
Flow-Loss: Learning Cardinality Estimates That Matter

Parimarjan Negi1, Ryan Marcus12, Andreas Kipf1, Hongzi Mao1, Nesime Tatbul12, Tim Kraska1,
Mohammad Alizadeh1
1MIT CSAIL, 2Intel Labs

{pnegi,rcmarcus,kipf,hongzi,kraska,alizadeh}@mit.edu
{tatbul}@csail.mit.edu

ABSTRACT

Recently there has been significant interest in using machine learn-

ing to improve the accuracy of cardinality estimation. This work

has focused on improving average estimation error, but not all esti-

mates matter equally for downstream tasks like query optimization.

Since learned models inevitably make mistakes, the goal should

be to improve the estimates that make the biggest difference to

an optimizer. We introduce a new loss function, Flow-Loss, for

learning cardinality estimation models. Flow-Loss approximates

the optimizer’s cost model and search algorithm with analytical

functions, which it uses to optimize explicitly for better query

plans. At the heart of Flow-Loss is a reduction of query optimiza-

tion to a flow routing problem on a certain łplan graphž, in which

different paths correspond to different query plans. To evaluate

our approach, we introduce the Cardinality Estimation Benchmark

(CEB) which contains the ground truth cardinalities for sub-plans

of over 16𝐾 queries from 21 templates with up to 15 joins. We show

that across different architectures and databases, a model trained

with Flow-Loss improves the plan costs and query runtimes despite

having worse estimation accuracy than a model trained with Q-

Error. When the test set queries closely match the training queries,

models trained with both loss functions perform well. However, the

Q-Error-trained model degrades significantly when evaluated on

slightly different queries (e.g., similar but unseen query templates),

while the Flow-Loss-trained model generalizes better to such situa-

tions, achieving 4 − 8× better 99th percentile runtimes on unseen

templates with the same model architecture and training data.

PVLDB Reference Format:

Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,

Tim Kraska, Mohammad Alizadeh. Flow-Loss: Learning Cardinality

Estimates That Matter. PVLDB, 14(11): 2019 - 2032, 2021.

doi:10.14778/3476249.3476259

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/learnedsystems/ceb.

1 INTRODUCTION

Cardinality estimation is a core task in query optimization for pre-

dicting the sizes of sub-plans, which are intermediate operator trees

needed during query optimization. Query optimizers use these

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476259

C⋈

A B

⋈

Plan1

SELECT *

FROM A, B, C

WHERE A.b1 = B.b1

AND A.c1 = C.c1

Query

B⋈

A C

⋈

Plan2

Cardinality True Estimator1 Estimator2

|A| 4 4 4

|B| 2 2 2

|C| 2 2 2

|A ⋈ B| 5 10 10

|A ⋈ C| 8 16 8

Cost1 13 18 18

Cost2 16 24 16

Cost1 = (|A|+|B|) + (|A ⋈ B|+|C|)

Cost2 = (|A|+|C|) + (|A ⋈ C|+|B|)

Figure 1: For this example, we use the sum of the cardinali-

ties as the cost of a plan. With true cardinality values, Plan1

is cheaper than Plan2. This is also the case with Estima-

tor1. Interestingly, however, although Estimator2’s cardinal-

ity values have smaller error than those of Estimator1, they

will mislead the optimizer to choose Plan2.

estimates to compare alternative query plans according to a cost

model and find the cheapest plan. Recently, machine learning ap-

proaches have been successful in improving cardinality estimation

accuracy [9, 14, 18, 54, 57], but they largely neglect the impact of

improved estimates on the generated query plans. This is the first

work (known to us) that learns cardinality estimates by directly

optimizing for the cost of query plans generated by an optimizer.

All learned models will have non-trivial estimation errors due to

limitations in model capacity, featurization, training data, and dif-

ferences between training and testing conditions (e.g., due to chang-

ing workloads). We argue that it is therefore crucial to understand

which errors are more acceptable for the optimizer. Unsupervised

methods learn a model of the data independent of any particular

query workload, thereby using model capacity for sub-plans that

will never occur. Supervised methods use a representative workload

to focus model capacity on likely sub-plans. However, all estimates

are not equally important. While an optimizer’s decisions may be

very sensitive to estimates for some sub-plans (e.g. join of two large

tables), other estimates may have no impact on its decisions.

We propose Flow-Loss, a loss function for supervised cardinal-

ity estimation learning that explicitly emphasizes estimates that

matter to query performance for a given workload. Flow-Loss is

a drop-in replacement for loss functions like Q-Error [34] that are

commonly used to train cardinality estimation models. Flow-Loss

takes the idea of focusing model capacity to its logical extreme Ð

encouraging better estimates only if they improve the resulting

query plans. For instance, consider Figure 1: Estimator2 corrects

Estimator1’s estimate of𝐴 Z 𝐶 , but it actually leads to a worse plan

2019

https://doi.org/10.14778/3476249.3476259
https://github.com/learnedsystems/ceb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476259

(Plan 2), because the relative cardinalities (𝐴 Z 𝐵 vs. 𝐴 Z 𝐶) are

wrong. Flow-Loss will show no error for Estimator1, while nudging

Estimator2 to correct the relative cardinalities of these two joins.

At its core, Flow-Loss computes the cost of a query plan as a

function of the cardinality estimates used to generate the plan. To

do this, it approximates the optimizer’s cost model and dynamic

programming (DP) search algorithm with smooth and differentiable

analytical functions. This lets us use standard gradient descent tech-

niques to improve the estimates that are most relevant to improving

the query plans. We show that improving cardinality estimates w.r.t.

this objective also improves the quality of plans generated by real

optimizers like PostgreSQL. A key technical ingredient underlying

Flow-Loss is a connection between the optimizer’s DP search al-

gorithm and a flow routing problem on a certain łplan graphž, in

which different paths correspond to different query plans. By ex-

ploiting this connection, we derive closed-form expressions relating

cardinality estimates to the resulting query plan costs.

There are two main benefits of training models to minimize

Flow-Loss. First, Flow-Loss highlights which sub-plans are most

relevant to the query optimizer. This helps a model focus its limited

capacity on robustly estimating the sizes of such sub-plans. Across

various scenarios, we show that Flow-Loss-trained model have

worse average estimation accuracy than Q-Error-trained models,

but improve the cost of generated plans. For instance, we show

that models trained with Flow-Loss can adapt to being provided

fewer input features or noisy data collected via approximate query

processing (AQP) [24, 25]. It is attractive to use AQP training data

because it can be generated significantly faster than the true car-

dinalities. But, at the 99𝑡ℎ percentile, Q-Error trained models get

significantly worse when using AQP estimates: Q-Error gets 10×

worse, PostgreSQL costs get 2× worse, and query runtime gets 30%

slower. Meanwhile, Flow-Loss models show no such degradation

when switching training data to use AQP estimates.

