
Real-time Route Planning with Stream Processing Systems:
A Case Study for the City of Lucerne

Aslı Özal
Systems Group

ETH Zurich, Switzerland
aoezal@student.ethz.ch

Anand Ranganathan
IBM T.J. Watson Research Center

Hawthorne, NY, USA
arangana@us.ibm.com

Nesime Tatbul
Systems Group

ETH Zurich, Switzerland
tatbul@inf.ethz.ch

ABSTRACT
Traffic-aware real-time route planning has recently been an
application of increasing interest for metropolitan cities with
busy traffic. This paper approaches the problem from a
stream processing point of view and proposes a general ar-
chitecture to solve it. This work is inspired by a real use case
and is implemented on an industry-strength stream process-
ing engine. Experimental results on this implementation
demonstrate the scalability of this approach in terms of in-
creasing data and query rates.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
intelligent transportation systems, real-time route planning, travel

time estimation, traffic sensors, data stream processing

1. INTRODUCTION
Today, traffic congestion is acceptedly one of the main

problems of the everyday life in populous cities. Intelligent
Transportation Systems (ITS) aim to ease environmental,
social, and economic implications of this problem through
the application of modern information and communication
technology. A challenging use case for these systems is real-
time route planning (RRP) based on current traffic infor-
mation. More specifically, the goal in RRP is to find the
best route (i.e., the route that is currently estimated to have
the shortest travel time) between a source and a destination
point in a given urban area, taking into account the latest
information about the current traffic density on all the roads
of that area.

Real-time route planning poses a number of technical chal-
lenges. First of all, current traffic information needs to be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWGS ’11, November 1, 2011, Chicago, IL, USA
Copyright c©2011 ACM 978-1-4503-1036-9/11/11 ...$10.00.

collected from a monitoring infrastructure that is based on
special devices installed either on roadways (e.g., sensors,
cameras) or on moving objects themselves (e.g., GPS). Sec-
ond, the collected information needs to be represented in a
proper data model so that it can be easily correlated with
a road map. Third, traffic density on each road needs to
be estimated. Fourth, given an ad-hoc query with a source-
destination pair, the best route needs to be computed based
on the road map augmented with density estimations. The
last but not the least, there is a need to support continuous
streams of traffic updates from potentially a large number
of monitoring devices as well as ad-hoc queries from poten-
tially a large number of users in a scalable way such that
latest estimates can be provided to the users in real time.

From a data management point of view, the real-time
route planning problem requires integrating and reasoning
about various forms of data in real time, including dynamic
streams of traffic data and user queries as well as static ref-
erence data such as the road map and the locations of the
monitoring devices. In this paper, we argue that data stream
processing technology forms a suitable foundation to solve
this problem, since it not only allows us to easily represent
the streaming data sources and the continuous push-based
processing on them, but also facilitates integrating the other
data sources involved as well. More importantly, we can ex-
ploit the low latency/high throughput performance guaran-
tees inherently provided by this technology.

The work described in this paper is inspired by a real
use case for the city of Lucerne in Switzerland. In Lucerne,
an Induction Loop Detector (ILD) system installed at road
intersections collects real-time traffic information by report-
ing the vehicles passing by the detectors. In addition to the
ILD datasets provided by the Lucerne Transportation Ser-
vices [5], we have made use of the Lucerne city map provided
by the OpenStreetMap project [2]. In this paper, we first
show how to architect a real-time route planner on top of
a stream processing system by describing a number of key
components. Some of these components also leverage a num-
ber of well-known techniques from traffic management and
computer algorithms, such as travel time estimation models
and shortest path calculation algorithms. Then we present
how to realize this generic design using a state-of-the-art
stream processing engine, namely, IBM InfoSphere Streams
[1]. This proof-of-concept implementation has been tested
with the Lucerne datasets and some scalability experiments
have been performed, which we also summarize in this paper
[15]. To our knowledge, this work is the first that puts to-
gether different algorithms and components in this domain

to build a complete, end-to-end system for real-time route
planning.

The rest of this paper is outlined as follows. Section 2 de-
scribes the real-time route planning problem, both in general
terms and in the context of our specific use case for the city
of Lucerne. We then propose in Section 3 a stream-based
solution approach to this problem, presenting a general de-
sign that builds on a streaming infrastructure and a specific
implementation of this design on top of the IBM InfoSphere
Streams platform. In Section 4, we report preliminary ex-
perimental results that show the basic performance of our
implementation in terms of its scalability. We briefly sum-
marize related work in Section 5 and conclude the paper in
Section 6 by discussing a few interesting directions for future
research.

