
Neo: A Learned Query Optimizer

Ryan Marcus1, Parimarjan Negi2, Hongzi Mao2, Chi Zhang1,
Mohammad Alizadeh2, Tim Kraska2, Olga Papaemmanouil1, Nesime Tatbul23

1Brandeis University 2MIT 3Intel Labs
1{ryan, chi, olga}@cs.brandeis.edu 2{pnegi, hongzi, alizadeh, kraska, tatbul}@mit.edu

ABSTRACT
Query optimization is one of the most challenging problems in
database systems. Despite the progress made over the past decades,
query optimizers remain extremely complex components that re-
quire a great deal of hand-tuning for specific workloads and datasets.
Motivated by this shortcoming and inspired by recent advances in
applying machine learning to data management challenges, we in-
troduce Neo (Neural Optimizer), a novel learning-based query op-
timizer that relies on deep neural networks to generate query exe-
cutions plans. Neo bootstraps its query optimization model from
existing optimizers and continues to learn from incoming queries,
building upon its successes and learning from its failures. Further-
more, Neo naturally adapts to underlying data patterns and is robust
to estimation errors. Experimental results demonstrate that Neo,
even when bootstrapped from a simple optimizer like PostgreSQL,
can learn a model that offers similar performance to state-of-the-art
commercial optimizers, and in some cases even surpass them.

PVLDB Reference Format:
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, Nesime Tatbul. Neo: A Learned
Query Optimizer. PVLDB, 12(11): 1705-1718, 2019.
DOI: https://doi.org/10.14778/3342263.3342644

1. INTRODUCTION
In the face of a deluge of machine learning success stories, every

database researcher has likely wondered if it is possible to learn
a query optimizer. Query optimizers are key to achieving good
performance in database systems, and can speed up query execution
by orders of magnitude. However, building a good optimizer today
takes thousands of person-engineering-hours, and is an art only a
few experts fully master. Even worse, query optimizers need to
be tediously maintained, especially as the system’s execution and
storage engines evolve. As a result, none of the freely available
open-source query optimizers come close to the performance of
commercial optimizers offered by IBM, Oracle, or Microsoft.

Due to the heuristic-based nature of query optimization, there
have been many attempts to apply learning to query optimizers.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342644

For example, almost two decades ago, Leo, DB2’s LEarning Opti-
mizer, was proposed [53]. Leo learns from its mistakes by adjusting
its cardinality estimations over time. However, Leo still requires a
human-engineered cost model, a hand-picked search strategy, and
a lot of developer-tuned heuristics. Importantly, Leo only improves
its cardinality estimation model, and cannot further optimize its
search strategy based on data (e.g., to account for uncertainty in
cardinality estimates for join order selection).

More recently, the database community has started to explore
how neural networks can be used to improve query optimizers [36,
60]. The majority of this work has focused on replacing a compo-
nent of the optimizer with learned models. For example, DQ [25]
and ReJOIN [35] use reinforcement learning combined with tradi-
tional human-engineered cost models to automatically learn search
strategies and explore the space of possible join orderings. These
papers show that learned search strategies can outperform conven-
tional heuristics on a given cost model. Moreover, in addition to
the cost model, these systems still rely on heuristics for cardinality
estimation, physical operator selection, and index selection.

Other approaches demonstrate how machine learning can be used
to achieve better cardinality estimates [22, 28, 43, 44]. However,
none demonstrate that their improved cardinality estimations actu-
ally lead to better query plans. It is relatively easy to improve the
average error of cardinality estimates, but much harder to improve
estimations for the cases that actually improve query plans [27].
Furthermore, unlike join order selection, selecting join operators
(e.g., hash join, merge join) and choosing indexes cannot be en-
tirely reduced to cardinality estimation. SkinnerDB [56], showed
that adaptive query processing strategies can benefit from reinforce-
ment learning, but it requires a specialized (adaptive) query execu-
tion engine and cannot benefit from operator pipelining.

In this paper, we present Neo (Neural Optimizer), a learned query
optimizer that achieves similar or improved performance compared
to state-of-the-art commercial optimizers (Oracle and Microsoft)
on their own query execution engines. Given a set of query rewrite
rules to ensure semantic correctness, Neo learns to make decisions
about join order, operator, and index selection. Neo optimizes these
decisions using reinforcement learning, tailoring itself to the user’s
database instance and basing its decision on actual query latency.

Neo’s design blurs the boundaries between the main compo-
nents of a traditional query optimizer: cardinality estimation, the
cost model, and the plan search algorithm. Neo does not explic-
itly estimate cardinalities or rely on hand-crafted cost models. Neo
combines these two functions in a value network, a neural network
that takes a partial query plan and predicts the best expected run-
time that could result from completing this partial plan. Guided by
the value network, Neo performs a simple search over the query
plan space to make decisions. As Neo discovers better query plans,

1705

Neo’s value network improves, focusing the search on better plans.
This subsequently leads to further improvements to the value net-
work, resulting in even better plans, and so on. This value iter-
ation [7] reinforcement learning procedure continues until Neo’s
decision-making policy has converged.

Neo required overcoming several key challenges. First, to auto-
matically capture intuitive patterns in tree-structured query plans,
we designed a value network, a deep neural network model, using
tree convolution [40]. Second, to ensure the value network under-
stands the semantics of a given database, we developed row vectors,
a featurization which represent query predicate semantics automat-
ically by using data from the underlying database. Third, we over-
came reinforcement learning’s infamous sample inefficiency by us-
ing a technique known as learning from demonstration [18,36]. Fi-
nally, we integrated these approaches into an end-to-end reinforce-
ment learning system capable of building query execution plans.

While we believe Neo represents a significant step forward, Neo
still has many important limitations. First, Neo requires a-priori
knowledge about query rewrite rules (to guarantee correctness).
Second, we restrict Neo to select-project-equijoin-aggregate queries.
Third, our optimizer does not yet generalize from one database to
another, as our features are specific to a schema — however, Neo
does generalize to unseen queries (containing any number of known
tables). Fourth, Neo requires a traditional query optimizer to boot-
strap its learning process (although this optimizer can be simple).

Interestingly, Neo automatically adapts to changes in the accu-
racy of its inputs. Further, Neo can be tuned depending on the cus-
tomer preferences (e.g., trade off worst-case performance vs. aver-
age performance), adjustments which are not trivial to achieve with
more traditional query optimizers.

We argue that Neo represents a step forward in building an en-
tirely learned optimizer. To the best of our knowledge, Neo is the
first fully-learned system (modulo query rewrite rules) to construct
query execution plans in an end-to-end fashion (i.e., from query
latency). Neo can already be used to improve the performance
of thousands of applications which rely on PostgreSQL and other
open-source database systems (e.g., SQLite). We hope that Neo
inspires many other database researchers to experiment with com-
bining query optimizers and learned systems in new ways.