Second, by having a larger tolerance for errors on less critical

sub-plans, training with Flow-Loss can avoid overfitting the model

to cardinalities for which precise estimates are not needed, thereby

leading to simpler models without sacrificing query performance.

Such simpler models typically generalize better. We show that mod-

els trained using Q-Error can be brittle, and can lead to significant

regressions when the query workload diverges slightly from the

training queries; for instance, in the worst cases, models trained

with Q-Error are up to 4−8× slower than models trained with Flow-

Loss at the 99𝑡ℎ percentile. These correspond to 1.5-3× better query

runtimes at the mean depending on the PostgreSQL configuration.

Our key contributions are:

• DBMS-based Plan Cost. Based on Moerkotte et al.’s [34] plan

cost, defined using arbitrary cost models, we introduce a cost

model-based proxy for the runtime of a query plan in a partic-

ular DBMS. We show that it corresponds closely to runtimes,

and thus is a useful metric to evaluate the goodness of cardi-

nality estimates in terms of their impact on query optimization.

Further, we provide an implementation to easily evaluate the

performance of cardinality estimation models on Plan Cost

using PostgreSQL or MySQL.

• Flow-Loss. We introduce Flow-Loss, a smooth and differen-

tiable approximation of Plan-Cost, which can be optimized by

any supervised learning model with gradient descent.

• Cardinality EstimationBenchmark (CEB).We create a new

tool to generate challenging queries based on templates in a

semi-automated way. We use this to create the Cardinality Es-

timation Benchmark, which is over 100× larger than the Join

Order Benchmark (JOB) [23], and has more complex queries.

2 RELATED WORK

For cardinality estimation, traditional approaches have used his-

tograms [3], sampling [24], wavelets [32], kernel density estima-

tion [16]ź or singular value decomposition [42]. Recently, machine

learning approaches have shown high estimation accuracy. Many

works focus on single-table selectivity estimates [9, 12, 40, 57],

but while this is useful in other contexts, such as approximate

query processing, it is non-trivial to extend such models to joins

using join sampling [59]. Learned cardinality estimation for joins

can be categorized into unsupervised (data-driven, independent of

query workload) and supervised (query-driven) approaches. Unsu-

pervised approaches for cardinality estimation include Probabilistic

Graphical Models [11, 48], Sum-Product Networks [14], or deep

autoregressive models [56]. NeuroCard [56] is the most advanced

of these approaches, but it still does not support the complex ana-

lytical workloads studied in this work (e.g., queries with self joins).

That being said, any unsupervised model can be integrated into our

approach by providing their estimates as features.

Supervised approaches use queries with their true cardinalities

as training data to build a regression model. Our work builds on

the approach pioneered by Kipf et al. [18]. While several such

works report improved estimation accuracy [8, 9, 18, 38, 54, 55],

only a few actually demonstrate improved query performance [15,

37, 39]. Our approach seeks to learn the cardinalities used by a

traditional DBMS optimizer, while using the optimizer’s search and

cost algorithms for query optimization. Recently, there have been

several other learning approaches to improve query performance

which are complementary to our methods: learning the complete

optimizer [20, 30, 31], learning to use the optimizer’s hints [29],

learning the cost model [45], re-optimization [41, 47], pessimistic

cardinality estimation [4, 5, 13].

3 OVERVIEW

In this section, we will provide the high-level intuition behind our

approach, which will be formalized in the next sections. We target

supervised learning methods that use a parametric model, such as

a neural network, to estimate cardinalities for sub-plans required

to optimize a given query. Today, such models are trained using

loss functions that compare true and estimated cardinalities for a

given sub-plan, such as Q-Error:

Definition 3.1.

Q-Error(𝑦𝑦𝑦,𝑦) = max(𝑦𝑦𝑦/𝑦,𝑦/𝑦𝑦𝑦). (1)

where 𝑦𝑦𝑦 and 𝑦 are the true and estimated cardinalities for one

sub-plan.

Such a loss function treats every estimate as equally important.

Instead, we want a loss function that will focus model capacity on

2020

⋈

⋈

SELECT *

FROM A, B, C

WHERE A.b1 = B.b1

 AND A.c1 = C.c1

Query

|A| 4

|B| 2

|C| 2

|A B| 10

|A C| 8

Cardinalities

Optimizer’s

Cost Model

Left-Deep

Plan Search
B⋈

A C

⋈

Optimal Plan

≈ ≡

C

Simple

Cost Model

Shortest Path Soft Shortest Path

≈

A B

S

D

B A C

A C⋈⋈

S

D

B A C

A B A C⋈⋈

Figure 2: The query optimization process has two non-

differentiable components: the cost model and the plan

search algorithm. We develop differentiable approxima-

tions for these so we can understand how sensitive query

plans are to changes in cardinality estimates.

improving accuracy of estimates that matter most to the quality of

the plans produced by the optimizer, while tolerating larger errors

for other estimates. This loss function will need to be differentiable

so we can optimize it using standard gradient descent methods.

To understand how cardinality estimates impact the resulting

query plan, let us consider the basic structure of a query optimizer.

There are two independent components, as highlighted in Figure

2: (i) a cost model, which outputs a cost for every join given the

cardinality estimates for all sub-plans. (ii) a DP search algorithm,

which finds the cheapest query plan. Our goal is to approximate

both components using analytical functions that can be combined

into a single, differentiable loss function:

𝑌
𝐶 (·)
−−−−→ Join-Cost

𝑆 (·)
−−−→ Plan. (2)

Here𝐶 (·) maps the cardinality estimates, 𝑌 , to the cost of each join,

and 𝑆 (·) maps the join costs to the optimal plan. Approximating

the cost model as an analytical function is conceptually straightfor-

ward since it is already represented using analytical expressions. In

principle, we can make this function as precise as we want, but we

found that a simple approximation with terms to cost joins with or

without indexes works well in our workloads (Definition 4.5).