2. REAL-TIME ROUTE PLANNING (RRP)
In this section, we will briefly introduce the real-time route

planning problem, both in general terms and in the context
of a specific real-world use case.

2.1 Problem Overview
The real-time route planning (RRP) problem can be de-

fined as follows: Given the latest information about the traf-
fic density on all roads in a geographical area and a route
query in the form of a (source, destination) pair, find the
route from the given source point to the given destination
point that is estimated to have the shortest travel time at
that time point.

RRP comes with a number of technical challenges. First
of all, real-time traffic information needs to be collected from
a monitoring infrastructure installed on various traffic units,
such as roads or vehicles. Depending on the format in which
this raw monitoring data is presented, it may be necessary
to pre-process or augment this data with more detailed in-
formation regarding geographical location. Then the traffic
density on each road needs to be estimated by aggregat-
ing the sensor readings in some way. Finally, route queries
should be answered as they are received from the users. An
especially challenging aspect of this problem is that data
and query rates can get very high depending on the size and
population of the area that is being monitored.

For a better understanding of the RRP problem, we will
next describe a real use case for the city of Lucerne in
Switzerland.

2.2 RRP for the City of Lucerne
Being the most populous city in central Switzerland and

a world-renowned popular tourism destination, Lucerne is
one of the major transportation hubs in its region. Lucerne
Transportation Services (VBL AG) [5] has installed an In-
duction Loop Detector (ILD) system in Lucerne in order to
collect traffic information. VBL currently uses the collected
data for historical analysis of the general traffic patterns in
the city. However, it is of interest to VBL to be able to use
this data in real-time applications as well, such as providing
an RRP service.

Before describing the Lucerne use case further, let us first
give some technical background on the ILD technology. ILD
technology is essentially a form of sensor technology that
presents a reliable way to detect presence of moving ob-
jects at a given location. An inductive loop vehicle detector
system consists of three main components: a loop, a loop

Figure 1: Induction Loop Detector system [4]

extension cable, and a detector (see Figure 1). The loop is a
continuous run of wire that enters and exits from the same
point and is buried under the traffic lane. The two ends
of the loop wire are connected to the loop extension cable,
which in turn connects to the vehicle detector. The detector
powers the loop causing a magnetic field in the loop area.
The loop resonates at a constant frequency that the detector
monitors. A base frequency is established when there is no
vehicle over the loop. When a large metal object, such as
a vehicle, moves over the loop, the resonate frequency in-
creases. This increase in frequency is sensed, and depending
on the design of the detector, forces a normally open relay
to close. The relay will remain closed until the vehicle leaves
the loop and the frequency returns to the base level. The
relay can then trigger a number of other devices such as an
audio intercom system, a gate, a traffic light, etc.

For the case of Lucerne, we examined a dataset from 121
induction loop detectors installed in the center region of
Lucerne with relatively busy traffic. Separate detectors are
installed on different lanes of a given road so that multiple
vehicles simultaneously passing through the road in reverse
directions can be more accurately detected. Our dataset
covers the traffic observed on Tuesdays for an 11-week pe-
riod, from 22.04.2008 to 01.07.2008. Data for each day con-
sists of 24 files of 1-hour period each.

Induction loop detectors in the area are listed at the be-
ginning of a file and properties for each detector are given
within tags. There are five properties for each detector el-
ement: index, code, channel, name, and short-name. Code,
channel, and short-name are recorded for the internal use of
VBL, whereas index of a detector is used as a reference for
following the timestamp readings and name of a detector is
used to identify its location on the city map. Following these
detector properties, induction loop readings themselves are
recorded. At the beginning of the measurements section,
initial values for each detector is given with the starting
timestamp of the file. Reading value can either be 1, which
indicates that there is a car on the corresponding induc-
tion loop detector, or a 0, which represents the absence of
a car. At the subsequent timestamps, only value changes
for the detectors are recorded. In other words, timestamps
are recorded only when the value of a detector is changed.
There might be no input data for a certain period if there
is no value change recorded for a detector during that time,
which might happen, for example, if there is no car passing
through that period, or if the traffic has stopped at the cor-

responding lane due to a traffic light, accident, or extreme
congestion.