In summary, we make the following contributions:
• Neo, an end-to-end learning approach to query optimization, in-

cluding join order, index, and physical operator selection.
• We show that, after training with a sample query workload, Neo

is able to generalize even to queries it has not encountered before.
• We evaluate query encoding techniques and propose a new one,

which implicitly represents correlations within the database.
• We show that, after a short training period, Neo is able to achieve

performance comparable to Oracle’s and Microsoft’s query opti-
mizers on their own respective execution engines.
Next, in Section 2, we provide an overview of Neo’s learning

framework. Section 3 describes how queries and query plans are
represented by Neo. Section 4 explains Neo’s value network, the
core learned component of Neo. Section 5 describes row vectors,
an optional learned representation of the underlying database that
helps Neo understand correlation within the user’s data. We present
an experimental evaluation of Neo in Section 6, discuss related
works in Section 7, and offer concluding remarks in Section 8.

2. LEARNING FRAMEWORK OVERVIEW
We next discuss Neo’s system model, depicted in Figure 1, and

overall reinforcement learning strategy. Neo operates in two phases:
an initial phase, in which expertise is collected from an expert op-
timizer, and a runtime phase, where queries are processed.

Neo

E
xpe

rtise
R

untim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
S

ea
rc

h

Database Execution Engine

V
al

ue
 M

od
el

Prediction

Selected plan

E
xperienc e

Latency

User Query

ro
w

 v
ec

to
rs

Figure 1: Neo system model

Expertise Collection In the first phase, labeled Expertise, Neo gen-
erates experience from a traditional query optimizer, as proposed
in [36]. Neo assumes the existence of a Sample Workload consist-
ing of queries representative of the user’s total workload and of the
underlying engine’s capabilities (i.e., exercising a representative set
of operators). Additionally, we assume Neo has access to a simple,
traditional rule- or cost-based Expert Optimizer (e.g., Selinger [51],
PostgreSQL [3]). Neo uses this optimizer only to create query exe-
cution plans (QEPs) for each query in the sample workload. These
QEPs, along with their latencies, are added to Neo’s Experience
(a set of plan/latency pairs), which are used as a starting point in
the model training phase. Note that the expert optimizer can be
unrelated to the underlying execution engine.
Model Building With the collected experience, Neo builds an ini-
tial Value Model. The value model is a deep neural network de-
signed to predict the final execution time of a given partial or com-
plete plan. We train the value network using the collected expe-
rience in a supervised fashion. This process involves transforming
each collected query into features (Featurizer). These features con-
tain query-level information (e.g., join graph) and plan-level infor-
mation (e.g., join order). Neo can work with a number of differ-
ent featurizations, ranging from simple one-hot encodings to more
complex embeddings (Section 5). Neo’s value network uses tree
convolution [40] to process the tree-structured QEPs (Section 4.1).
Plan Search Once query-level information has been encoded, Neo
uses the value model to search over the space of QEPs (i.e., selec-
tion of join orderings, join operators, and indexes) and discover the
plan with the minimum predicted execution time (i.e., value). Since
the space of all execution plans for a particular query is far too large
to exhaustively search, Neo uses the learned value model to guide
a best-first search of the space (Section 4.2). A complete plan cre-
ated by Neo, which includes a join ordering, join operators (e.g.
hash, merge, loop), and access paths (e.g., index scan, table scan)
is sent to the underlying execution engine, which is responsible for
applying semantically-valid query rewrite rules (e.g., inserting nec-
essary sort operations) and executing the final plan. This ensures
the correctness of the generated execution plans.
Model Retraining As Neo optimizes more queries, the value model
is iteratively improved and custom-tailored to the user’s database.
This is achieved by incorporating newly collected experience re-
garding each executed QEP. Specifically, once a QEP is chosen for
a particular query, it is sent to the underlying execution engine,
which processes the query and returns the result to the user. Addi-
tionally, Neo records the final execution latency of the QEP, adding
the plan/latency pair to its Experience. Then, Neo retrains the value
model based on this experience, iteratively improving its estimates.

1706

π
0

Initial Policy
Expert System

(e.g., PostgreSQL)

v
t+1

Value Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Figure 2: Value iteration

Discussion This process – searching and model retraining – is re-
peated for each query sent by the user. Neo’s architecture is de-
signed to create a corrective feedback loop: when Neo’s learned
cost model guides Neo to a query plan that Neo predicts will per-
form well, but then the resulting latency is high, Neo’s cost model
learns to predict a higher cost for the poorly-performing plan. Thus,
Neo is less likely to choose plans with similar properties to the
poorly-performing plan in the future. As a result, Neo’s cost model
becomes more accurate, effectively learning from its mistakes.

Neo represents query optimization as an Markov decision pro-
cess (MDP, formalized in Section 3.1), in which each state corre-
sponds to a partial query plan, each action corresponds to a step in
building a query plan in a bottom-up fashion, and a reward is given
only at the final (terminal) state based on the plan’s latency. Neo’s
approach to navigating this MDP is called value iteration [7]. As
depicted in Figure 2, a function is trained to approximate the util-
ity (value) of a particular state based on previous experience. This
function, which we call the value network, is then used to create
a policy. Traditionally, the created policy is simple, like greedily
selecting actions based on the value network.

Neo builds on the traditional value iteration model in two ways.
First, Neo does not greedily follow the suggestions of the value
network: it has recently been shown [33, 52] that using the trained
value network as a heuristic to guide a search can improve results.
Second, Neo does not “start from scratch,” but rather bootstraps
from a dataset of query execution plans built by a traditional query
optimizer (which was designed by human experts). This avoids re-
inforcement learning’s infamous sample inefficiency [18,48]: with-
out bootstrapping, reinforcement learning algorithms may require
millions of iterations [38] before becoming competitive with sys-
tems built manually by human experts. Intuitively, bootstrapping
from an expert source (learning from demonstration) mirrors how
young children acquire language or learn to walk by imitating adults
(experts), and has been shown to drastically reduce the time re-
quired to learn a good policy [18, 49]. This is especially critical
for database management systems: each iteration requires a query
execution, and users are likely unwilling to execute millions of
queries before achieving performance on-par with current optimiz-
ers. Worse yet, executing a poor query plan takes longer than exe-
cuting a good plan, so the initial iterations would take an infeasible
amount of time to complete [36].

An important aspect of any reinforcement learning system is
balancing exploration and exploitation. Neo exploits knowledge
through its plan search procedure, leaning heavily on the value net-
work to guide its best-first search. As in value iteration [38], Neo
ensures that new policies are explored through model retraining:
each time the value network is retrained, its weights are reset to
random values, and the entire network is trained against the col-
lected experience. This ensures that the value network’s prediction
for unseen query plans have a high degree of stochasticity (as un-
seen query plans are “off manifold” [10, 33]). We also note that
the architecture of Neo closely mirrors that of AlphaGo [52], a re-
inforcement learning system created to play the game Go. Due
to space constraints, a detailed comparison between Neo and Al-
phaGo is available in Section 2 of the online appendix [34].