However, the DP search algorithm is non-trivial to model an-

alytically. Our key contribution is in developing a differentiable

analytical function to approximate left-deep plan search. Left-deep

plans join a single table to a sub-plan at each step. Our construc-

tion exploits a connection between left-deep plan search and the

shortest path problem on a certain łplan graphž. While we focus on

left-deep search for tractability, the resulting loss function improves

the performance for all query plans, as the sub-plans required for

costing left-deep plans are the same as required for all plans.

Figure 2 shows the plan graph corresponding to a simple query

that joins three tables 𝐴, 𝐵, and 𝐶 . Every edge in the plan graph

represents a join and has a cost, and every path between 𝑆 and 𝐷

represents a left-deep plan. The DP search algorithm outputs the

cheapest plan, i.e. the shortest path. When cardinality estimates

change, they change the cost of the edges in the plan graph, possibly

changing the shortest path. Therefore, to capture the influence of

SELECT COUNT(*)

FROM title AS t, kind_type AS kt, cast_info AS ci,

role_type AS rt, name AS n

WHERE t.id = ci.movie_id AND t.kind_id = kt.id

AND ci.person_id = n.id AND ci.role_id = rt.id

AND kt.kind IN (‘movie’) AND rt.role IN (‘actor’, ‘director’)

AND n.gender IN (‘f’) AND t.production_year <= 2015

Query

Optimal Plan

kt⋈

t

⋈

rt⋈

n

⋈

Join Graph

rtn

ci

t

kt

ci

Figure 3: Join graph and optimal plan for sample query 𝑄1

on the IMDb database.

cardinality estimates on the plan analytically, we need an expression

to relate edge costs to the shortest path in the plan graph.

But this alone is not enough. The shortest path is insensitive

to small changes to most edge costs (and hence, small changes to

most cardinality estimates). For instance, consider any edge not on

the shortest path; slightly increasing or decreasing the cost of that

edge would not change the shortest path. Therefore an analytical

function based on the shortest path would not have a gradient with

respect to the cost of such edges. This would make it impossible

for gradient-descent-based learning approaches to improve.

We tackle these challenges by using a soft approximation to the

shortest path problem. In this formulation, the plan graph is viewed

as an electrical circuit, with each edge having a resistance equal to

its cost. One unit of current is sent from 𝑆 to 𝐷 , split across paths in

a way that minimizes the total energy consumed.1 This formulation

has two advantages over shortest path. First, it provides an explicit,

closed-form expression relating the edge resistances (costs) to the

amount of current on every path. Second, it does not suffer from

the non-existent gradient problem described above. In an electrical

circuit, the current is not exclusively sent on the path with the

least resistance (i.e., the path corresponding to the cheapest plan).

Instead, all low-resistance paths carry a non-negligible amount of

current. Therefore, changing the resistance (cost) of an edge on any

of these paths will affect the distribution of current across the entire

circuit. The implication in our context is that all joins involved in

low-cost query plans matter (even if they do not appear in the

cheapest plan). This aligns with the intuition that the optimizer is

sensitive to precisely these joins: changing their cost could easily

change the plan it picks.

4 DEFINITIONS

This section formally defines the plan graph and the concepts we

use to develop our new loss function, Flow-Loss. As a running

1Electrical flows have been used for graph algorithms in various fields: modeling
random walks [7], developing more efficient algorithms for approximating the maxi-
mum flow problem [6, 22, 28], modeling landscape connectivity in ecology [33], and
inferring relatedness in evolutionary graphs in biology [27].

2021

2022

precise way in which current flows in the circuit can be obtained

by solving the following energy minimization3 problem:

𝐹 ∗ (𝑌) = argmin
𝐹

∑

𝑒∈𝐸

𝐶 (𝑒, 𝑌) · 𝐹 2𝑒 (6)

s.t
∑

𝑒∈𝑂𝑢𝑡 (𝑆)

𝐹𝑒 =

∑

𝑒∈𝐼𝑛 (𝐷)

𝐹𝑒 = 1 (7)

∑

𝑒∈𝑂𝑢𝑡 (𝑉)

𝐹𝑒 =

∑

𝑒∈𝐼𝑛 (𝑉)

𝐹𝑒 (8)

Here the optimization variable 𝐹 assigns a flow of current to each

edge. Equation (7) enforces that one unit of flow is sent from 𝑆 to

𝐷 . Equation (8) is the conservation constraint for all nodes except

𝑆 and 𝐷 Ð it enforces that the amount of flow going in and out of a

node should be the same. The thickness of edges in Figure 4 show

the flows assigned to each edge by 𝐹 ∗ (Y).

Computing 𝐹 ∗ is a basic problem in circuit design [1, 6], and

it has a simple closed form expression as a function of the resis-

tances𝐶 (𝑒, 𝑌). For a plan graph with𝑀 edges and 𝑁 nodes, we can

compute the flows by:

𝐹 ∗ (𝑌) = 𝐴𝐵−1𝑖, (9)

where 𝑖 ∈ 𝑅𝑁 is the constant vector of [1, 0, ...,−1]; 𝐴 ∈ 𝑅𝑀,𝑁 is a

weighted adjacency matrix. Each entry is defined by:

𝐴(𝑢,𝑣),𝑤 =

1
𝐶 (𝑒,𝑌)

if 𝑢 = 𝑤

− 1
𝐶 (𝑒,𝑌)

if 𝑣 = 𝑤

0 otherwise.

and entries for 𝐵 ∈ 𝑅𝑁,𝑁 are given by:

𝐵𝑢,𝑤 =

∑

𝑒∈𝐼𝑛 (𝑢)∪𝑂𝑢𝑡 (𝑢)

1
𝐶 (𝑒,𝑌)

if 𝑢 = 𝑤

− 1
𝐶 ((𝑢,𝑤),𝑌)

if (𝑢,𝑤) is an edge

0 otherwise.

𝐹 ∗ just multiplies two matrices, thus is clearly differentiable. We

also provide an explicit closed form expression for the gradient of

𝐹 ∗ online [35]. We are now ready to define our final loss function.

Definition 5.1. Flow-Loss.