Given continuous streams of ILD readings from 121 de-
tectors in the format described above, our goal in this use
case is to be able to answer a continuous stream of ad-
hoc route planning queries from a multitude of users in real
time. Each ad-hoc query comes with the following metadata:
query-id, submission-time, departure-point, and destination-
point. Furthermore, the answer to each such query needs
to contain the following information: query-id, submission-
time, termination-time, departure-point, destination-point,
best-route, estimated-travel-time. The answer can simply be
presented in textual format, or by means of a GUI that con-
sists of a map displaying the suggested route along with the
estimated travel time.

3. A STREAM-BASED APPROACH
In this paper, we present a stream-based solution ap-

proach to the real-time route planning problem that is out-
lined in the previous section. Data stream processing tech-
nology not only allows us to easily represent the streaming
data sources and the continuous push-based processing on
them, but also facilitates integrating the other data sources
involved as well. More importantly, we can exploit the low
latency/high throughput performance guarantees inherently
provided by this technology. This section describes our ap-
proach both in terms of general design and a specific imple-
mentation of this design, and we evaluate the basic perfor-
mance of this implementation in the next section.

3.1 Architectural Overview
In this section, we present the general architectural design

of a stream-based solution to the real-time route planning
problem described in the previous section.

Based on the problem requirements, we identified a num-
ber of different data sources and key functional components
to process data from these sources. Figure 2 shows these and
how they can be architected on top of a stream processing
system.

First of all, an RRP application needs to integrate infor-
mation from various types of external data sources. Each
source may present its data in different syntax and seman-
tics. A pre-processing step is required to interpret and con-
vert these into a format that can be easily consumed by the
rest of the system. Thus, the first key component in our
architecture is the Pre-Processor. This component is essen-
tially responsible for receiving external input data, parsing
it, and generating the relevant data streams that will further
be used in the system. Next, the pre-processed data along
with real-time traffic updates should be further processed
to infer the current traffic density in the given city. Thus,
the second key component, Average Speed Calculator, calcu-
lates the average speed and delay estimations for each link
on a given map. Finally, a Shortest Path Finder component
takes in the route queries and calculates the shortest paths
for them based on the most recent traffic density informa-
tion from the Average Speed Calculator. Both the Average
Speed Calculator and the Shortest Path Finder runs con-
tinuously as streams of traffic updates and queries arrive,
while the Pre-Processor executes once in the beginning to
derive the necessary information from the static reference
data. Let us now look at each of these components more
closely.

Figure 2: A stream-based system architecture for
real-time route planning

3.1.1 Pre-Processing
As mentioned above, the Pre-Processor component runs

in advance of the other streaming components to prepare
the data from static data sources for continuous consump-
tion of these other components. For example, in the use case
that we studied, we observed the need for pre-processing of
two types of data: (i) ILD locations and (ii) the city map.
The former is needed, as readings from ILD sensors do not
provide any location information, and in order to be able to
compute location-specific traffic estimates, we need this in-
formation. The Pre-Processor reads the ILD locations from
a CSV file and correlates them with the city map informa-
tion (represented in XML) to compute mappings between
ILD devices and the roads that they are installed on. To
find the roads where each detector is installed, we calculate
the distance of each detector to all the roads in the city
map. The detector is then mapped to the road that has the
minimum distance to it.

Depending on how detector locations and map data are
represented, distances between detectors and roads may need
to be calculated in special ways. For example, in our datasets,
both the detector locations and the road segment (a.k.a.,
node) locations are represented with earth coordinates. First,
a given detector’s (longitude, latitude) values are converted
into Cartesian coordinates. Each road may consist of sev-
eral nodes, each of which has a (longitude, latitude) value
that represents a point in the real world. We also convert
the earth coordinates of the nodes of a way into Cartesian
coordinates. Then we create segments between two consec-
utive nodes in every road. Cartesian distances between a
detector and all road segments are calculated. Each detec-
tor is mapped to the road that contains the shortest-distance
segment, i.e., the segment that has the minimum Cartesian
distance to the detector. Figure 3 illustrates this mapping.

3.1.2 Average Speed Calculation
As real-time traffic updates from detector devices are re-

ceived, we need to update the current traffic density on the
roadways so that when a route query is received, we can
formulate an answer based on the most recent information.

Figure 3: Locating an ILD device on the road map

The Average Speed Calculator provides this update func-
tionality based on a travel time estimation model.

