
Visual Exploration of Time Series Anomalies
with Metro-Viz

Philipp Eichmann
Brown University

peichmann@cs.brown.edu

Franco Solleza
Brown University

fsolleza@cs.brown.edu

Nesime Tatbul
Intel Labs and MIT
tatbul@csail.mit.edu

Stan Zdonik
Brown University
sbz@cs.brown.edu

ABSTRACT
This demo presents a novel data visualization solution for ex-
ploring the results of time series anomaly detection systems.
When anomalies are reported, there is a need to reason about
the results. We introduce Metro-Viz – a visual tool to assist
data scientists in performing this analysis. Metro-Viz offers
a rich set of interaction features (e.g., comparative analysis,
what-if testing) backed by datamanagement strategies specif-
ically tailored to the workload. We show our tool in action
via multiple time series datasets and anomaly detectors.

CCS CONCEPTS
• Information systems → Data management systems;
Temporal data;Mainmemory engines;Database web servers;
• Human-centered computing → Interactive systems
and tools; Graphical user interfaces; Visualization; • Com-
puting methodologies →Machine learning.

KEYWORDS
time series; anomaly detection; visual analysis

ACM Reference Format:
Philipp Eichmann, Franco Solleza, Nesime Tatbul, and Stan Zdonik.
2019. Visual Exploration of Time Series Anomalies with Metro-Viz.
In 2019 International Conference on Management of Data (SIGMOD
’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3299869.3320247

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320247

1 INTRODUCTION
Motivation. A broad range of applications from the Inter-
net of Things (IoT) to DevOps monitoring involve a large
number of sources generating huge volumes of time series
data that collectively offer a view of the application space.
Often, the application is not interested in the normal case,
but rather, needs to be alerted to the abnormal case. These
abnormal events are termed anomalies, and the algorithms
that find them fall under the category of anomaly detection
(AD) [6]. Time series AD systems are typically built based
on machine learning (ML) models trained with previously
collected datasets. This process is inherently an iterative and
human-in-the-loop (HIL) process for various reasons:
Anomaly detection is a highly domain-specific problem. What
constitutes an anomaly changes greatly from one application
domain to another. This bears the need to develop, compare,
and choose from multiple AD models and algorithms to find
one that best suits a given application.
Time series anomalies can be complex. They typically fall
under the category of collective and contextual anomalies
[6], exposing themselves at different time granularities or
aggregations. Anomalous patterns may vary over time due
to the temporal and dynamic nature of the data. Multiple,
potentially correlated attributes may require multi-variate
analysis. Overall, interpreting and reasoning about time se-
ries anomalies is not a straightforward task.
Data or training meta-data can be noisy/unavailable. In most
domains, anomalies are relatively rare or unique events, mak-
ing it challenging to collect anomalous datasets. Often, train-
ing datasets capture a small number of anomalous patterns,
which may be improperly labeled. In IoT, the presence of
noisy sensor data worsens the issue. As a result, labels may
be wrong, incomplete, ambiguous, or missing all together,
misguiding the ML process. Human intervention can go a
long way in quickly identifying and fixing such issues.
Pre-deployment testing/validation of anomaly detectors is safety-
critical. Prediction accuracy is key in safety-critical domains
(e.g., autonomous driving, patientmonitoring).Multiple anom-
aly detectors must be run with multiple test datasets; their

https://doi.org/10.1145/3299869.3320247
https://doi.org/10.1145/3299869.3320247

Figure 1: Architectural Overview

outputs must be compared; their statistical accuracies must
be evaluated and cross-validated. Only after that can they be
practically deployed in prediction serving systems.
Approach. To deal with these challenges, we believe that
it is essential to build tools that will enable data scientists
to productively interact with time series AD systems. In
particular, tools for visually analyzing and experimenting
with results of anomaly detectors can not only help compare
and evaluate different algorithmic options, but also provide
insights about anomalous patterns and what real-world phe-
nomena they may correspond to. In this demo, we present
Metro-Viz – a visual tool that we built for this purpose.
Novelty. Visual time series exploration has been extensively
studied by both database and visualization communities.
The most relevant examples include: RINSE for adaptive
index-based data series exploration [15], Data Polygamy for
exploring spatio-temporal datasets [5], ONEX for analyz-
ing similarity-based time series clustering [12], Qetch for
sketch-based time series querying [10], Track Xplorer for
visual analysis of sensor activity tracking classifiers [3], and
Steiger et al.’s visual pattern analysis system for sensor net-
work anomalies [13]. The key novelty of Metro-Viz lies in its
special focus on supporting data science tasks involved in
building robust time series AD systems. It has been directly
motivated by our own recent research on developing and
evaluating such systems [8, 14], and builds on our past ex-
perience with data management architectures for IoT [11].