 A B C D E
A 0 0 1 1 0
B 0 0 1 0 0
C 1 1 0 0 0
D 1 0 0 0 0
E 0 0 0 0 0

Join Graph

A.1 A.2 … B.1 B.2 … E.1 E.2
 0 1 … 1 0 … 0 0

Column Predicates

A

B

C

D

A.2 < 5

B.1 = ‘h’

SELECT * FROM A, B, C, D WHERE
A.3=C.3 AND A.4=D.4 AND C.5=B.5
AND A.2<5 AND B.1=‘h’;

 0 1 1 0 1 0 0 0 0 0 0 1 … 1 0 … 0 0

Query-level Vector

Figure 3: Query-level encoding

3. QUERY FEATURIZATION
In this section, we describe how query plans are represented as

vectors, starting with some necessary notation.

3.1 Notation
For a query q, we define the set of base relations used in q as

R(q). A partial execution planP for a query q (denotedQ(P) = q)
is a forest of trees representing an execution plan that is still being
built. Each internal (non-leaf) tree node is a join operator ./i∈ J ,
where J is the set of possible join operators (e.g., hash ./H , merge
./M , loop ./L) and each leaf node is either a table scan, an index
scan, or an unspecified scan over a relation r ∈ R(q), denoted
T (r), I(r), and U(r) respectively.1 An unspecified scan is a scan
that has not been assigned as either a table or an index scan yet. For
example, a partial query execution plan could be denoted as:

[(T (D) ./M T (A)) ./L I(C)] , [U(B)] (1)

Here, the type of scan for B is unspecified, and no join has been
selected to link B with the rest of the plan. The plan does specify
a table scan of table D and A, which feed into a merge join, whose
result will then be joined using a loop join with C.

A complete execution plan is a plan with only a root and no un-
specified scans; all decisions on how the plan should be executed
have been made. We say that one execution plan Pi is a subplan of
another execution plan Pj , written Pi ⊂ Pj , if Pj could be con-
structed from Pi by (1) replacing unspecified scans with index or
table scans, or (2) combining subtrees in Pi with a join operator.

Building a complete execution plan can be viewed as a Markov
decision process (MDP). The initial state of the MDP is a partial
plan where every scan is unspecified and there are no joins. Each
action involves either (1) fusing together two roots with a join op-
erator or (2) turning a unspecified scan into a table or index scan.
More formally, every action transforms the current plan Pi into a
any plan Pj such that Pi ⊂ Pj . The reward of every action is zero,
except for the final action, which has a reward equal to the latency
of the produced execution plan. Like prior work [25, 35], this for-
mulation has the advantage of being ”loopless”: one always arrives
at a complete query execution plan after a finite number of actions.

3.2 Encodings
Neo uses two encodings: a query encoding, which encodes in-

formation regarding the query, but is independent of the query plan,
and a plan encoding, which represents the partial execution plan.
Query Encoding The representation of query-dependent but plan-
independent information is similar to previous work [25, 35, 43],
1Neo can trivially handle additional scan types, e.g., bitmap scans.

1707

A

B

B

D

MJ

LJ

(scan) (scan)

(index)

[0 1 1 0 0 0 0 1 1 0]

[1 0 1 0 0 0 0 0 1 0] C [0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 0]

M
er
ge

Lo
opA B C D

index
table

[0 0 1 0 0 0 0 0 0 0]

LJ

(index)

[0 1 1 0 0 1 0 1 1 0]

M
er
ge

Lo
opA B C DM

er
ge

Lo
opA B C D

M
er
ge

Lo
opA B C D

M
er
ge

Lo
opA B C D

M
er
ge

Lo
opA B C DM

er
ge

Lo
op

A
B C D

Figure 4: Plan-level encoding

and consists of two components. The first component encodes the
query’s join graph as an adjacency matrix, e.g. in Figure 3, the
1 in the first row, third column corresponds to the join predicate
connecting A and C. Both the row and column corresponding to
the relation E are empty, because E is not involved in the example
query. For simplicity, we assume that at most one foreign key exists
between each relation. However, the representation can easily be
extended to include multiple foreign keys (e.g., by using the index
of the relevant key instead of “1”). Furthermore, since this matrix
is symmetrical, we only encode the upper triangular portion (red).

The second component of the query encoding is the column pred-
icate vector. In Neo, we currently support three increasingly pow-
erful variants, with varying levels of precomputation requirements:
1. 1-Hot (existence of a predicate): a simple “one-hot” encod-

ing of which attributes are involved in any query predicate.
The length of the one-hot encoding vector is the number of at-
tributes over all database tables. For example, Figure 3 shows
the “one-hot” encoded vector with the positions for attribute
A.2 and B.1 set to 1, since both attributes are used as part of
predicate. Join predicates are not considered here. The learning
agent only knows whether an attribute is present in a predicate
or not. While naive, the 1-Hot representation can be built
without any access to the underlying database.

2. Hist (selectivity of a predicate): an extension of the 1-Hot
encoding which replaces “0” or “1” with the predicted selec-
tivity of that predicate (e.g., A.2 could be 0.2, if we predict a
selectivity of 20%). For predicting selectivity, we use an off-
the-shelf histogram approach with uniformity assumptions.

3. R-Vector (semantics of a predicate): the most advanced en-
coding, using row vectors. Based on word2vec [37], a natural
language processing model, each entry in the column predicate
vector is replaced with a vector containing semantic informa-
tion related to the predicate. This encoding requires building a
model over the data in the database, and is the most expensive
option. We discuss row vectors in Section 5.

More powerful the encodings provide more degrees of freedom
for the model to learn complex relationships. However, this does
not mean that simpler encodings preclude the model from learn-
ing complex relationships. For example, even though Hist does
not encode correlations between tables, the model might still learn
about them and accordingly correct the cardinality estimations in-
ternally, e.g. from repeated observation of query latencies. But
the R-Vector encoding make Neo’s job easier by providing a
semantically-enhanced representation of the query predicate.
Plan Encoding In addition to the query encoding, we also require
a representation of partial or complete query execution plan. While
prior works [25, 35] have flattened the tree structure of each partial
execution plan, our encoding preserves the inherent tree structure
of execution plans. We transform each node of the partial execution

plan into a vector, creating a tree of vectors, as shown in Figure 4.
While the number of vectors (i.e., number of tree nodes) can in-
crease, and the structure of the tree itself may change (e.g., left
deep or bushy), every vector has the same number of columns.