This component takes the city map, real-time traffic read-
ings stream, and the detector-way mappings from the Pre-
Processor component as input. It first performs a join op-
eration between the readings stream and the detector-way
mappings so that current traffic readings can be associated
with the roadways. Next, for each roadway, current average
traffic speed as well as the time delay need to be estimated.

The Average Speed Calculator follows a three-layer data
representation (see Figure 4). At the highest layer are the
roads of the city map, for which we need to compute the
travel time estimates. Each road has a number of detector
devices installed on it. Finally, at the lowest layer, each
detector receives a stream of updates which needs to be
chopped into windows for continuous processing. Windows
represent finite excerpts of a stream that have a certain re-
lationship (e.g., within a certain time interval) [9].

For our use case, a variation of the time-based sliding
window model is used. Like a traditional time-based slid-
ing window, each window keeps readings of a detector for
a certain period of time, that we call the reporting period.
When a window is filled with its first subgroup of data, it
performs an operation and then continues sliding, as new
data is received. A slide period determines when to open
the next windows relative to the opening of the previous
window. Unlike the traditional time-based sliding windows
however, in our case, windows are not necessarily of the same
size, but the actual size of a window is determined by the
incoming data. This is a special situation that arises from
the semantics of the ILD readings.

In the ILD stream, presence of a vehicle is represented
with value ‘1’, and the absence of a vehicle is represented
with value ‘0’. We would like to maintain statistics about
vehicle counts and total occupancy (i.e., the total time for
which the road was occupied by a vehicle) for the time period
determined by the window. This requires that a window
should not be closed before a reading value of 0 arrives after
a reading value of 1. As a result, the windows are not exactly
of the same size (both time-wise as well as in terms of actual
number of tuples contained in them).

Figure 5 illustrates how we compute traffic density statis-
tics (count and occupancy) based on a sliding window model.
The input stream contains 0/1 values as well as timestamps.
For a given window, we keep internal state for the current
count and the current occupancy since the opening of that
window. This incremental way of processing both optimizes

Figure 4: Three-layer data representation

memory consumption and processing time. When a 0 read-
ing arrives indicating the absence of a vehicle, its timestamp
is added to the total occupancy duration in the window. On
the other hand, when a 1 reading arrives indicating vehicle
presence, its timestamp is subtracted from the total occu-
pancy duration in that window. When we ensure that each
1 value in a window is matched with a corresponding 0 value
in that window and the window has exceeded its reporting
period, that window can be closed and a final average speed
value can be emitted.

3.1.3 Shortest Path Finding
The Shortest Path Finder component receives the real-

time route planning queries from the users as a stream and
answers them based on the latest traffic density estimates
from the Average Speed Calculator component.

To find the best route between a given pair of departure
and destination points, we need to find the shortest path
with the most recent travel times of the roads in the map. To
achieve this, we utilize the modified A* algorithm presented
in related work [10].

When the Shortest Path Finding component is first ini-
tialized, it constructs a graph that corresponds to the road
network of the given city. Beginning and end points of roads
are treated as vertices and the roads themselves are treated
as the edges of the graph. Delays (i.e., travel times) for the
roads in the map are used as the weights for edges in the
graph. These weights are updated as new traffic informa-
tion comes in. This weighted graph is given as input to the
modified A* algorithm.

Real-time route planning requires a time-dependent short-
est path calculation. To make the A* algorithm time-depen-
dent, the delay on each road link should be time-dependent.
To achieve time-dependency, the approach proposed by Guc
and Ranganathan generates discrete intervals in shortest
path calculation [10]. A day is divided into several time
intervals and each link has one delay value for each interval.
Travel time on a link is assumed to be constant during an

Figure 5: Sliding window-based occupancy and
count calculation

interval. As paths are extended with links during the ex-
ecution of A*, time is advanced and therefore future delay
values of links are used as link costs. If the time interval
changes while traveling on a link, the delay value of the new
interval should be used for the rest of the link. A link can be
traveled during many time intervals, therefore, it is checked
for interval changes while extending a path with a link.

A* algorithm requires a heuristic function to estimate the
travel time to the destination as well. As a heuristic func-
tion, the lower bound for the travel time to the destination
node from the current node is used. This lower bound is
calculated by dividing the Euclidean distance between these
two nodes by the maximum speed on the network.

After applying the algorithm described above, the Short-
est Path Finder component presents the best route to the
query as part of the output stream produced by our archi-
tecture.