Flow-Loss(𝑌,Y) =
∑

𝑒∈𝐸

𝐶 (𝑒,Y) · 𝐹 ∗ (𝑌)2𝑒 (10)

Notice the similarity to P-Cost (Equation 5). P-Cost computed the

sum of the true edge costs of the path chosen by 𝑃∗ (𝑌), whereas

Flow-Loss is a weighted sum of the true edge costs, where the

weight of an edge is the square of the flow assigned to that edge,

i.e., 𝐹 ∗ (𝑌)2𝑒 . An intuitive interpretation of Flow-Loss is the energy

dissipated in a circuit with currents 𝐹 ∗ (𝑌) passing resistances C(e,

Y). Since 𝐹 ∗ (·) and 𝐶 (·) (Definition 4.5) are both differentiable, so

is Flow-Loss, and we can use the chain rule to get the gradients of

Flow-Loss w.r.t 𝑌 .

Corollary 5.1. Flow-Loss is minimized when 𝑌 = Y.

3Recall that the energy dissipated when current 𝐼 flows through a resistor with resis-

tance 𝑅 is 𝑅𝐼 2 [1].

Proof. Note that 𝐹 ∗ (Y) assigns each edge, 𝐹𝑒 s.t.
∑
𝑒∈𝐸 𝐶 (𝑒,Y) ·

𝐹 2𝑒 is minimized (Equation 6). This is precisely the equation for

Flow-Loss (Equation 10), since the costs in Flow-Loss, 𝐶 (𝑒,Y), are

computed using true cardinalities as well. Thus, setting 𝑌 = Y, is a

(not unique) minimizer of Flow-Loss.

Moerkotte et al. [34] showed PC(𝑌,Y) ≤ 𝑞4PC(Y,Y), where 𝑞

is the largest Q-Error over all sub-plans. This loosely bounds how

much worse can the plan using 𝑌 be than the plan using Y in terms

of Q-Error. We prove a similar result for Flow-Loss.

Theorem 5.2.

PC(𝑌,Y) ≤ 𝑘2Flow-Loss(𝑌,Y) (11)

≤ 𝑘2
Flow-Loss(𝑌,Y)

Flow-Loss(Y,Y)
PC(Y,Y) (12)

where 𝑘 =
1

min
𝑒∈𝑃∗ (�̂�) 𝐹

∗ (𝑌)𝑒
, i.e., inverse of the minimum flow

on the path 𝑃∗ (𝑌).

Proof. Flow-Loss (Equation 10) sums over all edges; Consider

only the terms summing over 𝑃∗ (𝑌), i.e.,
∑

𝑒∈𝑃∗ (𝑌)

𝐶 (𝑒,Y) · 𝐹 ∗ (𝑌)2𝑒 . (13)

This is a weighted version of PC(𝑌,Y). We defined 𝑘 , such that the

smallest weight is 1
𝑘2 . Thus multiplying Equation 13 by 𝑘2 ensures

that the coefficients of𝐶 (𝑒, 𝑌) would be greater than 1, and Equation

11 follows. Equation 12 follows because we multiplied Equation 11

with a term greater than 1, since Flow-Loss(Y,Y) ≤ PC(Y,Y) (to

see this, notice that a potential solution for 𝐹 ∗ (Y) sets the flow of

each edge in 𝑃∗ (Y) to 1, and rest to 0. This would make Flow-Loss

(Y,Y) = 𝑃𝐶 (Y,Y). But, 𝐹 ∗ (Y) chooses the flow values to minimize

Flow-Loss (Y,Y), thus it will be at least as small as 𝑃𝐶 (Y,Y)) □

Flow-Loss(𝑌,Y)
Flow-Loss(Y,Y)

is typically much smaller than 𝑘 . But 𝑘 is hard to

bound Ð and gets larger as the set of interesting paths increase.

Empirically this seems to be at least as good as the Q-Error bound.

But mostly, both these bounds provide intuition for why these are

sensible loss functions, since other loss functions, such as mean

squared error, provide no worst case guarantees whatsoever.

5.2 Discussion

Beyond left-deep plans. P-Cost, and therefore Flow-Loss, are de-

fined over left-deep plans. Extending Flow-Loss to bushy plans is

more challenging: we will need a graph similar to the plan graph,

where every valid bushy plan is a path, but this will lead to an

exponential increase in the number of paths. But it does not seem

required to consider bushy plans explicitly when optimizing for

cardinality estimates. First, the best left-deep plan often has reason-

able performance compared to the best overall plan [23]. Second,

every sub-plan in the query is required to find the best left-deep

plan, therefore, the the same set of cardinality estimates are re-

quired to optimize both bushy plans and left-deep plans. Moreover,

when indices are used, left-deep sub-plans are a prominent part

of bushy plans. Hence, estimates that are important for choosing

good left-deep plans are also important for bushy plans.

Anchoring. An unusual property of Flow-Loss compared to loss

functions such as Q-Error is that it is not very sensitive to the

2023

2024

shows three representative examples of how Q-Error and Flow-

Loss change as we multiply or divide the cardinality of one node

by increasing amounts while keeping the others fixed at their true

values. Q-Error changes identically for all nodes (the lines overlap),

but the behavior of Flow-Loss differs depending on the node. Node

𝑐𝑖 Z 𝑡 has multiple expensive paths that go through it (note the red

edges in Figure 4). As we underestimate its cardinality, Flow-Loss

shoots up (blue line). This aligns with the intuition that underesti-

mating this node makes bad paths appear cheaper, which may cause

the optimizer to choose one of them instead of the actual cheapest

path. Overestimating its cardinality, on the other hand, make bad

paths appear even more expensive, which is good as we want the

optimizer to avoid these paths. Thus, it is sensible that Flow-Loss

stays near its minimum in this case. The node 𝑐𝑖 Z 𝑛 Z 𝑟𝑡 Z 𝑡 is on

the cheapest path, while the node 𝑘𝑡 Z 𝑡 has two relatively good

paths passing through it (c.f. Figure 4). For these nodes, Flow-Loss

remains at its minimum for underestimates (since it makes good

paths appear cheaper), and shoots up for overestimates (since it

makes good paths appear more expensive). Recall that Flow-Loss

uses all relatively good paths, not just the cheapest, and therefore,

it is impacted by both nodes.

