is more important than older data, hence
drop older packets (so-called milk policy). In contrast, for data distribution ap-
plications like �le transfer, older is better, hence drop newer packets (so-called
wine policy). Yet another load shedding approach exploits cooperation from the
senders [3]. The congestion control problem in data networks is similar to our
problem and load shedding policies in particular, are very relevant. However,
there are some fundamental di�erences. First of all, our query network is con-
trolled centrally and we do not need distributed algorithms for load shedding.
Second, we make use of QoS information provided by the receiver applications
to guide our load shedding policies. Third, our query nodes do not simply route
data to other nodes but they perform operations on them.

Real-time databases, which have timing constraints on their transactions, also
face the problem of overload management. In real-time databases, the objective
is to minimize costs due to transactions which miss their deadlines (so-called
tardy transactions). Overload can be resolved either by adding more sources,
changing transaction correctness criteria, or by changing resource demand [6].
The latter approach to handle tardy transactions shows some similarity to our
load shedding approach. Demand is decreased either by completing tardy trans-
actions �rst, by increasing their priorities, by decreasing their priorities, or by
dropping them right away [7]. By dropping data, we are dropping some trans-
actions in a sense. However, in our approach, QoS speci�cation extends the soft
and hard deadlines employed in real-time databases to general utility functions.
Furthermore, real-time databases associate deadlines with individual one-time
transactions, whereas in our case, QoS graphs are associated with the output
from stream processing, thus, continuous timing requirements have to be sup-
ported.

[8] de�nes the semantics for continuous queries and presents a model for eÆ-
cient execution of issue-once/run-continually queries in append-only databases.
[9] presents continual queries that run on a database also with deletions and
modi�cations. Our stream queries are also continuous queries. They are contin-
uously executed as the stream data 
ows through the query network, like new
data being added to append-only databases. However, our system is more con-
cerned with scalability issues due to large number of data streams which can

ow in high rates. Many continuous query systems on the other hand focus on
organizing query storage through indexing [10] or grouping queries based on
their signatures [11] for eÆcient evaluation. Similar e�orts are also seen in the
area of active databases for scalable trigger processing [12].

Approximate query answering research, where result accuracy is traded for
eÆcient execution, also relates closely to our load shedding approach. In [13],
results to long-running aggregates are estimated through presenting running



aggregates to the user with statistical con�dence intervals. Unlike our system,
queries are one-time; data sets are large but �nite; the focus is only on aggrega-
tion queries, and an exact answer is eventually produced. This work is followed
by [14], which reorders data dynamically based on user preferences so that in-
teresting items get processed early on. Rather than changing the data order, we
throw away some of the data since we are also concerned with extremely high
data rates. Data reduction on large data sets is another approach to producing
fast approximate answers. [15] provides a survey of various data reduction tech-
niques for fast query execution including sampling, histograms and wavelets. By
throwing away some data, we are in a sense, sampling from a longer stream of
values to reduce the data; but we try to keep high utility data in the sample.

Finally, some recent stream processing systems are to be mentioned here,
among which are [16], [17], [18]. These systems share similar goals with our
system, each having emphasis on di�erent functionalities. To our knowledge,
scaling the system against extreme data rates through load shedding is a feature
peculiar to our system.

4 Conclusions and Future Directions

This Ph.D. thesis attempts to address an important problem faced in contin-
uous querying of streaming data: data 
ooding. We argue that optimizing the
queries in the traditional sense provides a limited solution to the problem and we
propose to cope with over
owing streams by load shedding based on application-
dependent QoS information. We can list the main contributions of this work as
follows: we de�ne a data and query model on data streams; we investigate an
adaptation of conventional query optimization techniques based on new opti-
mization goals and cost model; and the most novel part of this work is our load
shedding approach to the over
ow problem.

So far, we have explored the issues in our problem domain and designed the
algorithms for most of them. We are working on a simulation to show that our
algorithms indeed can achieve good quality of service without sacri�cing too
much from query accuracy. Eventually, our techniques will be incorporated into
a stream data management system which is being developed at Brown.

We still need to get a clear understanding of the e�ect of inserting drops
and �lters on the query semantics. It looks obvious for queries consisting of non-
windowed operators. However, it is more complicated for queries with windowed
operators and requires further investigation. We can express the change in a
query result in terms of an error query in closed form; we can also tell how much
smaller the result set gets. Are these enough to judge about inaccuracy level of
a query result? An alternative load shedding technique could be to replace the
operators with cheaper versions that could cope with the data rates. Again, the
query semantics changes, but in a di�erent way. This idea also needs further
consideration and may support the problem we have with windowed operators.
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