3.2 Implementation
In this section, we present how we implemented the archi-

tecture proposed in the previous section within the context
the IBM InfoSphere Streams system as a state-of-the-art
stream processing engine underneath. We give more details
in terms of our Lucerne use case and several other technolo-
gies used such as the specific travel time estimation model
that we used. It is important to note that while we have cho-
sen the IBM engine for a proof-of-concept implementation
of our design, we believe that our design is general enough
to be realized on any stream processing engine.

3.2.1 IBM InfoSphere Streams System
In this work, we have used the IBM InfoSphere Streams

system (version 1.2) as the underlying stream processing en-
gine [1]. InfoSphere Streams (or Streams for short) has been
designed to support large-scale stream processing. Streams
runtime can execute a large number of queries that are in
the form of data-flow graphs. A data-flow graph consists
of a set of operators connected by streams. Each operator
implements data stream analytics and resides in execution
containers called Processing Elements (PEs), which are dis-
tributed over a given set of compute nodes. The operators

communicate with each other via their input and output
ports, connected by streams.

SPADE is the declarative stream processing engine of Stre-
ams [8]. It is also the name of the declarative language used
to program SPADE applications. SPADE provides several
built-in operators and stream adapters that are commonly
required by streaming applications. The built-in operators
include source, join, sink, and aggregate. In addition to
the existing operators, SPADE allows developers to extend
the language with User-Defined Operators (UDOPs), User
Built-in Operators (UBOPs), and User-Defined Functions
(UDFs). We have made use of these extensibility features
of Streams in our work.

In our implementation, we benefit from several standard
Streams operators as well as implementing new custom op-
erators. As in many other applications, our system has
complex analytic requirements that may not exactly fit in
with the standard operator set. First of all, as we deal
with different types of structured and unstructured data
sources, we need to analyze them to extract only the rel-
evant information. Therefore, we have enhanced the stan-
dard Streams source operator as user-defined sources such
that only relevant data is used as a data stream within
the rest of the application. Moreover, for further process-
ing of the stream data, several special algorithms needed
to be implemented. We implemented these algorithms in
C++ as User-Defined Operators (UDOPs) inside InfoSphere
Streams. More specifically, we implemented three UDOPs,
one for each of the three main components in our proposed
architecture.

3.2.2 Travel Time Estimation Model
For real-time route planning, we need to calculate current

traffic density on roads, which can be represented by average
traffic speeds for these roads. In the Lucerne use case, ILD
readings stream provide information about the number of
vehicles at a road segment for a given time period, but not
the speeds or time-mean-speeds of vehicles over the loop.
We need a model in order to calculate the average speed
estimation of the links in our graph representing the city
road map from the available ILD data. We have used a
conventional travel time estimation model for this purpose.

Conventional models estimate travel time based on the
assumption of a constant average effective vehicle length.
The formula to estimate the speed at a single-loop detector
data is given as [18]:

V (t) = g (t)× c (t)

o (t)× T
(1)

In this formula, T is the duration of the reporting period;
the count c(t) is the number of vehicles that crossed the
detector during period t; the occupancy o(t) is the fraction
of time during this period that the detector sensed a vehicle
above it; and the ‘g-factor’ g(t) is the effective vehicle length
in this period. g(t) cannot be directly measured at single
loops, and its value must be assumed or estimated. The
formula gives V (t) as the calculated average speed.

As seen in the formula, reliability of the method depends
on the estimated value for g(t) and the validity of g(t) to be
constant over traffic conditions. If the actual g(t) is different
than the assumed value, there would be a proportional error
in speed estimation. Therefore, there has been a lot of work
on improving the estimation of g(t) value for more precise

Figure 6: Estimating the effective vehicle length [18]

and correct average speed calculation [7, 16].
In related work [18], g(t) is divided to two components, as

illustrated in Figure 6. The first component, gtraffic(t) de-
pends on the mix of vehicle types (autos, trucks) crossing the
detector during period t. Therefore, factors like the traffic
situation at time t, the time of the day, and the lane number
change the value of this component significantly. The sec-
ond component gdetector(t), depends on the characteristics
of the detector itself. The detectors in an area are deployed
over a period of years. Therefore, gdetector(t) may not be
uniform. As a result, g-factor can show significant changes
depending on different factors, and the accuracy of average
speed calculation could vary accordingly.

For our case study, considering Lucerne is a small city and
it is not very common to see big trucks in the city traffic,
we have assumed an effective vehicle length of 5 meters.