This representation is created by transforming each node into a
vector of size |J | + 2|R|, where |J | is the number of join types,
and |R| is the number of relations. The first |J | entries of each
vector encode the join type (e.g., in Figure 4, the root node uses
a loop join), and the next 2|R| entries encode which relations are
used, and the associated scan type (table, index, or unspecified).
For leaf nodes, this subvector is a one-hot encoding, unless the leaf
represents an unspecified scan, in which case it is treated as though
it were both an index scan and a table scan (a 1 is placed in both
the “table” and “index” columns). For internal nodes, these entries
are the union of the corresponding children nodes. For example,
the bottom-most loop join in Figure 4 has 1s in the positions corre-
sponding to table scans over A and D and an index scan over C.

Note that this representation can contain two partial query plans
(i.e., several roots) which have yet to be joined, e.g. to represent
partial plan in Equation 1, when encoded, the U(B) root node
would be encoded as: [0000110000]. The purpose of these en-
codings is merely to provide a representation of execution plans to
Neo’s value network, described next.

4. VALUE NETWORK
Next, we present Neo’s value network, a neural network which

is trained to predict the best-possible query latency for a partial ex-
ecution plan Pi: in other words, the best-possible query latency
achievable by a complete execution plan Pf such that Pi ⊂ Pf .
Since knowing the best-possible execution plan for a query ahead
of time is impossible, we approximate the best-possible query la-
tency with the best query latency seen so far by the system.

Let Neo’s experience E be a set of complete query execution
plans Pf ∈ E with known latency L(Pf). We train a model M to
approximate, for all Pi that are a subplan of any Pf ∈ E:

M(Pi) ≈ min{C(Pf) | Pi ⊂ Pf ∧ Pf ∈ E}

where C(Pf) is the cost of a complete plan. The user can change
the cost function to alter the behavior of Neo. For example, if
the user is concerned only with minimizing total query latency
across the workload, the cost could be defined as the latency, i.e.,
C(Pf) = L(Pf). However, if instead the user prefers to ensure
that every query q in a workload performs better than a particular
baseline, the cost function can be defined as

C(Pf) = L(Pf)/Base(Pf),

where Base(Pf) is latency of plan Pf with that baseline. Re-
gardless of how the cost function is defined, Neo will attempt to
minimize it over time. The model is trained by minimizing a loss
function [50]. We use a simple L2 loss function:

(M(Pi)−min{C(Pf) | Pi ⊂ Pf ∧ Pf ∈ E})2.

The same query plan may exhibit different latencies depend-
ing on external state (cache, concurrent transactions). By default,
Neo’s value model will try to predict the final average latency of
a query plan (this minimizes the L2 loss). However, depending
on the user’s requirements, the loss function could be modified to
encourage the value network to predict the final worst observed la-
tency (e.g., choose query plans that are robust to cache state), or
to predict the best observed latency (e.g., choose query plans that
assume the correct data is currently cached). If desired, one could
even use a piecewise loss function to favor the worst, average, or
best case for different queries in the user’s workload.

1708

Q
uery-l evel E

n coding
1 x 64

F
ully C

o nnecte d Laye r
1 x 128

F
ully C

o nnecte d Laye r
1 x 64

F
ully C

o nnecte d Laye r
1 x 32

1 x 20

1 x 201 x 20

1 x 20 1 x 20

Plan-level Encoding

Concatenation

1 x 52

1 x 521 x 52

1 x 52 1 x 52

Augmented Tree

Tree Convolution

1x512 1x256 1x128

F
ully C

o nnecte d Laye r
1 x 128

F
ully C

o nnecte d Laye r
1 x 64

F
ully C

o nnecte d Laye r
1 x 32

F
ully C

o nnecte d Laye r
1 x 1

D
ynam

i c P
ooli ng

1 x 128

LayerInput

C
ost P

r ediction

Intermediary Output

Figure 5: Value network architecture

Network Architecture The architecture of the Neo value network
is shown in Figure 5.2 The architecture was designed to create an
inductive bias [33] suitable for query optimization: the structure of
the neural network itself is designed to reflect an intuitive under-
standing of what causes query plans to be fast or slow. Humans
studying query plans learn to recognize suboptimal or good plans
by pattern matching: a merge join on top of a hash join with a
shared join key is likely inducing a redundant sort or hash; a loop
join on top of two hash joins is likely highly sensitive to cardinality
estimation errors; a hash join using a fact table as the “build” rela-
tion likely incurs spills; a series of merge joins that do not require
re-sorting is likely to perform well, etc. Our insight is that all of
these patterns can be recognized by analyzing subtrees of a query
execution plan. Neo’s model architecture is essentially a large bank
of these patterns that are learned automatically, from the data itself,
by taking advantage of a technique called tree convolution [40].

As shown in Figure 5, when a partial query plan is evaluated
by the model, the query-level encoding is fed through a number
of fully-connected layers, each decreasing in size. The vector out-
putted by the third fully connected layer is concatenated with the
plan-level encoding, i.e., each tree node (the same vector is added
to all tree nodes). This is a standard technique, known as “spatial
replication” [52,62], for combining fixed-size data (query-level en-
coding) and dynamically-sized data (plan-level encoding). Once
each tree node vector has been augmented, the forest of trees is
sent through several tree convolution layers [40], an operation that
maps trees to trees. Afterwards, a dynamic pooling operation [40]
is applied, flattening the tree structure into a single vector. Several
additional fully connected layers are used to map this vector to a
single value, used as the model’s prediction for the inputted plan.
A formal description of the value network model is given in [34].

4.1 Tree Convolution
Neural network models like CNNs [29] take input tensors with a

fixed structure, such as a vector or an image. For Neo, the features
embedded in each execution plan are structured as nodes in a tree
(e.g., Figure 4). Thus, we use tree convolution [40], an adaption of
traditional image convolution for tree-structured data.

Tree convolution is a natural fit for Neo. Similar to the convo-
lution transformation for images, tree convolution slides a set of
shared filters over each part of the plan tree. Intuitively, these fil-
ters can capture a wide variety of local parent-children relations.
For example, filters can look for hash joins on top of merge joins,
or a join of two relations when a particular predicate is present. The
output of these filters provides signals utilized by the final layers of
the value network; filter outputs could signify relevant factors such
as when the children of a join operator are sorted (suggesting a
merge join), or a filter might estimate if the right-side relation of
a join will have low cardinality (suggesting that an index may be
useful). We provide two concrete examples later in this section.

2We omit activation functions, present between each layer, from
our diagram and our discussion.

Since each node of the query tree has exactly two child nodes,
each filter consists of three weight vectors, ep, el, er . Each filter is
applied to each local “triangle” formed by the vector xp of a node
and two of its left and right child, xl and xr (~0 if the node is a leaf),
to produce a new tree node x′p:

x′p = σ(ep � xp + el � xl + er � xr).

