
A Demonstration of the
MaxStream Federated Stream Processing System

Irina Botan 1, Younggoo Cho 2, Roozbeh Derakhshan 1, Nihal Dindar 1, Ankush Gupta 1,
Laura Haas 3, Kihong Kim 2, Chulwon Lee 2, Girish Mundada 2, Ming-Chien Shan 2,

Nesime Tatbul 1, Ying Yan 2, Beomjin Yun 2, Jin Zhang 2

1ETH Zurich
{irina.botan, droozbeh, dindarn, guptaan, tatbul}@inf.ethz.ch

2SAP Labs
{young.goo.cho, ki.kim, ch.lee, girish.mundada, ming-chien.shan,

ying.yan, beom.jin.yun, gene.zhang}@sap.com
3IBM Almaden Research Center
laura@almaden.ibm.com

Abstract— MaxStream is a federated stream processing system
that seamlessly integrates multiple autonomous and heteroge-
neous Stream Processing Engines (SPEs) and databases. In this
paper, we propose to demonstrate the key features of MaxStream
using two application scenarios, namely the Sales Map & Spikes
business monitoring scenario and the Linear Road Benchmark,
each with a different set of requirements. More specifically,
we will show how the MaxStream Federator can translate and
forward the application queries to two different commercial SPEs
(Coral8 and StreamBase), as well as how it does so under various
persistency requirements.

I. INTRODUCTION

Stream processing has been widely used in an increasing
number of application domains such as sensor-based mon-
itoring, financial services, operational business intelligence
(BI), and monitoring of computer systems and services. As
the range of these applications widens, a variety of new
requirements in terms of architectural design, functionality,
and performance continues to emerge, which drives further
research in this area.

Despite the availability of several academic and commercial
data stream processing engines (SPEs) today, it remains hard
to develop and maintain stream-based applications. We see
two dominating reasons for this difficulty:

1. Heterogeneity: One major difficulty is the lack of
standards, and the wide and changing variety of application
requirements. Consequently, existing SPEs vary widely in
data and query models, APIs, functionality, and optimization
capabilities. This has led to some organizations using multiple
SPEs, based on their application needs. The heterogeneous and
continuously evolving nature of today’s streaming landscape
not only introduces complexities in choosing the right engine
for a given application, but also makes application devel-
opment and maintenance hard. The need for standardization
has recently been acknowledged and a few initiatives in this
direction have been started (e.g., [1]), but more work is needed
before a full standard can emerge.

2. Stored-Streaming Divide: A second problem is that
management of stored data and streaming data are still mostly

treated as separate concerns, although applications increas-
ingly require integrated access to both. Most SPEs recognize
this need and provide connections to external DBMS engines.
However, this type of SPE-DBMS integration came only as an
afterthought, and therefore, is still supported at a somewhat
artificial level by most of the SPEs except by a recent few
(e.g., Truviso [2]).

We have also examined several real use case scenarios and
benchmarks provided by SAP as well as commonly used by
the research community, and have identified two different
classes of streaming applications.

The first class includes business monitoring applications
such as RFID-based supply-chain management [3] and the
SAP Sales and Distribution benchmark [4]. Such business
monitoring applications may deal with high data volumes,
especially during peak periods; however, data rates and latency
requirements are relatively relaxed. Processing delays on the
order of (tens of) seconds can be tolerated. On the other hand,
due to industry regulations, there may be strict requirements
that no input and output events be lost, forcing all events to
be stored persistently in a database, in addition to whatever
live processing is required.

A second class of streaming applications has more demand-
ing scalability constraints, such as the Linear Road Benchmark
(LRB) for traffic monitoring [5]. The requirements of this class
sharply contrast with the first class: input rates can be much
higher; latency requirements are much stricter (at most a few
seconds); but on the other hand, event persistence is typically
not necessary.

In a recent publication, we have proposed the MaxStream
federated stream processing architecture as a solution approach
to support both of the above classes of applications in the
face of the heterogeneity and stored-streaming challenges [6].
MaxStream introduces a federation layer that sits between
client applications and a collection of underlying SPEs and
database engines. The federator acts as a common gateway
over these engines. As such, it hides the potential differences
of the underlying engines from the application by presenting



a common API and query execution model. It also facilitates
porting the application to another SPE, or extending the
application to meet new requirements, since a different or
additional SPE with the requisite functionality can be added.
Our federation layer further can bridge the stored-streaming
divide as it treats both SPEs and database engines as part of the
federation, and includes its own persistent storage. Persistence
is optional, however, to allow the system to support the higher
scalability requirements of applications such as LRB.