2 METRO-VIZ PROTOTYPE
We designed Metro-Viz based on the following goals:
Visual Exploration of Anomalies: Metro-Viz’s overarching
goal is to allow users to apply arbitrary AD algorithms on
time series data and explore their results.
Statistical Accuracy Evaluation: Visual exploration comple-
ments, not replaces, statistical measurement when evaluating
anomaly detectors. Thus, Metro-Viz should provide support
for both forms of evaluation.
Interactive Hypothesis Testing: Interactive hypothesis testing
allows users to simulate and understand complex scenarios
not present in the data. Metro-Viz users should be able to test

“what-if” scenarios to incorporate their domain expertise or
expectations in their workflow.
Scalable Interaction:Metro-Viz users should experience the
same level of interactivity over any arbitrary portion of the
time series of interest at multiple time granularities [4].
Extensible Architecture: To manage the diversity of the do-
main, Metro-Viz should support multiple anomaly detectors,
evaluators, and time series data in a modular fashion.

To realize these goals, we treat both usability and scalabil-
ity as first-class citizens. As in Figure 1, Metro-Viz consists
of two core components: the Metro-Viz Client, managing the
interface to the user, and the Metro-Viz Server, managing
access to all required data. We describe these in detail next.

2.1 Metro-Viz Client: User Interface
Figure 2 shows a screenshot from the current prototype of
Metro-Viz. It provides the following UI features:
Time Series Viewer.After selecting a dataset from theMain
Menu (Figure 2A), the data is displayed as a line graph in
the Time Series Viewer (Figure 2B). The user can slide the
window along the Time Axis (Figure 2C) to explore the line
graph. S/he can also view the data at different levels of detail
by selecting a time granularity and an aggregation function
from the Main Menu (e.g., hourly sums). S/he can then apply
one or more anomaly detectors on the selected data and
granularity, by choosing them from theMainMenu. Detected
anomalies are highlighted in the Time Series Viewer and
hovering over each displays its properties (Figure 2D).
Set Operators and Consensus. The user can analyze mul-
tiple anomaly detectors’ results using the Consensus Slider
(Figure 2E) and the Set Operation Widget (Figure 2F). The
Consensus Slider restricts the displayed anomaly ranges to
only those above a certain level of agreement among the
detectors, (e.g., ranges detected as anomalies by at least 5/7
detectors, see Figure 2H). The Set Operation Widget is for
comparing the results of two sets of detectors using a Venn
diagram that indicates the subsets to display (see Figure 2I).
Statistical Evaluation. The user can view summarized sta-
tistics in the Statistical Evaluation (Figure 2G,J). In presence
of labeled data, s/he can also select accuracy metrics (e.g.,
precision/recall/f-score [14]) to evaluate each selected detec-
tor. Real anomaly ranges can be displayed in the Time Series
Viewer in a similar manner as the predicted anomaly ranges.
Interactive Hypothesis Testing. Users can further under-
stand anomaly detectors’ characteristics by modifying the
data displayed in the Time Series Viewer. A user can select
several data points and change the amplitude of the selected
subsequence. Similar to TimeSketch [7], users can also select
a subsequence in the Time Series Viewer and replace it with
a hand-drawn sequence (Figure 2K). These actions cause
Metro-Viz to re-apply all selected anomaly detectors.