Here, σ(·) is a non-linear transformation (e.g., ReLU [16]), � is a
dot product, and x′p is the output of the filter. Each filter thus com-
bines information from the local neighborhood of a tree node. The
same filter is “slid” across each tree in a execution plan, allowing
a filter to be applied to plans of arbitrary size. A set of filters can
be applied to a tree in order to produce another tree with the same
structure, but with potentially different sized vectors representing
each node. In practice, hundreds of filters are applied.

Since the output of a tree convolution is another tree, multiple
layers of tree convolution filters can be “stacked.” The first layer
of tree convolution filters will access the augmented execution plan
tree (i.e., each filter will be slid over each parent/left child/right
child triangle of the augmented tree). The amount of information
seen by a particular filter is called the filter’s receptive field [31].
The second layer of filters will be applied to the output of the first,
and thus each filter in this second layer will see information derived
from a node n in the original augmented tree, n’s children, and n’s
grandchildren: each tree convolution layer thus has a larger recep-
tive field than the last. As a result, the first tree convolution layer
learns simple features (e.g., recognizing a merge join on top of a
merge join), whereas the last tree convolution layer learns complex
features (e.g., recognizing a left-deep chain of merge joins).

We present two concrete examples that show how the first layer
of tree convolution can detect interesting patterns in query execu-
tion plans. In Example 1 of Figure 6a, we show two execution
plans that differ only in the topmost join operator (a merge join and
hash join). As depicted in the top portion of Figure 6b, the join
type (hash or merge) is encoded in the first two entries of the fea-
ture vector in each node. A tree convolution filter (Figure 6c top),
comprised of three weight vectors with {1,−1} in the first two po-
sitions and zeros for the rest, will serve as a “detector” for query
plans with two sequential merge joins. This can be seen in Fig-
ure 6d (top): the root node of the plan with two sequential merge
joins receives an output of 2 from this filter, whereas the root node
of the plan with a hash join on top of a merge join receives an output
of 0. Subsequent tree convolution layers can use this information to
form more complex detectors, like to detect three merge joins in a
row (a pipelined query execution plan), or a mixture of merge joins
and hash joins (which may induce re-hashing or re-sorting).

In Example 2, Figure 6, suppose tables A and B are sorted on the
same key, and are thus ideally joined together with a merge join, but
that C is not sorted. The filter shown in Figure 6(c, bottom) serves
as a detector for query plans that join A and B with a merge join,
behavior that is likely desirable. The top weights (ep) recognize
the merge join, and the right weights (er) recognize table B over
all other tables. The result of this convolution (Figure 6d, bottom)

1709

(a) Query trees (b) Features on each node (c) Tree conv filters (d) Output

Merge	join C

A B

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

Tree	
Conv
Filterel

[1,-1,0,0,0]
er

[1,-1,0,0,0]

ep
[1,-1,0,0,0]

1 0

0 0

Merge	join

Merge	join C

A B

Hash	join [1,0,1,1,1]

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

[0,1,1,1,1] 2

1 0

0 0

0

Merge	join C

A B

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

Tree	
Conv
Filter

3 -1

0 1

Merge	join

Merge	join B

A C

Merge	join [1,0,1,1,1]

[1,0,1,0,1] [0,0,0,1,0]

[0,0,1,0,0] [0,0,0,0,1]

[1,0,1,1,1] -1

-1 1

0 0

2

Ex
am

pl
e

1
Ex

am
pl

e
2

el
[0,0,0,-1,0]

er
[-1,-1,-1,1,-1]

ep
[1,-1,0,1,-1]

Figure 6: Tree convolution examples

shows its highest output for the merge join of A and B (first plan),
and a negative output for the merge join of A and C (second plan).

In practice, filter weights are learned over time, and not config-
ured by hand. Performing gradient descent to update filter weights
will cause filters that correlate with latency (helpful features) to be
rewarded (remain stable), and filters with no clear relationship to
latency to be penalized (pushed towards more useful values). This
creates a corrective feedback loop, resulting in the development of
filterbanks which extract useful features [29].

4.2 DNN-Guided Plan Search
The value network predicts the quality of an execution plan,

but does not directly give an execution plan. Following recent
works [4, 52], we combine the value network with a search tech-
nique to generate plans, resulting in a value iteration technique [7].

Given a trained value network and an incoming query q, Neo per-
forms a search of the plan space for a given query. In some ways,
this search mirrors the search process used by traditional database
optimizers, with the trained value network taking on the role of the
database cost model. However, unlike these traditional systems,
the value network does not predict the cost of a subplan, but rather
the best possible latency achievable from an execution plan that
includes a given subplan. This difference allows us to perform a
best-first search [12] to find an execution plan with low expected
cost. Essentially, this amounts to repeatedly exploring the candi-
date with the best predicated cost until a halting condition occurs.

The search process for query q starts by initializing an empty min
heap to store partial execution plans. This min heap is ordered by
the value network’s estimation of each partial plan’s cost. Initially,
a partial execution plan with an unspecified scan for each relation in
R(q) is added to the heap. For example, if R(q) = {A,B,C,D},
then the heap is initialized with P0:

P0 = [U(A)], [U(B)], [U(C)], [U(D)].

Each search iteration begins by removing the subplan Pi at the
top of the min heap. We enumerate Pi’s children, Children(Pi),
scoring each child using the value network and adding them to the
min heap. Intuitively, the children of Pi are all the plans creatable
by specifying a scan in Pi or by joining two trees of Pi with a join
operator. Formally, we define Children(Pi) as the empty set if Pi

is a complete plan, and otherwise as the set of available actions at
this state of the MDP (see Section 3.1). Once each child is scored
and added to the min heap, another search iteration begins, explor-
ing the next most promising plan. Each step of search operation
takes O(logn) time, where n is the size of the min heap.

While this process could be terminated when a leaf (a complete
plan) is found, this search procedure can easily be transformed into
a anytime search algorithm [63]: an algorithm that continues to
find better results until a fixed time cutoff. In this variant, Neo

continues exploring the most promising nodes from the heap un-
til a time threshold is reached, at which point the most promising
complete execution plan is returned. This gives the user control
over the tradeoff between planning time and execution time. Users
could select a different time cutoff for different queries depending
on their needs. In the event that the time threshold is reached before
a complete execution plan is found, Neo’s search procedure enters
a “hurry up” mode [55], and greedily explores the most promising
children of the last plan explored until a leaf is reached. The cut-
off time should be tuned on a per-application bases. We find that
250ms is sufficient for a wide variety of workloads (Section 6.6).

5. ROW VECTOR EMBEDDINGS
Neo can represent query predicates in a number of ways, includ-

ing a simple one-hot encoding (1-Hot) or a histogram-based rep-
resentation (Hist), as described in Section 3.2. Here, we motivate
and describe row vectors, Neo’s most advanced option for repre-
senting query predicates (R-Vector).