Flow-Loss roughly tracks PPC decision boundaries. Figure 7

compares the shapes of Q-Error, PPC, and Flow-Loss as we vary

the cardinality of a single node. Each curve is plotted on its own

scale as we only want to compare their trends. Node 𝑐𝑖 Z 𝑛 Z 𝑟𝑡

is already on the cheapest path (cf. Figure 4), so Flow-Loss is only

sensitive to overestimating its cardinality, like PPC. Node 𝑐𝑖 Z 𝑟𝑡

is not on the cheapest path, and like PPC, Flow-Loss is a lot more

sensitive to underestimates as it causes flow to be diverted to the

paths containing this node from potentially cheaper paths. Node

𝑐𝑖 Z 𝑘𝑡 Z 𝑟𝑡 Z 𝑡 is an example of a case where Flow-Loss leads

to a different behavior from PPC. For overestimates, PPC is flat at

its minimum while Flow-Loss blows up. 𝑐𝑖 Z 𝑘𝑡 Z 𝑟𝑡 Z 𝑡 is not

on the cheapest path, but there are multiple nearly optimal paths

using this node (cf. Figure 4). Since Flow-Loss routes a non-trivial

amount of flow on such paths, it is sensitive to making them more

expensive, even though the optimizer does not switch from the

cheapest path (thus, PPC remains flat). This is a desirable property

from the standpoint of robustness. It reflects the fact that any of

the nearly optimal paths could become the cheapest path and get

chosen by the optimizer if the cardinalities change slightly. For

instance, although node 𝑐𝑖 Z 𝑘𝑡 Z 𝑟𝑡 Z 𝑡 is not on the cheapest

path when all edges are costed using true cardinalities, it would

be on the cheapest path if we underestimate the cost of the 𝑐𝑖 Z

𝑘𝑡 Z 𝑡 → 𝑐𝑖 Z 𝑘𝑡 Z 𝑟𝑡 Z 𝑡 edge (or overestimate the cost of the

actual cheapest path). In that case, PPC would have been sensitive

to increasing the cardinality of this node. By considering all good

paths simultaneously, Flow-Loss robustly captures the behavior of

the optimizer in response to such variations in cardinalities. As a

further example, in Figure 8, we vary cardinalities of two sub-plans

simultaneously. Once again we observe that Flow-Loss roughly

reflects the behavior of PPC Ð it is highest when cardinalities for

both the nodes are underestimated (lower left quadrant).

6.3 Benefits of Flow-Loss

In practice, cardinality estimation models face several challenges:

limited model capacity (making it impossible to learn all the intrica-

cies of the data distribution), limited training data (since collecting

ground truth data is expensive), insufficient features (e.g., it may

be hard to represent predicates on columns with a large number of

categorical values), noisy training data, changing data (e.g., Wang

et al. [50] show that learned models can have a steep drop in per-

formance after data is updated), and changing query workloads.

Thus, it is inevitable that such models will make mistakes. As the

examples in ğ6.2 suggest, Flow-Loss guides the learning to focus

on estimates that matter, and to improve their accuracy only to

the extent necessary for improving query performance. This has

several positive consequences as we highlight below.

Model capacity. Lower capacity models, or less expressive fea-

tures, make it harder for learned models to achieve high accuracy.

Flow-Loss helps use the limited model capacity in a way that maxi-

mizes the model’s impact on query performance.

Domain-specific regularization. A model trying to minimize

Q-Error treats each estimate as equally important, which makes

it easy to overfit to the training data. Regularization is a general

approach to mitigate overfitting and improve generalization, but

generic regularization techniques such as weight decay [2] simply

bias towards learning simpler models (e.g., smoother functions)

without taking advantage of the problem structure. Flow-Loss pro-

vides a stronger, guided regularization by utilizing domain-specific

knowledge about query optimization.6 The key information is to

know which details of the training data can be ignored without

impacting query performance. If estimation errors on a subset of

sub-plans do not typically cause worse plans, then there is no need

to learn a more complex model to correct them. This is precisely

what Flow-Loss does by allowing a high tolerance to cardinality

estimation errors for noncritical sub-plans.

Tolerance to noisy training data. As a direct consequence of the

previous point, by ignoring accuracy on less important subsets of

the data, Flow-Loss can better handle noisy, or missing training

data, which can let us avoid the expensive process of executing all

sub-plans to generate the true cardinalities. Instead, we can train

models using approximate cardinalities obtained via sampling [25].

7 FEATURIZATION AND MODELS

This section introduces the model architectures and featurization

that we use to evaluate Flow-Loss.

Featurization. As described by Kipf et al. [18], a sub-plan 𝑞 is

mapped to three sets of input vectors: 𝑇𝑞 , 𝐽𝑞 , and 𝑃𝑞 for the tables,

joins, and predicates in the sub-plan. We augment these with a

vector 𝐺𝑞 that captures the properties of the sub-plan in the con-

text of the plan graph. A one-hot vector encodes each table in the

sub-plan (𝑇𝑞), and a second one-hot vector encodes each join (𝐽𝑞).

For range predicates, we use min-max normalization [18, 39]. For

in predicates we use feature hashing [43], in which categorical

features with large alphabet sizes are hashed to 𝑁 bins. Even if

6There are similar examples in other ML applications, e.g., Li et al. show domain-
specific loss functions for physics applications lead to improved generalization via
implicit regularization [26].

2025

𝑁 is much smaller than the alphabet size, it still provides a sig-

nal for the learned models. For like predicates feature hashing

with character n-grams [51], and use additional features such as

the number of characters and the presence of a digit. We find that

𝑁 = 10 bins each for every column-operator pair works well on

our workloads. As proposed by Dutt et al. [9], we add the cardi-

nality estimate for each table (after applying its predicates) from

PostgreSQL to that table’s vector in 𝑇𝑞 , which we found to be suffi-

cient for our workload. For a stronger runtime signal, we could add

sample bitmaps [18, 19] (i.e., bitmaps indicating qualifying sample

tuples), however, as this would significantly increase the model’s

parameters, we omit this optimization. Similarly, we do not ex-

plicitly encode group by columns like earlier work does [17] and

rely on PostgreSQL’s estimates instead. 𝐺𝑞 is a vector for the plan

graph-based properties of a sub-plan. This includes information

about the immediate children of the sub-plan node in the plan graph

(i.e., the nodes obtained by joining the sub-plan with a base table).

Specifically: the number of children, the cost using PostgreSQL’s

estimated cardinalities of the join producing that child, and the rel-

ative estimated cardinality of that child compared to the sub-plan.

Intuitively, such information about neighboring plan graph nodes

could be useful to generalize to new queries. For all cardinalities,

we apply log transformation for training the models [9].

Models. To compare Q-Error and Flow-Loss, we train two repre-

sentative neural network architectures with both loss functions.