Figure 2: Left: Screenshot of Metro-Viz’s User Interface, Right: Selected User Interface Components

2.2 Metro-Viz Server: Data Management
Metro-Viz’s UI embodies a unique workload that defines the
design space of our data management strategies to ensure
a usable and scalable interaction experience. Most funda-
mentally: (i) data is accessed in units of time windows, and
(ii) what the user is mostly interested in seeing is one ac-
tive window at a time into the time series through the Time
Series Viewer. A window is a contiguous subsequence of a
time series and has four basic properties: (i) the start time
of the window, (ii) the granularity of each observation in
the window (e.g., hourly), (iii) the aggregation function used
to generate each such observation (e.g., hourly sum), and
(iv) the total number of observations in the window (e.g.,
24 hourly sums). Each of the server components manages
these windows based on the requests it receives from the
UI. For example, the strategies used by the Interaction Man-
ager when a user pans from left to right in the Time Axis
differ from those used when the Detector Manager begins
detecting anomalies. These strategies are described below.
Interaction Manager (IM). User actions in the Time Series
Viewer and the Time Axis are managed by the IM. When the
user pans along the Time Axis, the IM infers the four proper-
ties of the windows it provides to the Client. It then requests
these windows from the Storage Manager (SM). Depending
on user’s behavior, it can request the SM to pre-fetch or cache
certain windows. For example, when a user starts panning
in one direction, the IM requests to pre-fetch windows in
that direction. If the user modifies data during hypothesis
testing, the IM generates a new version of the window which

is passed to the SM to cache. If this is performed while detec-
tors are selected, the window is also passed to the Detector
Manager for re-detection.
Detector Manager (DM). When a user selects a detector
from the Main Menu, the DM manages both the available
detectors and windowmanagement strategies for the current
AD task. The DM allows users to plug in different anomaly
detectors through a simple interface. These detectors are
also shown in the Main Menu. Because AD can be an expen-
sive task, the DM performs on-demand detection: it does not
greedily perform AD on the entire time series data; instead, it
performs detection on the current window immediately and
proceeds to detect on windows close by, moving further out.
The DM performs this detection in a separate thread for each
detector selected. If the user jumps to a location in the time
series where detection has not been performed, the DM im-
mediately aborts its current detection task and restarts at the
new window. Similarly, if the user modifies the data through
the Time Series Viewer, the DM only runs re-detection on the
windows affected by this modification. The DM determines
the windows it needs based on the properties of the detector.
For example, some detectors consider an interval prior to an
observation in determining if that observation is anomalous.
For each window, the DM returns a result window of boolean
values indicating if an observation is anomalous. These are
stored as highly compressed and computationally efficient
bitmaps, and passed to the Anomaly Manager.
Anomaly Manager (AM).When the user compares results
of anomaly detectors using the Consensus Slider or the Set
Operation Widget, the bitmap representation allows the AM

to perform highly efficient set operations. Bitmaps also fa-
cilitate calculating the properties of the anomaly ranges for
statistical evaluation. For example, in presence of labeled
data (also stored as bitmap windows), accuracy statistics can
be calculated from the result of bit-wise operations between
the result windows and the labeled data windows. These
operations are once again performed on each window, be-
ginning with the window being displayed in the Time Series
Viewer to maintain interactive latency in the UI.
Storage Manager (SM). All windows and result windows
are managed by the SM. It is the only component that ac-
cesses the raw on-disk time series data when required. It
generates windows from the time series data and pre-fetches
and caches these based on the other components’ needs. Over
time, the SM builds a collection of windows of the time series
at various granularities and aggregations. These windows
serve as pre-aggregated views of the time series data. The
SM then re-uses these windows where possible. For example,
if the in-memory cache already contains hour-granularity
windows aggregated by summing minute-granularity values,
the SMwould prefer calculating day-granularity windows by
summing the hourly windows, instead of using the minutely
values or the data on disk. When the SM’s cache is full, it
flushes these windows to on-disk storage. By not discarding
any window, the SM minimizes the need to access the raw
time series data as well as re-calculation.

3 DEMONSTRATION SCENARIO
Wewill demonstrateMetro-Viz using several domain-specific
datasets. First, we will guide users through a hypothetical
scenario. The user can then examine any of the available
datasets and detectors in Metro-Viz to gain a sense of its
usability and scalability.
In the guided demonstration, we use the NYC taxi data,

simulating a smart city application that shows the number
of pick-ups per minute for a six-month period starting in
January 2015 [2]. We use a labeled subset of this dataset to
evaluate the detected anomalies [1].