While cardinality estimation is critical to the success of tradi-
tional query optimizers [26, 30], database systems often make sim-
plifying assumptions, such as uniformity, independence, and/or the
principle of inclusion that often undermine this goal [27]. Neo,
takes a different approach: instead of making simplifying assump-
tions about data distributions and attempting to directly estimate
predicate cardinality, we build a semantically-rich, vectorized rep-
resentation of query predicates that can serve as an input to Neo’s
value model, enabling the network to learn generalizable insights
into data correlations. Following recent work in semantic query-
ing [9], entity matching [41], data discovery [14], and error detec-
tion [17], we build a vectorized representation of each query predi-
cate based on data in the database itself.

Our row vector approach is based on the popular and well-studied
word2vec algorithm [37], a way of transforming natural language
words (e.g., English words) into vectors. While these vectors are
meaningless on their own, the distances between them have seman-
tic meaning: for example, the distance between ”spaghetti” and
”pasta” will be small, whereas the distance between ”banana” and
”doorknob” will be large. Intuitively, word2vec works by taking
advantage of a word’s context: words that frequently appear nearby
in text are assigned similar vector representations, and words that
rarely do so are assigned dissimilar vectors (e.g. ”At the Italian
restaurant, I ordered...”). In Neo, we treat each row of each table
in a database as a sentence, and we treat each column value of a
table row as a word. Thus, values that frequently co-occur in rows
are mapped to similar vectors. We call these vectors row vectors.
Neo’s value network can take these row vectors as inputs, and use
them to identify correlations within the data and predicates with
syntactically-distinct but semantically-similar values (e.g., both ”ac-
tion” and ”adventure” frequently co-occur with ”superhero”).

1710

col1 col2 col3

A C E

A C F

B D F

A

B

C

E

D

F

A

B

C

E

D

F

1

0

0

0

0

0

0

0

1

0

1

0

Example 1
(A, C, E)

A

B

C

E

D

F

A

B

C

E

D

F

0

0

1

0

0

0

1

0

0

0

0

1

Example 2
(A, C, F)

T
ra

in
in

g

A

B

C

E

D

F

A

B

C

E

D

F

Remove
output
layer

0.75

1

0

0

0

0

0

-0.33

A

B

C

E

D

F

Q
ue

ry
 O

pt
im

iz
at

io
n

Embedded
 vector for

“A”

Input layer

Embedding layer

Output layer

Trained network

Figure 7: Row vector embedding process

The remainder of this section first gives a high-level overview
of how Neo’s row vectors are built, and then explores why row
vectors are effective at capturing correlations in real-world data.
For details, see the online appendix [34].

5.1 R-Vector Featurization
At a high level, our goal is to build a semantically rich represen-

tation of a query predicate which Neo can use as an input. For ex-
ample, if a query over the IMDB movie dataset / JOB dataset [26]
looks for all actors in movies tagged with “marvel-comics”, the
query will return many actors who play superheros. Similarly, if
a query looks for all actors in movies tagged with “avengers”, the
query will also return many actors who play superheros. However,
a query for all actors in movies tagged with “romance” is unlikely
to return many superhero actors. Thus, we want to create a vector-
ized representation of “marvel-comics” that is similar to “avengers”
but dissimilar to “romance”. Given such a vectorization, Neo will
have a better chance of making good predictions about a query for
“avengers” movies after having seen a query for “marvel-comics”
movies, thus giving Neo more opportunities to generalize.

Neo’s row vector encoding requires two steps (Figure 7). Be-
fore query optimization, a training step learns an embedding with
a specialized neural network. During query optimization, the out-
put layer of the specialized neural network is removed, creating a
truncated network which maps inputs to an embedded vector [34].
Training To generate row vectors, we use word2vec — a natural
language processing technique for embedding contextual informa-
tion about collections of words [37]. We build an embedding of
each value in the database using an off-the-shelf word2vec imple-
mentation [47]. We depict this process in the top half of Figure 7.

We first construct a three-layer neural network, called the em-
bedding network, with equally-sized input and output layers. The
neural network will be trained to map each one-hot encoded value
in the database to an output vector representing the value’s context.
For example, the top half of Figure 7, Example 1, shows how the
embedding network is trained to map an input of “A” to an output
vector representing “C” and “E”, corresponding to the first row in
the example table. For this first row, the embedding network is also
trained to map “C” to an output vector representing “A” and “E”, as
well as to map “E” to an output vector representing “A” and “C”.
This procedure is repeated for each row in the database (e.g., Exam-
ple 2). Note that the embedding network will never achieve a high
level of accuracy: “A” may appear in multiple contexts, making
this impossible. The goal of the algorithm is to capture statistical
relationships between database values and their context.

(a) Birthplace of each actor (b) Top actors in each genre

Figure 8: The same t-SNE projection (each axis is a unitless quan-
tity) of embedded actor names, colored by (a) birthplace and (b)
genre: the same embedding automatically captures multiple corre-
lations. Correlations appear as semantically meaningful clusters.

Query optimization The bottom half of Figure 7 depicts how Neo
builds row vector encodings during query optimization. After the
embedding network is trained, the output layer is removed, result-
ing in a two layer network (the weights representing the transfor-
mation from the embedding layer to the output layer may also be
discarded). This truncated network can be used by Neo to build a
vectorized representation of a database value by passing it through
the input layer and recording the value of the embedding layer.

To encode a query predicate, we combine information about the
predicate operator (e.g., LIKE or !=) with the embedded vector. In
the simplest case, a query predicate is in the form of tbl.attr
OP VALUE, for example, actor.name = "Robert Downey
Jr". For these simple cases, the query predicate can be encoded
by concatenating a one-hot encoding of the predicate operator (e.g.,
=) with the embedded vector the predicate value (e.g., "Robert
Downey Jr"). This concatenated vector replaces the simple 0 or
1 used in the 1-Hot encoding (Section 3.2).

Embedded vectors can be combined and searched to handle wild-
card LIKE queries or complex logical queries (e.g., ANDs, ORs).
For example, Neo handles wildcard queries by searching for an ex-
ample of a match in the database, and then using the embedded
value of that match [34]. The embeddings can be improved by par-
tially denormalizing the database, allowing the word2vec model to
capture cross-table correlations. Our word2vec training process is
open source, and available on GitHub [1].
Example Next, we explore an example trained word2vec model on
the IMDB / JOB dataset [26]. After training a row vector model on
the entire IMDB dataset, we used t-SNE3 to project the embedded
vectors of actor names space into two-dimensional space for plot-
ting [58]. The results plotted in Figure 8 present a visual example
of how row vectors capture semantic correlations across database
tables. As shown, various semantic groups (e.g., Chinese actors,
Sci-fi movie actors) are clustered together. Intuitively, this pro-
vides helpful signals to estimate query latency given similar pred-
icates: as many of the clusters in Figure 8 are linearly separable,
their boundaries can be learned by machine learning algorithms.
In other words, since predicates with similar semantic values (e.g.,
two American actors) are likely to have similar correlations (e.g.,
be in American films), representing the semantic value of a query
predicate allows the value network to recognize similar predicates
and thus better generalize to unseen predicates.