Fully-Connected Neural Network (FCNN) was used by Ortiz et

al. [39] and Dutt et al. [9]. It takes as input a 1-D feature vector

that concatenates the vectors in 𝑇𝑞 , 𝐽𝑞 , 𝑃𝑞 , and 𝐺𝑞 . Multi-Set Con-

volutional Network (MSCN) was proposed by Kipf et al. [18] based

on the DeepSets architecture [58], and we extend it to include the

𝐺𝑞 features as well. These are very different architectures, and rep-

resent important trade-offs Ð FCNN is a lightweight model that

trains efficiently, but does not scale to increasing database sizes

(number of parameters grow with the number of columns), while

MSCN’s set-based formulation is scalable but less efficient to train.

8 CARDINALITY ESTIMATION BENCHMARK
(CEB)

Table 1: Comparing CEB with JOB.

Dataset
JOB

(IMDb)

CEB

(IMDb)

CEB

(SE)

Queries 113 13,644 3435

Sub-plans 70K 3.5M 500K

Templates 31 15 6

Joins 5 ś 16 5 ś 15 5 ś 8

Optimal plans 88 2200 113

Benchmark. We create a tool to generate a large number of chal-

lenging queries based on predefined templates and rules. Using this

tool, we generate the Cardinality Estimation Benchmark (CEB) [36],

a workload on two different databases (IMDb [23] and StackEx-

change (SE) [44]) containing over 16𝐾 unique queries and true

cardinalities for over 4𝑀 sub-plans including count and group

Figure 9: TOML configuration file for generating queries

based on a predefined template and rules.

by aggregates, and range, in, and like predicates. Table 1 summa-

rizes the key properties of CEB, and contrasts them with Join Order

Benchmark (JOB) [23]. Notice that for the 13𝐾 IMDb queries in CEB,

there are over 2𝐾 unique plans generated by PostgreSQL with true

cardinalities Ð showing that different predicates lead to a diverse

collection of optimal query plans. CEB addresses the two major

limitations of queries used in previous works [8, 18, 39]: First, past

work on supervised cardinality estimation [8, 18, 39] evaluate on

workloads with only up to six joins per query. CEB has much more

complex queries ranging from five to sixteen joins. Second, while

JOB [23] contains challenging queries with up to 16 joins, they only

have two to five queries per template. This is insufficient training

data for supervised learning methods. CEB contains hundreds of

queries per hand-crafted template with real-world interpretations.

Query generator.Generating predicate values for query templates

is challenging because predicates interact in complex ways, and

sampling them independently would often lead to queries with

zero or very few results. Our key insight is to generate interesting

predicate values for multiple columns together, using predefined

SQL queries that take into account correlations and other user

specified conditions. Figure 9 shows a complete template which

generates queries with the same structure as our running example,

𝑄1. We will walk through the process of generating a sample query

following the rules specified in this template. [base sql] is the SQL

query to be generated, with a few unspecified predicates to be

filled in. [predicates] are rules to choose the predicates for groups

columns. For the predicate year we choose a value uniformly from

the given list. We sample predicate values for the remaining three

in predicates together because kind, role, and gender are highly

correlated columns. For these, we also add year as a dependency

Ð as the year chosen would influence predicate selectivities for all

these columns. We generate a list of candidate triples using a group

by query, and sample 2 to 7 values for each in predicate.

Timeouts. Some sub-plans in the StackExchange queries time out

when collecting the true values. This is due to unusual join graphs

which make certain sub-plans behave like cross-joins (see online

appendix [35]). In such cases, we use a large constant value in

2026

place of the true cardinalities as the label for the timed out sub-

plans in the training data. We verified that the plans generated

by injecting all known true cardinalities and this constant value

into PostgreSQL leads to almost 10× faster runtimes than using the

default PostgreSQL estimates.

Approximate training data. Intuitively, we may not need precise

cardinality estimates to get the best plans Ð thus, approximate

query processing (AQP) techniques, such as wander join [25] or

IBJS [24], should provide sufficient accuracy. However, we cannot

use these techniques for query optimization because they are too

slow to provide estimates for all sub-plans at runtime. But these

techniques are much faster than generating the ground truth cardi-

nality estimates for all sub-plans, which is the most expensive step

in building a cardinality estimation model. We modify the wander

join algorithm to efficiently generate all the cardinality estimates

in a given workload (excluding LIKE / regex queries), with precise

implementation details given in the online appendix [35]. We use

this only as a proof of concept; our implementation is not optimized,

and uses a mix of Python and SQL calls. Despite this, we generate

the wander join estimates with speedups over generating ground

truth data that range from 10× to 100× for different templates.

For instance, for the largest template with around 3𝐾 sub-plans,

generating all the ground truth data on a single core takes about

5 hours, while wander join estimates take less than 5 minutes. In

Section 9.5, we explore if the wander join estimates are as good as

true cardinalities to train learned models.

9 EXPERIMENTS

Setup. We use PostgreSQL 12 and MySQL 8 (with the MyISAM

storage backend). We tune the configurations to reasonable settings,

while disabling some optimizations like parallelism and material-

ization in both the DBMSs. The precise configurations, and code

to reproduce the execution environment is provided online [36].

For the runtime experiments, we use Amazon EC2 instances with a

NVMe SSD device, and 8GB RAM.

Loss functions. Our main focus is to compare the Q-Error and

Flow-Loss loss functions to train the neural networkmodels.We use

the true cardinalities and estimates from PostgreSQL as baselines

to compare against the learned models.

Training and test sets. We consider two scenarios:

(1) Testing on seen templates. The model is evaluated on new

queries from the same templates that it was trained on. We put

20% of the queries of each template into the validation set (used

to tune hyperparameters), and 40% each into the training and

test sets. We report results from the test set.

(2) Testing on unseen templates. The model is evaluated on

different templates than the ones it was trained on. We split

the templates equally into training and test templates. Since

the number of templates is much smaller than the number of

queries, we use ten-fold cross-validation for these experiments:

the training / test set splits are done randomly using ten differ-

ent seeds (seeds = 1 − 10). We use the same hyperparameters

as determined in the seen templates scenario. Even though the

templates are different in the second scenario, there is signifi-

cant overlap with the training set on query sub-plans. This tests

the robustness of these models to slight shifts in the workload.

Key result. Figure 10a shows the results of all approaches w.r.t.