We currently have a working prototype of MaxStream with
several key features that we would like to demonstrate through
two applications scenarios, one from each class described
above. These features include the ability to: (i) accept and push
continuous queries down to a selected SPE, (ii) pass input data
feeds through to the SPE, (iii) make the result streams received
from the SPE available to multiple applications, (iv) provide
optional persistence mechanisms for input and output streams
within the federator, and (v) process stream-table joins within
the federator. It is important to note that all of these features
are supported in a transparent manner, hiding the underlying
system heterogeneity. For example, we can currently plug in
two different commercial SPEs under MaxStream (Coral8 [7]
and StreamBase [8]), behind a common client interface.

In this demonstration proposal, we first present an archi-
tectural overview of our MaxStream system, highlighting the
features to be presented during the demonstration. Then we
summarize two application scenarios, namely Sales Map &
Spikes and the Linear Road Benchmark, with details on how
they will be used to showcase the major technical features of
MaxStream, and we conclude.

II. MAXSTREAM OVERVIEW

In this section, we will provide an overview of the
MaxStream federated stream processing architecture, focusing
on its key design decisions and features. We refer the interested
reader to our technical report for further system implementa-
tion details [6].

The MaxStream Federator has been designed as a middle
layer between the client applications and a collection of
streaming engines and databases. The key high-level design
ideas are that (i) MaxStream provides its users with a uniform
interface for queries and data, shielding them from the details
of multiple data processing systems that may be running un-
derneath; (ii) the federator has been designed as an extension
to the relational database infrastructure, enabling the reuse of
the existing robust support for SQL, transactions, persistence,
as well as any federation features that may already be avail-
able; and (iii) MaxStream follows a lean design that provides
“just enough” streaming functionality within the federator
layer so as to leverage the capabilities of the underlying SPEs
and to avoid overhead.

Though our design is general enough to be implemented on
any relational database platform, we have chosen to build the
federator on top of the SAP MaxDB relational database by
extending its existing federation capabilities [9]. We leverage
the basic architecture of the SAP MaxDB federator, while

Fig. 1. MaxStream Federator Architecture

adding the required extensions for input and output data
streaming mechanisms, and for query language parsing and
translation support for continuous queries.

Figure 1 shows the main architectural components of
MaxStream. In our initial implementation, we focused on
getting the basic MaxStream architecture working and not on
advanced features like query optimization. Hence, we currently
reuse the Query Rewriter and the Query Optimizer modules
without much change. On the other hand, we made major
extensions to the rest of the components as explained next.

A client application submits queries in our working
MaxStream Federator Language, which is an extension of
SQL with continuous querying and windowing constructs.
It essentially allows the application to read and write from
streams, and permits joins between a stream and one or more
static tables. Note that our language syntax has been evolving
as we make progress in the formal query model that we have
been creating [10]. The SQL parser was properly extended to
recognize our current language extensions. After by-passing
the Query Rewriter and the Query Optimizer, the Query
Executer passes the complete continuous query plan directly
to the SQL Dialect Translator, which in turn translates the plan
into the streaming SQL dialect of the external SPE that will
actually execute the query. Thus, the SQL Dialect Translator
has also been extended. The Query Executer receives the
translated query back and sends it to the associated SPE
through a Data Agent. As shown in Figure 1, the Data Agent
is the bridge for all control messages exchanged and all input
streams forwarded to the SPE. The output streams from the
SPE are written directly into SAP MaxDB tables through an
ODBC connection from the SPE into the SAP MaxDB engine,
to be presented back to the client application.

There are two alternative ways of streaming inputs in
MaxStream: (i) If the input events are to be persisted, they
are first materialized in a relational table in MaxStream before
they are streamed into the SPE using the ISTREAM operator



[11]. (ii) If there is no persistence requirement, a high-speed
in-memory queue is used to pass data through to the SPE.

A symmetric functionality in the federator is the ability
to pass outputs received from the underlying SPEs to the
corresponding client applications. This can also be done in
two alternative ways: (i) If the output stream is to be persisted
within the federator, it is first inserted into a special “event
table” inside SAP MaxDB. Then the client application can
continuously receive results from the event table through
a novel mechanism that we have implemented called the
“Monitoring Select”. (ii) If there is no persistence requirement,
the event table is simply created as a SAP MaxDB in-memory
table, on which the monitoring select mechanism is used as
described above.

