Load Shedding on Data Streams

Nesime Tatbul

Brown University

Ugur Cetintemel
Brown University

tatbul@cs.brown.edu ugur@cs.brown.edu

Mitch Cherniack

Brandeis University

Stan Zdonik

Brown University

sbz@cs.brown.edu mfc@cs.brandeis.edu

Michael Stonebraker
M.LT.

stonebraker@lcs.mit.edu

1 Introduction

A data stream is a continuous and typically rapid feed of data
items from a variety of sources like sensors, geo-positioning
devices, or computer programs. Many new applications call
for real-time monitoring on data streams. Data Stream Man-
agement Systems have emerged to enable efficient processing
of data streams to serve the needs of such applications.

One of the major challenges in data stream management
is to support real-time processing with limitations on system
resources like CPU, memory, or bandwidth. With a large
number of data streams and continuous queries, it is possi-
ble to experience shortage in resources as data arrival rates
unpredictably increase. This will cause latency in processing.
To avoid late results, the system must shed some of the load
in a controlled fashion. Thus, load shedding is the process of
dropping excess load from the system when the demand on re-
sources is above the system capacity. Load shedding reduces
resource requirements by dropping data, thereby sacrificing
the accuracy of the query answers. The main goal is to mini-
mize this degradation in accuracy.

2 Load Shedding in Aurora

Aurora Data Stream Management System [2] manages the
processing of data streams by a query network — a collection
of continuous queries, each of which consists of a sequence
of operators. We model load shedding as the automatic in-
sertion of drop operators into a running network [9]. A drop
operator transmits fewer output tuples than it gets as input.
We consider two fundamental types of drop operators. Ran-
dom drop discards a specified fraction of its inputs randomly,
whereas semantic drop filters out certain input values based
on a predicate.

The load shedding process consists of three fundamental
decisions: (1) when, (2) where in the query network, and (3)
how much load to shed. In addition to various system statistics
such as operator costs and selectivities, we exploit application-
specific Quality of Service (QoS) information to make these
decisions. We model QoS as a set of functions that relate a
parameter of the output to its utility. The two main functions
we consider in load shedding are (1) value-based QoS that
shows the importance of the values in the output space, and
(2) loss-tolerance QoS that maps the fraction of data delivered
to its utility.

Load shedding is an optimization problem and can be for-
mally stated as follows. We are given a query network NV,
a set of input streams I with certain data arrival rates,
and a processing capacity C for the system that runs N.
Let N(I) indicate the network N operating on inputs I,
and Load(N(I)) represent the load as a fraction of the to-
tal capacity C that network N(I) presents. Load shedding
is typically invoked when Load(N(I)) > C. The problem
is to find a new network N’ that is derived from network
N Dby inserting drops along existing arcs of N such that
Load(N'(I)) < C and Usceuracy(N(I)) — Unccuracy (N’ (I)) is
minimized. Ugccuracy is the aggregate utility that is measured
from the loss-tolerance QoS graphs of the application set.
Uaccuracy(IN(I)) represents the measured utility when there
is no load shedding (i.e., there are no inserted drops). Thus,
Usccuracy(IN(I)) — Usccuracy (IN' (I)) is the loss of utility intro-
duced by load shedding. It is this quantity that we want to
minimize.

One important property of our load shedding technique is
that it is designed to be as general to work with any reasonable
scheduling algorithm. The basic assumption is that any cycles
that are recovered as a result of load shedding are used sensibly
by the scheduler.

We will now briefly summarize our approach to each of the
major decisions in load shedding.

1. Determining when to shed load. We continuously eval-
uate the current processing load of the query network. If the
load is above the capacity, the excess needs to be shed. Oth-
erwise, unnecessary drops, if there are any, must be removed.
Using operator costs and selectivities, we compute a load co-
efficient for each input stream. This coefficient represents the
number of processor cycles required to push a single input tu-
ple through the network. At run-time, these coefficients are
instantiated by the input rates to compute the actual load of
the network.

2. Determining where to shed load. Tuples can be
dropped at any point in the processing network. There are
two properties that make a point more desirable than the oth-
ers: (1) maximal load gain, and (2) minimal aggregate utility
loss. Dropping tuples earlier in the network avoids wasting
work and saves more processing cycles. Dropping them from
arcs shared among multiple applications may result in more
utility loss. Our technique first identifies potential drop loca-
tions in the query network. We compute loss/gain ratios for
each of these locations. In order to guarantee minimal loss per
maximal gain, drops should be inserted to these locations in



the order of increasing ratios. Our technique for deriving loss-
tolerance QoS from value-based QoS enables a unified treat-
ment for random and semantic drops in determining where
and how much load to shed.

3. Determining how much load to shed. Once we have
determined where to insert a drop operator, we must decide
the magnitude of that drop. In the case of a random drop,
this involves deciding on the percentage of tuples to drop. In
the case of a semantic drop, we must also decide which tuples
to discard (i.e., the form of the predicate). We need to shed
as much load as needed to recover the cycles that exceed the
processing capacity. The decision of how much load to shed
is made interleaved with the decision of where to shed load.
Each drop location can save cycles up to a certain amount. We
greedily choose drop locations in an order to minimize utility
loss while maximizing cycles saved until the excess load is
removed. For semantic drops, after the amount of drop has
been decided, the filtering predicate is determined from value-
based QoS and output value histograms such that the lowest
utility value intervals are dropped first.