PPC on IMDb. All models outperform PostgreSQL’s estimator sig-

nificantly on seen templates. However, only the Flow-Loss trained

models do so consistently on unseen templates as well. For seen

templates, the models trained using Flow-Loss do better than the

models trained using Q-Error on PPC. All models get worse when

evaluated on unseen templates - but the Flow-Loss models degrade

more gracefully. When the queries are from seen templates, the

difference in PPC does not translate into runtime improvements (cf.

Figure 10b). However, on unseen templates, we see clear improve-

ments in runtime as well.

9.1 Testing on seen templates

Worse Q-Error, better PPC, similar runtimes.We give detailed

evaluations on the seen templates in the online appendix [35], but

the key takeaway is that all learned cardinality estimationmodels do

equally well and improve significantly over PostgreSQL estimates.

The median Q-Error of the models trained using Flow-Loss was

typically 2× worse than models trained using Q-Error, while being

up to 10× worse at the 99𝑡ℎ percentile. But, this is to be expected

Ð our goal was to improve cardinality estimates only when it is

important for query optimization. As seen in Figure 10, the Flow-

Loss trained models improve mean PPC over the Q-Error models,

getting close to the PPC with true cardinalities. This suggests that

Flow-Loss models better utilize their model capacity to focus on

sub-plans that are more crucial for PPC. It also shows that better

Q-Error estimates do not directly translate into improved plans.

However, in terms of runtimes, all models do equally well, and are

very close to the performance of using true cardinalities.

9.2 Testing on unseen templates

When we split the training set and test set by templates, each

partition leads to very different information available to the models

Ð therefore we will analyze the partitions individually.

Flow-Loss generalizes better. In Figure 11a, we look at the perfor-

mance of a model trained with Flow-Loss compared to one trained

with Q-Error w.r.t. query runtime. A single bar represents the same

model architecture (FCNN or MSCN) trained and evaluated on

one of the ten partitions in the unseen templates scenario. This

figure highlights the overall trends across all unseen partition ex-

periments: we see significant improvements on some partitions,

relatively smaller regressions on some partitions, and similar per-

formance on many partitions. This behavior is also reflected in the

PPC trends.

Zooming in on partitions. For the FCNN and MSCN models,

we sort all the partitions by the difference in the mean runtimes

between the Flow-Loss and the Q-Error models. We select the best,

median, and worst partition for Flow-Loss and show the 50𝑝 , 90𝑝 ,

and 99𝑝 for runtimes in Figure 12. For both architectures, the model

trained with Flow-Loss significantly improves on the best partition

, particularly at the tail Ð being up to 8×, and hundreds of seconds

faster than the Q-Error model at the 99th percentile. On the worst

partition, it is about 20 seconds slower than the Q-Error model at the

99𝑡ℎ percentile. There are an additional six cases where the Flow-

Loss models improve over the Q-Error models, with improvements

in tens of seconds, which is comparable to the best improvement

2027

2028

2029

2030

REFERENCES
[1] Anant Agarwal and Jeffrey Lang. 2005. Foundations of analog and digital electronic

circuits. Elsevier.
[2] Christopher M Bishop. 1995. Regularization and complexity control in feed-

forward networks. (1995).
[3] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-

mensional Workload-Aware Histogram. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001. 211ś222. https://doi.org/10.1145/375663.375686

[4] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality
estimation: Tighter upper bounds for intermediate join cardinalities. In Proceed-
ings of the 2019 International Conference on Management of Data. 18ś35.

[5] Jeremy Chen, Yuqing Huang, Mushi Wang, Semih Salihoglu, and Ken Salem.
2021. Accurate Summary-based Cardinality Estimation Through the Lens of
Cardinality Estimation Graphs. arXiv preprint arXiv:2105.08878 (2021).

[6] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and
Shang-Hua Teng. 2011. Electrical flows, laplacian systems, and faster approxi-
mation of maximum flow in undirected graphs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing. 273ś282.

[7] Peter G Doyle and J Laurie Snell. 1984. Random walks and electric networks.
Vol. 22. American Mathematical Soc.

[8] Anshuman Dutt, Chi Wang, Vivek R. Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions using Low Overhead Regression
Models. Proc. VLDB Endow. 13, 11 (2020), 2215ś2228. http://www.vldb.org/pvldb/
vol13/p2215-dutt.pdf

[9] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. PVLDB 12, 9 (2019), 1044ś1057. https://doi.org/10.14778/
3329772.3329780

[10] Pablo Ezzatti, Enrique S. Quintana-Ortí, and Alfredo Remón. 2011. Using graphics
processors to accelerate the computation of the matrix inverse. J. Supercomput.
58, 3 (2011), 429ś437. https://doi.org/10.1007/s11227-011-0606-4

[11] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation
using Probabilistic Models. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001.
461ś472. https://doi.org/10.1145/375663.375727

[12] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020. 1035ś1050. https://doi.org/10.1145/3318464.3389741

[13] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering.. In CIDR.

[14] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992ś1005. http://www.vldb.org/pvldb/vol13/p992-
hilprecht.pdf

[15] Oleg Ivanov and Sergey Bartunov. 2017. Adaptive cardinality estimation. arXiv
preprint arXiv:1711.08330 (2017).

[16] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. Proc. VLDB
Endow. 10, 13 (2017), 2085ś2096. https://doi.org/10.14778/3151106.3151112

[17] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neumann,
and Alfons Kemper. 2019. Estimating Filtered Group-By Queries is Hard: Deep
Learning to the Rescue. 1st International Workshop on Applied AI for Database
Systems and Applications (2019).

[18] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. [n.d.]. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. http:
//cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[19] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. [n.d.]. Estimating
Cardinalities with Deep Sketches. In Proceedings of the 2019 International Confer-
ence on Management of Data, SIGMOD Conference 2019, Amsterdam, The Nether-
lands, June 30 - July 5, 2019. 1937ś1940. https://doi.org/10.1145/3299869.3320218

[20] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196 http://arxiv.org/abs/
1808.03196

[21] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spiel-
man. 2016. Sparsified cholesky and multigrid solvers for connection laplacians. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
842ś850.

[22] Yin Tat Lee, Satish Rao, andNikhil Srivastava. 2013. A new approach to computing
maximum flows using electrical flows. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. 755ś764.

[23] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204ś215. https://doi.org/10.14778/2850583.2850594

[24] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sam-
pling. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems Re-
search, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. http:
//cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf

[25] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. 615ś629.

[26] Li Li, Stephan Hoyer, Ryan Pederson, Ruoxi Sun, Ekin D Cubuk, Patrick Riley,
and Kieron Burke. 2020. Kohn-Sham equations as regularizer: Building prior
knowledge into machine-learned physics. arXiv preprint arXiv:2009.08551 (2020).