3The t-SNE algorithm finds low-dimensional embeddings of high-
dimensional spaces that maintain distances between pairs of points:
points that are close together (far apart) in the low-dimensional
space are close together (far apart) in the high-dimensional space.

1711

6. EXPERIMENTS
We evaluated Neo’s performance using both synthetic and real-

world datasets to answer the following questions: (1) how does the
performance of Neo compare to commercial, high-quality optimiz-
ers, (2) how well does Neo generalize to new queries, (3) how much
overhead does Neo’s training and execution incur, (4) how do the
different encoding strategies impact query latency, (5) how do other
parameters (e.g., search time or loss function) impact the overall
performance, and finally, (6) how robust is Neo to estimation er-
rors. Unless otherwise stated, queries are executed on a server with
32GB of RAM, an Intel Xeon CPU E5-2640 v4, and a solid-state
drive. Each DBMS was configured according to the “best prac-
tices” guide provided by the distributing organization.

6.1 Setup
We evaluate Neo across a number of different database systems,

using three different benchmarks:

1. JOB: the join order benchmark [26], with a set of queries
over the Internet Movie Data Base (IMDB) consisting of
complex predicates, designed to test query optimizers.

2. TPC-H: the standard TPC-H benchmark [45], using a scale
factor of 10.

3. Corp: a 2TB dataset together with 8,000 unique queries
from an internal dashboard application, provided by a large
corporation (on the condition of anonymity).

Unless otherwise stated, all experiments are conducted by ran-
domly placing 80% of the available queries into a training set, and
using the other 20% of the available queries as a testing set. In
the case of TPC-H, we generated 80 training and 20 test queries
based on the benchmark query templates without reusing templates
between training and test queries.

Each result presented is the median of 50 randomly initialized
runs. Neural networks are trained with Adam [21]. Layer normal-
ization [5] is used for training stability. Activation functions are
“leaky ReLUs” [16]. We use a search time cutoff of 250ms. The
network architecture follows Figure 5, which we selected after test-
ing several variants on a small subset of JOB. except the size of the
plan-level encoding is dependent on the encoding strategy selected.
Row vectors are build using partial denormalization [34].

We compare Neo against two open-source (PostgreSQL 11.2,
SQLite 3.27.1), and two commercial (Oracle 12c, Microsoft SQL
Server 2017 for Linux) database systems; specifically, we train Neo
to build query plans for each of these systems, and then compare
Neo’s query plans against those produced by each system’s query
optimizer. Due to the license terms [46] of Microsoft SQL Server
and Oracle, we can only show performance in relative terms.

For initial experience collection for Neo, we always used the
PostgreSQL optimizer as the expert. We define the target system as
the system Neo is creating query plans for: that is, if Neo is building
plans to execute on Oracle, we refer to Oracle as the target system.
To train Neo, we first use the PostgreSQL optimizer to create a
query plan for every query in the training set. We then measured
the execution time of this plan on the targeted execution engine
(e.g., Oracle) by forcing the target system, through query hints, to
obey the proposed query plan. Next, we begin training: Neo trains
a value network to predict the latency of the complete and partial
plans in its experience set, and then uses that value network to build
new query plans. These new query plans are then executed by the
underlying DBMS, and their resulting latencies are added to Neo’s
experience. We repeat this process 100 times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
liz

e
d

 L
a
te

n
cy

JOB
TPC-H

Corporation

Figure 9: Latency of test query plans created by Neo after 100
episodes of training, normalized to plans created by the target sys-
tem’s corresponding optimizer for different workloads.

6.2 Overall Performance
Figure 9 shows the relative performance of Neo after 100 training

iterations on each test workload, using the R-Vector encoding
over the holdout dataset (lower is better). For example, with Post-
greSQL and the JOBworkload, Neo produces queries that take only
60% of average execution time than the ones created by the original
PostgreSQL optimizer. Since the PostgreSQL optimizer is used to
gather initial expertise for Neo, this demonstrates Neo’s ability to
improve upon an existing open-source optimizer.

Moreover, for SQL Server and the JOB and Corp workloads,
the query plans produced by Neo are also 10% faster than the plans
created by the SQL Server commercial optimizer (note that these
plans are executed on SQL Server). Importantly, the SQL Server
optimizer, which includes a multi-phase search procedure and a
hundred-input dynamically-tuned cost model [15, 42], is expected
to be substantially more advanced than PostgreSQL’s optimizer.
Yet, by bootstrapping only with PostgreSQL’s optimizer, Neo is
able to eventually outperform or match the performance of the SQL
Server optimizer on its own platforms. Similar results were found
for Oracle. Note that the faster execution times are solely based on
better query plans (i.e., there are no modifications to the underlying
execution engines). The only exception where Neo does not outper-
form the two commercial systems is for the TPC-H workload. We
suspect that both SQL Server and Oracle have been tuned towards
TPC-H, as it is one of the most common benchmarks.

Overall, this experiment demonstrates that Neo is able to cre-
ate plans, which are as good as, and sometimes even better than,
open-source optimizers and their significantly superior commercial
counterparts. However, Figure 9 only compares the median perfor-
mance of Neo after the 100th training episode. This naturally raises
the following questions: (1) how does the performance compare
with a fewer number of training episodes and how long does it take
to train the model to a sufficient quality (answered in the next sub-
section), and (2) how robust is the optimizer to various estimation
errors (answered in Section 6.4).

6.3 Convergence Time
To analyze the convergence time, we measured the performance

after every training iteration, for a total of 100 complete iterations.
We first report the learning curves in terms of training iterations
to facilitate comparisons between different systems (e.g., a train-
ing episode with MS SQL Server might run much faster than Post-
greSQL, simply because the MS SQL Server execution engine is
better tuned). Afterwards, we report the wall-clock time to train the
models on the different systems. Finally, we answer the question of
how much our bootstrapping method helped with the training time.