The run-time overhead can be reduced when operator costs,
selectivities, histograms for output values and an estimation
about proportions among input data rates are known in ad-
vance. In this case, our approach statically builds a data struc-
ture called the Load Shedding Road Map (LSRM). LSRM
materializes a sequence of drop insertion plans along with the
load savings each provides. At run-time, when an overload is
detected, we simply search the LSRM to find a plan for recov-
ering the required number of processor cycles. As statistics
change, the order of loss/gain ratios of the drop locations may
change. In this case, the drop insertion plans in the LSRM
may start to deviate from optimal, i.e., they may not guaran-
tee minimal utility loss any more for some levels of overload.
Thus, there is a tradeoff between an optimal LSRM and the
overhead of maintaining it. Our approach can be tuned to ad-
just the level of tolerance for non-optimality in exchange for
better run-time performance.

Load shedding with random drops and semantic load shed-
ding are alternatives for each other. If value-based QoS and
output value histograms are available, semantic load shedding
should be used as it causes less value utility loss [9].

3 Related Work

Load shedding is not a new idea. It has been previously stud-
ied in the context of networking and multimedia streaming.
To control congestion in computer networks, localized algo-
rithms are applied at individual network nodes, mostly based
on queue sizes, timestamps, or sender-specified priority bits
[10]. In contrast, our algorithm is based on global knowledge
about a query network and provides an end-to-end solution.
This solution takes applications’ QoS specifications as well as
actual message contents into account. In multimedia stream-
ing, the focus has been on adjusting the amount of data trans-
mission for effective network bandwidth usage. Both network
and application layer techniques have been proposed [3].
Load shedding is essentially an approximate query answer-
ing technique. Various techniques for producing approximate
answers in exchange for faster execution have been studied in
the database literature before [1]. However, in the context of
data streams, approximation has to be applied as data con-

tinues to arrive. The process is also more dynamic in that
the degree of approximation has to be adjusted as the differ-
ence between supply and demand on resources changes. More
recent work have explored approximate query processing tech-
niques on data streams both for aggregation queries [5, 6] and
sliding window joins [4, 7]. We not only consider individual
operations, but also complete query networks. These networks
may be composed of a variety of operators and may serve mul-
tiple applications with shared operations. Also, our approach
covers the complete process from detection of the overload to
its resolution. We originally proposed to do semantic load
shedding by filtering data that has lower utility to the appli-
cations [2]. Das et.al. have a different view of semantic load
shedding, concentrating on join processing and the semantic
distance of the approximate answer [4]. Dropping tuples when
input rate exceeds the service rate has also been discussed in
rate-based evaluation of window joins [7]. In this work, the
focus has been on random drops rather than semantic ones.
The STREAM system uses several approximation techniques
on stream queries [8]. Synopses are used to reduce memory
requirements of operators in a query plan; random sampling
is used as a means of load shedding. We not only provide
techniques for sampling using random drops but also provide
semantic load shedding based on tuple values.

4 Future Directions

Our agenda for future work includes generalizing our tech-
niques to query networks with more complex operators. We
will also extend our load shedding algorithms for the manage-
ment of other resources like memory.

References

[1] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T.
Ng, V. Poosala, K. A. Ross, and K. C. Sevcik. The New Jer-
sey Data Reduction Report. IEEE Data Engineering Bulletin,
20(4):3-45, 1997.

[2] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Mon-
itoring Streams - A New Class of Data Management Appli-
cations. In VLDB Conference, pages 215-226, Hong Kong,
China, August 2002.

[3] S. Cen, C. Pu, and J. Walpole. Flow and Congestion Control
for Internet Streaming Applications. In Multimedia Computing
and Networking (MMCNJY8), 1998.

[4] A. Das, J. Gehrke, and M. Riedewald. Approximate Join Pro-
cessing Over Data Streams. In ACM SIGMOD Conference,
San Diego, CA, June 2003 (to appear).

[5] J. Gehrke, F. Korn, and D. Srivastava. On Computing Corre-
lated Aggregates over Continual Data Streams Databases. In
ACM SIGMOD Conference, pages 13—24, Santa Barbara, CA,
May 2001.

[6] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing Wavelets on Streams: One-pass Summaries for Ap-
proximate Aggregate Queries. In VLDB Conference, pages
79-88, Roma, Italy, September 2001.

[7] J.Kang, J. Naughton, and S. Viglas. Evaluating Window Joins
over Unbounded Streams. In IEEE ICDE Conference, Banga-
lore, India, March 2003.



(8]

(10]

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query Processing, Approximation, and Resource Management
in a Data Stream Management System. In CIDR Conference,
pages 245-256, Asilomar, CA, January 2003.

N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager.
In VLDB Conference, Berlin, Germany, September 2003 (to
appear).

C. Yang and A. V. S. Reddy. A Taxonomy for Congestion Con-
trol Algorithms in Packet Switching Networks. IEEE Network,
9(5):34-44, 1995.