[27] Wes Maciejewski. 2012. Resistance and relatedness on an evolutionary graph.
Journal of The Royal Society Interface 9, 68 (2012), 511ś517.

[28] Aleksander Madry. 2016. Computing maximum flow with augmenting electrical
flows. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 593ś602.

[29] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers. CoRR
abs/2004.03814 (2020). arXiv:2004.03814 https://arxiv.org/abs/2004.03814

[30] Ryan Marcus and Olga Papaemmanouil. 2019. Towards a Hands-Free Query
Optimizer through Deep Learning. In CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online
Proceedings. http://cidrdb.org/cidr2019/papers/p96-marcus-cidr19.pdf

[31] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. PVLDB 12, 11 (2019), 1705ś1718. https://doi.org/10.14778/
3342263.3342644

[32] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based histograms
for selectivity estimation. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data. 448ś459.

[33] Brad H McRae, Brett G Dickson, Timothy H Keitt, and Viral B Shah. 2008. Using
circuit theory to model connectivity in ecology, evolution, and conservation.
Ecology 89, 10 (2008), 2712ś2724.

[34] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1
(2009), 982ś993. https://doi.org/10.14778/1687627.1687738

[35] Parimarjan Negi. 2021. Flow-Loss Online Appendix. Retrieved July 27, 2021
from https://parimarjan.github.io/flow_loss_appendix [Online;].

[36] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Mao Hongzi, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Cardinality Estimation Benchmark.
Retrieved July 27, 2021 from https://github.com/learnedsystems/ceb [Online;].

[37] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where it
Matters. In 2020 IEEE 36th International Conference on Data EngineeringWorkshops
(ICDEW). IEEE, 154ś157.

[38] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2018. Learning State Representations for Query Optimization with Deep Rein-
forcement Learning. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, DEEM@SIGMOD 2018, Houston, TX, USA, June
15, 2018. 4:1ś4:4. https://doi.org/10.1145/3209889.3209890

[39] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
2019. An Empirical Analysis of Deep Learning for Cardinality Estimation. CoRR
abs/1905.06425 (2019). arXiv:1905.06425 http://arxiv.org/abs/1905.06425

[40] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2018. Quicksel: Quick
selectivity learning with mixture models. arXiv preprint arXiv:1812.10568 (2018).

[41] Matthew Perron, Zeyuan Shang, TimKraska, andMichael Stonebraker. 2019. How
I Learned to Stop Worrying and Love Re-optimization. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1758ś
1761. https://doi.org/10.1109/ICDE.2019.00191

[42] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without
the attribute value independence assumption. In VLDB, Vol. 97. 486ś495.

[43] Dipanjan (DJ) Sarkar. 2019. Categorical Data. https://towardsdatascience.com/
understanding-feature-engineering-part-2-categorical-data-f54324193e63

[44] StackExchange. 2020. StackExchange Data Explorer. https://data.stackexchange.
com/

[45] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
PVLDB 13, 3 (2019), 307ś319. https://doi.org/10.14778/3368289.3368296

[46] NIPPON TELEGRAPH and TELEPHONE CORPORATION. 2013. PG Hint Plan.
https://pghintplan.osdn.jp/pg_hint_plan.html

[47] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Saehan
Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query Evaluation
via Reinforcement Learning. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. 1153ś1170. https://doi.org/10.1145/3299869.3300088

2031

https://doi.org/10.1145/375663.375686
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
http://www.vldb.org/pvldb/vol13/p2215-dutt.pdf
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.14778/3329772.3329780
https://doi.org/10.1007/s11227-011-0606-4
https://doi.org/10.1145/375663.375727
https://doi.org/10.1145/3318464.3389741
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
https://doi.org/10.14778/3151106.3151112
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
https://doi.org/10.1145/3299869.3320218
https://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.14778/2850583.2850594
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://arxiv.org/abs/2004.03814
https://arxiv.org/abs/2004.03814
http://cidrdb.org/cidr2019/papers/p96-marcus-cidr19.pdf
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/1687627.1687738
https://parimarjan.github.io/flow_loss_appendix
https://github.com/learnedsystems/ceb
https://doi.org/10.1145/3209889.3209890
https://arxiv.org/abs/1905.06425
http://arxiv.org/abs/1905.06425
https://doi.org/10.1109/ICDE.2019.00191
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
https://data.stackexchange.com/
https://data.stackexchange.com/
https://doi.org/10.14778/3368289.3368296
https://pghintplan.osdn.jp/pg_hint_plan.html
https://doi.org/10.1145/3299869.3300088

[48] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently
adapting graphical models for selectivity estimation. VLDB J. 22, 1 (2013), 3ś27.
https://doi.org/10.1007/s00778-012-0293-7

[49] Nisheeth K Vishnoi. 2012. Laplacian solvers and their algorithmic applications.
Theoretical Computer Science 8, 1-2 (2012), 1ś141.

[50] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2020. Are We Ready For Learned Cardinality Estimation? arXiv preprint
arXiv:2012.06743 (2020).

[51] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Chara-
gram: Embedding words and sentences via character n-grams. arXiv preprint
arXiv:1607.02789 (2016).

[52] Wikipedia. [n.d.]. Metric (Mathematics). Retrieved July 27, 2021 from https:
//en.wikipedia.org/wiki/Metric_(mathematics) [Online;].

[53] Wikipedia. [n.d.]. Pseudometric Space. [Online;].
[54] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang

Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-
ceedings of the Second International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam, The Nether-
lands, July 5, 2019. 5:1ś5:8. https://doi.org/10.1145/3329859.3329875

[55] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
PVLDB 12, 3 (2018), 210ś222. https://doi.org/10.14778/3291264.3291267

[56] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. CoRR
abs/2006.08109 (2020). arXiv:2006.08109 https://arxiv.org/abs/2006.08109

[57] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. PVLDB 13, 3 (2019), 279ś292.
https://doi.org/10.14778/3368289.3368294

[58] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in neural
information processing systems. 3391ś3401.

[59] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. 1525ś1539. https://doi.org/10.1145/3183713.3183739

2032

https://doi.org/10.1007/s00778-012-0293-7
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.14778/3291264.3291267
https://arxiv.org/abs/2006.08109
https://arxiv.org/abs/2006.08109
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1145/3183713.3183739