Finally, the MaxStream Federator can also conveniently
support hybrid queries over streams and tables, building on
the existing relational joining mechanisms and the input/output
streaming mechanisms that we have added on top.

III. DEMONSTRATION DETAILS

In order to demonstrate the key features of the MaxStream
system, we will use two application scenarios: Sales Map &
Spikes, and the Linear Road Benchmark. The former is a
business monitoring application that is inspired by the SAP
Sales and Distribution Benchmark (SD) 1 and several other
operational BI applications that we have studied [12], and the
latter is a road traffic monitoring benchmark developed and
commonly used by the academic community for complex-
ity and performance measurements [5]. As such, these two
applications match very well with the two typical classes of
applications that we have described in Section I.

A. Scenario #1: Sales Map & Spikes

Sales Map & Spikes depicts the scenario of a large in-
ternational company with many locations worldwide, each
with multiple sources of raw operational data. In particular,
each location is constantly dealing with new orders, creating
invoices, and scheduling deliveries in its geography. An SPE
installed at each site keeps track of local aggregate sales
volumes and inventory on a minute-by-minute basis, while the
corporate headquarters needs to monitor the overall business
by maintaining a map of its sites to track the total hourly
sales by product and region. In a potentially heterogeneous
environment, it is a real challenge to serve this application.
We will show that our MaxStream Federator can address the
challenge.

For example, let us focus on the site in Rome. Using
our federator, the map application poses a continuous query
against the Rome site’s orders; the results of that query would
update Rome on the map. A second application checks for
spikes in the sales volume, notifying an executive in Rome
when hourly sales exceed a certain limit. Note that the only
functionality needed in the federator for this scenario is the

1The SAP SD Benchmark is one of the most widely accepted server benchmarks. For
example, in 2008, 83 SAP SD Benchmark results were certified, while 17 TPC-C results
and 14 TPC-E results were certified [4].

ability to push a continuous query down to an SPE, to pass
the input data feed through to the SPE, and to make the
result stream received from the SPE available to multiple
applications. Headquarters may also want to keep a permanent
record of the orders (for regulatory reasons) or of the results
(for trending). In such cases, the federator also needs to be
able to persist the input or output streams.

Figure 2 illustrates the scenario for the Sales Map &
Spikes application. All the DDL and DML statements are
submitted to MaxStream as a single module. Once MaxStream
receives a module it should identify which set of queries must
be run inside MaxStream and which ones must be pushed
to the underlying SPE. In addition to any regular database
tables (Products), it first creates the tables (OrdersTable, Total-
POrdersTable, and TotalSalesTable) in which input and output
streams will be kept persistently inside MaxStream. All the
CREATE INPUT / OUTPUT STREAM statements and the
continuous queries have to be pushed to the SPE after being
translated into the SPE’s SQL dialect by our SQL Dialect
Translator. The INSERT INTO statement is used to populate
the input streams (OrdersStream, POrdersStream), which will
be feed to the SPE using the ISTREAM operator over the
corresponding MaxStream tables. Continuous queries which
calculate aggregates over the sales orders for the last hour
will be sent to the SPE, and their results (TotalSalesStream,
TotalPOrdersStream) will be streamed back into the corre-
sponding event tables (TotalSalesTable, TotalPOrdersTable).
In order to notify the client application of the resulting sales
events, Monitoring Select operators are used.

One of the main features of MaxStream is the ability to
support hybrid continuous queries that require joins between
streams and database tables. This is also illustrated in our
example scenario above as part of the second continuous
query, where we continuously calculate the hourly sum of
sales orders for each product sold at a location. For this
query to work, the input stream which is persisted in the
OrdersTable, must be first ISTREAM’ed and joined with the
Products dimension table that is also kept inside MaxStream.
Then the resulting POrdersStream in the SPE will be populated
using the INSERT INTO statement. After the corresponding
continuous query is run on POrdersStream in the SPE, the
resulting TotalPOrdersStream can be written into the Total-
POrdersTable event table within MaxStream, from where the
client can receive the results via a Monitoring Select. Though
not shown in the figure, a similar hybrid join could also be
easily performed between a MaxStream output stream and a
static table for enriching the output before presenting to the
client.