3.2.3 OpenStreetMaps
To implement our architecture, we have also needed ge-

ographical data to locate various objects on the earth sur-
face. In our implementation, we have made use of the Open-
StreetMap project to get earth coordinates and various other
properties of the roads, streets, and links in the city of
Lucerne [2].

OpenStreetMap is an editable map of the whole world.
It is released with an open content license. The Open-
StreetMap allows free access to the map images and all of
the underlying map data. OpenStreetMap follows a simi-
lar concept as Wikipedia does. People gather location data
from a variety of sources such as recordings from GPS de-
vices, from free satellite imagery or simply from knowing an
area, and upload this data to OpenStreetMap. The data can
be further modified, corrected, or enriched by anyone who
notices missing facts or errors. OpenStreetMap data is avail-
able for download in a variety of formats and for different
geographical areas.

We have selected a region of interest in Lucerne city for
our case study, and exported all the streets and links in XML
format. The exported XML file consists of nodes and ways.
A node is the basic element, building block, of the map
scheme. Nodes consist of latitude and longitude (a single
geospatial point). A way is an ordered interconnection of
at least two nodes that describe a linear feature such as a
street. For Lucerne city, a map with 653 nodes and 186 ways
has been extracted.

4. EXPERIMENTS
In this section, we present a few results from an experi-

mental study that we conducted on our RRP implementa-

tion for Lucerne. The main goal is to see to what extend
the system scales with increasing stream rates (ILD read-
ings processed per time unit as well as ad-hoc user queries
handled per time unit).

4.1 Experimental Setup
All our experiments were executed on a laptop with Intel

Core2 Duo 2.53 GHz processor and 4 GB memory running
the Windows 7 operating system.

As our continuous traffic stream, we replayed the ILD
dataset for Lucerne that was described in detail in Section
2. This dataset has a total size of 1,600,000 records. In our
experiments, we replayed the data 5 times.

As our continuous query stream, we generated random
pairs of departure and destination points.

In the first experiment, we test the performance of our
system with an increasing amount of traffic data by changing
the number of ILD readings per second. We measure the
average response time of a total of 5,000,000 queries, feeding
them at two different rates: first at 50,000 queries/second
and then at 500,000 queries/second .

In the second experiment, we test the system performance
by increasing the number of queries per second. We again
measure the average response time of queries. Note that
this experiment has been run for two different data rates:
first 50,000 ILD readings/second and then 500,000 ILD read-
ings/second.

For both experiments, query response time is measured
as the time difference between the start timestamp of the
query (i.e., its submission-time) and the end timestamp of
the query (i.e., its termination-time). All experiments were
repeated 3 times.

4.2 Experimental Results
Figure 7(a) shows the average response time for route

planning queries on the y-axis, while the x-axis represents
the number of induction loop readings per second, varying
from 50,000 to 3,000,000. The experiment was run for two
fixed query rates – 50,000 and 500,000 queries/second, re-
spectively.

The two dotted lines in the graph show the average re-
sponse times, when there are no delay updates in the sys-
tem (i.e., when the route calculations are done with constant
travel times assigned to roads where the shortest path graph
stays fixed over time). We plot these to serve as conservative
baselines for the two respective query rates.

The two solid lines show the increase in response time
with the increasing data rate, following a similar trend. In
both cases, we observe that the performance of the system
starts significantly degrading after 2,000,000 ILD readings
per second. This is because, as we increase the input date
rate, there will be more average speed calculations per time
unit and consequently, the number of road delay updates
will also increase.

In our second experiment, we wanted to see the poten-
tial of our system for supporting a large number of user
queries. We stressed the system with increasing query rate
and measured the average response time. Figure 7(b) shows
the results for this experiment, repeated for two different
input data rates.

The dotted line in the graph again shows the average re-
sponse times, when there are no new delay updates in the
system (i.e., when the route calculations are done with con-

(a) Scalability with increasing data rate (b) Scalability with increasing query rate

Figure 7: Experimental results

stant travel times assigned to roads where the shortest path
graph stays fixed over time). We plot this to serve as a con-
servative baseline for the two input data rates. Note that
unlike in the previous experiment, in this case, the baseline
is common for the two workloads, since rate of the ILD read-
ings which distinguishes these two workloads is irrelevant in
the baseline case as the delay updates are ignored in this
case. Furthermore, the baseline also shows a slight increase
in average response time as the query rate increases (even
more noticeably after 500,000 queries/second), since execut-
ing more queries in the system is expected to cause higher
latencies, and possibly to overload at some point.