Let us now walk through a typical iterative AD workflow,
where a civic studies researcher is looking at the total passen-
ger count over time in New York City. The researcher wants
to compare various AD algorithms and reason about specific
anomalies. In this scenario, she works with a dataset and two
LSTM-based anomaly detectors, Greenhouse (zero-positive)
[8] and LSTM-AD (not zero-positive) [9], and tries to answer
the following questions: How well do the two detectors find
the interesting elements in the data? Howmany of the anom-
alies are FPs? Are there any correlations between the results
of the two detectors?

She first explores the data for trends or periodicity, getting
an intuitive sense of what the data looks like. She pans along

the Time Axis, observing these trends in the Time Series
Viewer. She does the same at the granularity of a day. She
then selects two detectors and observes the detected anom-
alies. To compare the detectors, she assigns each to a set in
the Set Operation Widget and selects one set, then the other.
Doing so updates the highlighted anomalies.

She then looks at Statistical Evaluation to gain an overall
sense of the detectors’ performance. She notices that Green-
house seems less sensitive to anomalies with small amplitude
ranges, and that LSTM-AD is more likely than Greenhouse to
detect short anomalies. She decides to test this by modifying
a non-anomalous range to be similar in shape and length to
the anomalies detected by LSTM-AD. Similarly, she simulates
an anomaly detected by Greenhouse in a non-anomalous
range. Curious whether the anomalous days remain at the
hourly granularity, she clicks on the hourly granularity caus-
ing Metro-Viz to apply the detectors to hourly data. With this
iterative workflow, she can begin exploring the detectors,
granularity, and aggregation that best suit her application.

ACKNOWLEDGMENTS
We thank Junjay Tan for his contribution. This research has
been funded in part by Intel and by NSF grant IIS-1514491.

REFERENCES
[1] [n. d.]. Numenta Anomaly Benchmark. http://github.com/numenta/.
[2] [n. d.]. NYC OpenData. http://opendata.cityofnewyork.us/.
[3] Marco Cavallo and Cagatay Demiralp. 2017. Track Xplorer: A System

for Visual Analysis of Sensor-based Motor Activity Predictions. In
IEEE VIS DSIA Workshop.

[4] Sye-Min Chan et al. 2008. Maintaining Interactivity While Exploring
Massive Time Series. In IEEE VAST Symposium.

[5] Yeukyin Chan et al. 2017. Querying and Exploring Polygamous Rela-
tionships in Urban Spatio-Temporal Data Sets. In ACM SIGMOD.

[6] Varun Chandola et al. 2009. Anomaly Detection: A Survey. ACM
Computing Surveys 41, 3 (2009).

[7] Philipp Eichmann et al. 2015. Evaluating Subjective Accuracy in Time
Series Pattern Matching using Human-Annotated Rankings. In ACM
IUI Conference.

[8] Tae Jun Lee et al. 2018. Greenhouse: A Zero-Positive Machine Learning
System for Time Series Anomaly Detection. In SysML Conference.

[9] Pankaj Malhotra et al. 2015. Long Short Term Memory Networks for
Anomaly Detection in Time Series. In ESANN Symposium.

[10] Miro Mannino and Azza Abouzied. 2018. Qetch: Time Series Querying
with Expressive Sketches. In ACM SIGMOD Conference.

[11] John Meehan et al. 2017. Data Ingestion for the Connected World. In
CIDR Conference.

[12] Rodica Neamtu et al. 2017. Interactive Time Series Analytics Powered
by ONEX. In ACM SIGMOD Conference.

[13] Martin Steiger et al. 2014. Visual Analysis of Time Series Similarities
for Anomaly Detection in Sensor Networks. Computer Graphics Forum
33, 3 (2014).

[14] Nesime Tatbul et al. 2018. Precision and Recall for Time Series. In
NeurIPS Conference.

[15] Kostas Zoumpatianos et al. 2015. RINSE: Interactive Data Series Ex-
ploration with ADS+. PVLDB 8, 12 (2015).

http://github.com/numenta/
http://opendata.cityofnewyork.us/

	Abstract
	1 Introduction
	2 Metro-Viz Prototype
	2.1 Metro-Viz Client: User Interface
	2.2 Metro-Viz Server: Data Management

	3 Demonstration Scenario
	Acknowledgments
	References