B. Scenario #2: Linear Road Benchmark

Linear road is a benchmark for data stream management
systems [5]. It describes a traffic management scenario in
which the tolls for a highway system are dynamically com-
puted based on the utilization of those highways and the
occurrences of accidents. The input data for LRB consists
of car position reports (each car reporting every 30 sec-



Fig. 2. Sales Map & Spikes Demonstration Scenario

onds) and query requests of the following types: (i) Accident
Notification, (ii) Toll Notification, (iii) Balance Query, (iv)
Daily Expenditure Query, and (v) Travel Time Estimation. The
measure of this benchmark is given by Load, representing
the number of highways that can be handled by the stream
processing engine. A certain load level is considered to be
achieved when all the queries involved in the benchmark
are answered correctly within at most 5 seconds after the
corresponding query request has been entered into the system.

We have chosen LRB as a demonstration scenario since it
is a challenging benchmark in terms of query semantics and
complexity, and because of its strict requirements in terms
of correctness and performance. Our implementation of LRB
is composed of 23 DML statements for the set of queries
required by the benchmark. Most of these queries use different
combinations of windowing strategies like: time- and count-
based sliding or tumbling windows on partitioned or non-
partitioned input data. In both scenarios, client application
submits a set of DDL statements and continuous queries as
well as input events to MaxStream, then MaxStream acts as
the gateway to the underlying SPEs. In a recent paper, we have
shown that MaxStream using a commercial SPE can support
a load factor of 4.0, while the same SPE on its own can also
support up to 4.0 [6]. This shows that MaxStream’s overhead
is acceptable.

In this demo, however, our goal is not to show our LRB
performance. We will rather use the benchmark to show
the degree of query complexity that we can support in our
federator. Also, different from the business scenario, LRB does
not require event persistence; thus this scenario will be ideal
to showcase the transient input/output streaming features of
MaxStream. Even though we have implemented LRB in its
entirety [6], in this demonstration for practical reasons, we

intend to show a smaller subset of it (a few minutes worth of
input data, fixed load factor, Toll Notifications query). We are
omitting the scenario figure for LRB due to space limitations;
the general setup is similar to that of Figure 2.
Acknowledgements. This work has been supported in part by
the following grants: Swiss NSF NCCR MICS 5005-67322,
Swiss NSF ProDoc PDFMP2-122971/1, and ETH Zurich
Enterprise Computing Center (ECC) SAP industrial partner
grant DE-2008-022.

REFERENCES

[1] S. Zdonik, N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom,
H. Balakrishnan, M. Cherniack, U. Cetintemel, and R. Tibbetts, “To-
wards a Streaming SQL Standard,” in VLDB Conference, 2008.

[2] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky,
and N. Thombre, “Continuous Analytics: Rethinking Query Processing
in a Network-Effect World,” in CIDR Conference, 2009.

[3] “SAP Real-World Awareness Forum,” http://www.sap.com/about/
company/research/irf/2009/endtoend/index.epx.

[4] “SAP Sales and Distribution (SD) Benchmark,” http://www.sap.com/
solutions/benchmark/sd.epx.

[5] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts, “Linear Road: A Stream Data
Management Benchmark,” in VLDB Conference, 2004.

[6] I. Botan and et al., “Design and Implementation of the MaxStream
Federated Stream Processing Architecture,” ETH Zurich, Tech. Rep.,
June 2009, http://www.systems.ethz.ch/research/projects/maxstream/
maxstream-federator-tr.pdf.

[7] “Coral8, Inc.” http://www.coral8.com/.
[8] “StreamBase Systems, Inc.” http://www.streambase.com/.
[9] “SAP MaxDB - The SAP Database,” http://maxdb.sap.com/.

[10] I. Botan and et al., “Explaining the Execution Semantics of Slid-
ing Window Queries over Data Streams: A Work in Progress Re-
port,” ETH Zurich, Tech. Rep., June 2009, http://www.systems.ethz.ch/
research/projects/maxstream/maxstream-model-tr.pdf.

[11] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous Query
Language: Semantic Foundations and Query Execution,” VLDB Journal,
vol. 15, no. 2, 2006.

[12] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, L. Haas, K. Kim, and
N. Tatbul, “Federated Stream Processing Support for Real-Time Busi-
ness Intelligence Applications,” in VLDB BIRTE Workshop, 2009.