The two solid lines show the increase in response time with
the increasing query rate, following a similar trend. In both
cases, the system shows an initial dip in average response
time. More specifically, below 100,000 queries/second, a
lot of the processing time is taken up by other tasks like
reading files, building up data structures for shortest path
calculations, and so on. At around 100,000 queries/second,
total execution is occupied evenly by shortest patch calcu-
lations and the other tasks. Beyond this point, the shortest
path calculations themselves start to dominate the process-
ing time, and as a result, we see that the average response
time starts increasing as the query rate increases. After
around 500,000 queries/second, we observe that system can
not handle the queries with reasonable response times any
more. This is the point where the system starts being over-
loaded, as is also suggested by the uprising behavior of the
baseline beyond this point.

All in all, the two results we have shown above demon-
strate that our RRP implementation can support up to an
order of million sensor readings per second and user queries
per second, which would be sufficient limits for many metro-
politan cities (and certainly more than enough for Lucerne).
For larger-scale scenarios, several alternatives exist to boost
up the system performance including exploiting distributed
/ parallel stream processing, multi-query optimization, and
approximate processing, which we briefly discuss as part of
future directions in the last section of this paper.

5. RELATED WORK
Data stream processing systems have a wide range of ap-

plication domains such as stock market data analysis, weather
monitoring, and recently, also intelligent transportation sys-
tems (ITS). Advances in location tracking technologies like

GPS and sensor systems, and the growing need for traffic
performance monitoring in large cities have increased the
interest in ITS applications. We discuss a representative set
of recent research work that are closely related to our RRP
work.

Microsoft’s GeoInsight is a framework developed for geo-
streaming applications [11]. Similar to our work, GeoInsight
focuses on processing and analyzing stream data with geo-
graphic and spatial information. GeoInsight employs Mi-
crosoft StreamInsight as its base for complex event process-
ing, and extends it in two directions. First, online process-
ing support is integrated. Second, a module for historical
(archived) stream data querying is implemented. Different
from our work, they perform analysis of historical data to-
gether with the real-time data to refine the answer of real-
time queries and to predict the answer in the near future.

Our work involves applying data stream management tech-
nology to ITS applications. The latte project [17] is devel-
oped with the same goal by using the NiagaraST stream
processing system [12] and the PORTAL transportation data
archive [3]. Latte focuses on travel time estimation queries
that combine live data streams with large data archives. It
introduces the concept of comparing current data to “simi-
lar” historical data for reliable travel time estimation. Dif-
ferent from our real-time travel time calculations, they find
similarities between past data and current data to estimate
travel time.

More recently, Malviya et al. have proposed a dynamic
route planning technique for a given set of route queries
pre-defined in the system [13]. Different from our work,
this work uses historical delay data for pre-computation of
candidate routes for the pre-registered queries. Based on
this, the system checks delays and sends query results as
updates to users if the fastest route for any of these route
queries changes.

Lastly, the IBM InfoSphere Streams system was also used
for a similar application in previous work, where a prototype
system that generates dynamic transportation information
for the city of Stockholm was developed [6]. That imple-
mentation consists of a set of stream processing applications
that consecutively process real-time GPS data, generate dif-
ferent kinds of real-time traffic statistics, and perform cus-
tomized analysis in response to user queries. Different from
the ILD data that we use to get traffic information, they
utilize GPS data which gives speed information of vehicles

directly. This work also explores how to improve scalability
using distributed operation techniques, which is complemen-
tary to our work.

6. CONCLUSIONS
In this paper, we investigated the real-time route planning

problem and proposed a stream-based approach to solve it.
Our work has been inspired by a real use case for the city
of Lucerne, Switzerland. We first proposed a general archi-
tecture of a stream-based route planner and then described
how we realized it within the context of the IBM InfoSphere
Streams engine for the Lucerne use case. Experimental re-
sults on this implementation show that our solution has an
acceptable scale-up behavior for increasing data and query
rates.

This work can be improved along several directions. First,
different travel time estimation models can be analyzed in
depth to improve the accuracy of the system. Second, the
usability of the system can be significantly improved by in-
tegrating a map-based GUI for the users. In addition to
these immediate improvements, we also envision a few re-
search ideas for elevating the performance of our approach.
More specifically, scalability of the system can be further
increased by applying a few common techniques that would
fit very well with the RRP application semantics. For exam-
ple, most streaming engines provide facilities for distributed
and parallel processing. We can distribute user queries or
ILD readings for different regions of the map to make use
of multiple processing resources. As another example, mul-
tiple user queries that are similar can be answered in less
time by exploiting their commonalities. Thus, the shortest
path finding algorithm can be improved in this direction.
The last but not the least, as the experiments have shown,
updating the time estimates on the links of the graph that
represents the road network significantly affects the query
response time. Thus, we can use approximate processing
techniques by down-scaling the refresh rates when the sys-
tem has more load that it can handle (e.g., in similar ways
to the work proposed in [14]).

7. ACKNOWLEDGMENTS
We would like to thank Romeo Kienzler and Bugra Uy-

tun from IBM Switzerland for their help with the IBM In-
foSphere Streams system, Marc Amgwer from VBL AG and
Thomas Karrer from Stadt Luzern for providing information
on the Luzern use case, and Baris Guc from ETH Zurich for
his contributions to the implementation of the shortest path
algorithm. This work has been supported in part by an IBM
faculty award.

8. REFERENCES
[1] IBM InfoSphere Streams. http://www-01.ibm.com/

software/data/infosphere/streams/.

[2] OpenStreetMap. http://www.openstreetmap.org/.

[3] PORTAL Transportation Data Archive.
http://portal.its.pdx.edu/home/.

[4] The Basics of Loop Vehicle Detection. http://www.
marshproducts.com/pdf/InductiveLoopWriteup.pdf.

[5] Verkehrsbetriebe Luzern AG. http://www.vbl.ch/.

[6] A. Biem, E. Bouillet, H. Feng, A. Ranganathan,
A. Riabov, O. Verscheure, H. Koutsopoulos, and

C. Moran. IBM Infosphere Streams for Scalable,
Real-time, Intelligent Transportation Services. In
ACM SIGMOD Conference, Indianapolis, IN, USA,
June 2010.

[7] D.J. Dailey. A Statistical Algorithm for Estimating
Speed from Single Loop Volume and Occupancy
Measurements. Elsevier Transportation Research Part
B: Methodological, 33(5), June 1999.

[8] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: The System S Declarative Stream
Processing Engine. In ACM SIGMOD Conference,
Vancouver, BC, Canada, June 2008.

[9] L. Golab and M. T. Özsu. Issues in Data Stream
Management. ACM SIGMOD Record, 32(2), June
2003.

[10] B. Guc and A. Ranganathan. Real-time, Scalable
Route Planning using a Stream-Processing
Infrastructure. In IEEE International Conference on
Intelligent Transportation Systems (ITSC), Madeira
Island, Portugal, September 2010.

[11] S. J. Kazemitabar, U. Demiryurek, M. Ali,
A. Akdogan, and C. Shahabi. Geospatial Stream
Query Processing using Microsoft SQL Server
StreamInsight. PVLDB, 3(2), 2010.

[12] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos,
T. Johnson, and D. Maier. Out-of-Order Processing:
A New Architecture for High-Performance Stream
Systems. PVLDB, 1(1), August 2008.

[13] N. Malviya, S. Madden, and A. Bhattacharya. A
Continuous Query System for Dynamic Route
Planning. In IEEE ICDE Conference, Hannover,
Germany, April 2011.

[14] A. Moga, I. Botan, and N. Tatbul. UpStream:
Storage-centric Load Management for Streaming
Applications with Update Semantics. VLDB Journal,
2011 (to appear).

[15] A. Özal. Real-time Route Planning with Stream
Processing Systems: A Case Study for the City of
Lucerne. Master’s thesis, ETH Zurich, Switzerland,
2011.

[16] S.Turner et al. Travel Time Data Collection
Handbook. Technical report, Federal Highway
Administration Research Report, 1998.

[17] K. Tufte, J. Li, D. Maier, V. Papadimos, and J. R.
R. L. Bertini. Travel Time Estimation Using
NiagaraST and latte. In ACM SIGMOD Conference,
Beijing, China, June 2007.

[18] J. Zhanfeng, C. Chao, B. Coifman, and P. Varaiya.
The PeMS Algorithms for Accurate, Real-time
Estimates of G-factors and Speeds from Single-loop
Detectors. In IEEE International Conference on
Intelligent Transportation Systems (ITSC), Oakland,
CA, USA, August 2001.