1712

6.3.1 Learning Curves
We measured the performance of Neo on each dataset with re-

spect to the targeted system’s optimizer (i.e., in each plot, a perfor-
mance of 1 is equivalent to the target engine’s optimizer) for ev-
ery episode: a full pass over the set of training queries (retraining
the network from the experience, choosing a plan for each training
query, executing that plan, and adding the result to Neo’s expe-
rience). Figure 10 depicts 50 runs: the solid line represents the
median, and the shaded region represents the minimum and max-
imum values. For all DBMSes except for PostgreSQL, we addi-
tionally plot the relative performance of the plans generated by the
PostgreSQL optimizer when executed on the target engine (e.g.,
executing the PostgreSQL plan on Oracle).
Convergence Each figure demonstrates a similar behavior: after
the first iteration, Neo’s performance is poor (nearly 2.5 times worse
than the target system’s optimizer). Then, for several iterations, the
performance of Neo improves sharply, until it levels off. We note
that Neo is able to improve on the PostgreSQL optimizer in as few
as 9 training iterations (i.e., the number of training iterations un-
til the median run crosses the line representing PostgreSQL). It is
not surprising that matching the performance of a commercial opti-
mizer (MS SQL Server or Oracle) requires significantly more train-
ing iterations, as commercial systems are much more sophisticated.
Variance The variance between the different training iterations is
small for all workloads, except for TPC-H. We hypothesize that
TPC-H’s uniform data distribution renders the R-Vector embed-
dings less useful, and thus it takes the model longer to adjust ac-
cordingly. This behavior is not present in the non-synthetic datasets.

6.3.2 Wall-Clock Time
So far, we analyzed how long it took Neo to become competitive

in terms of training iterations; next, we analyze the time it takes for
Neo to become competitive in terms of wall-clock time (real time).
We analyzed how long it took for Neo to reach two milestones: a
policy producing query plans on-par with (1) the plans produced by
PostgreSQL, but executed on the target execution engine, and (2)
the plans produced by the target system’s optimizer and executed
on the target system’s execution engine. The results are plotted
in Figure 11a: the left and right bars represent milestone 1 and 2,
respectively), split into time spent training the neural network and
time spent executing queries. Note that the query execution step is
parallelized, executing queries on different nodes simultaneously.

Unsurprisingly, it takes longer for Neo to become competitive
with the more advanced, commercial optimizers. However, for ev-
ery engine, learning a policy that outperforms the PostgreSQL op-
timizer consistently takes less than two hours. Furthermore, Neo
was able to match or exceed the performance of every optimizer
within half a day. Note that this time does not include the time
for training the query encoding, which in the case of the 1-Hot
and Histogram are negligible. However, this takes longer for
R-Vector (see Section 6.7).

6.3.3 Is Demonstration Even Necessary?
Since gathering demonstration data introduces additional com-

plexity, it is natural to ask if demonstration is necessary at all: is it
possible to learn a good policy from zero knowledge? While pre-
vious work [35] showed that an off-the-shelf deep reinforcement
learning technique can learn to find query plans that minimize a
cost model without demonstration data, learning a policy based on
query latency (i.e., end-to-end) is difficult because a bad plan can
take hours to execute. Unfortunately, randomly chosen query plans
behave exceptionally poorly (i.e., 100x to 1000x worse [26]), po-
tentially increasing the training time of Neo by a similar factor [36].

We attempted to work around this problem by selecting an ad-
hoc query timeout t (e.g., 5 minutes), and terminating query execu-
tions when latencies exceed t. However, this technique destroys a
good amount of the signal that Neo uses to learn: join patterns re-
sulting in a latency of 7 minutes get the same reward as join patterns
resulting in a latency of 1 week, and thus Neo cannot learn that the
join patterns in the 7-minute plan are an improvement over the 1-
week plan. As a result, even after training for over three weeks, we
did not achieve results even on par with the PostgreSQL optimizer.

6.4 Robustness
Here, we test the efficacy of alternative query encoding (e.g.,

1-Hot), Neo’s ability to handle unseen queries invented specifi-
cally to exhibit novel behavior, and Neo’s resilience to noisy inputs.

6.4.1 Query Encoding
Figure 11b shows the performance of Neo across each DBMS

for the JOB dataset, varying the query encoding. Here, we include
two R-Vector encodings: partial denormalization [34], in which
R-Vector are trained on a partially denormalized database, and
a variant without any denormalization (suffixed with “no joins”).
As expected, the 1-Hot encoding consistently performs the worst,
as the 1-Hot encoding contains minimal information about pred-
icates. The Hist encoding, while making naive uniformity as-
sumptions, provides enough information about predicates to im-
prove Neo’s performance. In each case, the R-Vector encodings
produce the best overall performance, with the “no joins” variant
lagging slightly behind. We hypothesize that this is because the
R-Vector encoding contains more semantic information about
the underlying database than other encodings.

6.4.2 On Entirely New Queries
Previous experiments demonstrated Neo’s ability to generalize

to queries in a randomly-selected, held-out test set drawn from
the same workload as the training set. While this shows that Neo
can handle previously-unseen predicates and modifications to join
graphs, it does not necessarily demonstrate that Neo will be able to
generalize to a completely new query. To test Neo’s behavior on
new queries, we created a set of 24 additional queries, which we
call Ext-JOB [2], that are semantically distinct from the original
JOB workload (no shared predicates or join graphs).

After training Neo for 100 episodes on the JOB queries, we
evaluated the performance of Neo on the Ext-JOB queries. Fig-
ure 12a shows the results: the height of the solid bar represents
the average normalized latency of the plans produced Neo on the
unseen queries. First, we note that with the R-Vector featuriza-
tion, the execution plans chosen for the entirely-unseen queries in
the Ext-JOB dataset still outperformed or matched the target sys-
tem’s optimizer. We hypothesize that the larger gap between the
R-Vector featurizations and the Hist/ 1-Hot featurizations is
due to R-Vector capturing information about query predicates
that generalizes to entirely new queries.
Learning new queries Since Neo is able to progressively learn
from query executions, we evaluated Neo’s performance on the
Ext-JOB queries after 5 additional training iterations (which in-
cluded experience from the Ext-JOB queries), depicted by the
patterned bars in Figure 12a. Once Neo has seen each new query a
handful of times, Neo’s performance increases, having learned how
to handle the new patterns introduced by the previously-unseen
queries. While the performance of Neo initially degrades when
confronted by new queries, Neo adapts to suit these new queries.
This showcases the potential for a deep-learning powered query
optimizer to keep up with changes in real-world query workloads.

1713

PostgreSQL SQLite MS SQL Server Oracle
J
O
B

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Postgres
Neo (R-Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

SQLite
PostgreSQL on SQLite

Neo (Row Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

SQL Srv
PostgreSQL on SQL Srv

Neo (Row Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

T
P
C
-
H

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

C
o
r
p

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Figure 10: Learning curves (normalized latency over time) with variance. For each DBMS and dataset, we measure the latency of plans
created by the DBMS’ corresponding optimizer, the PostgreSQL optimizer, and Neo. Latencies are normalized to the latencies of the plans
produced by the optimizer of the corresponding DBMS (e.g., all values in the fourth column are normalized to the latencies of the plans
created by the Oracle optimizer). Shaded area spans minimum to maximum across fifty runs with different random seeds. Central line is the
median. For a plot with all featurizations, please visit: http://rm.cab/l/lc.pdf

6.4.3 Cardinality Estimates
The strong relationship between cardinality estimation and query

optimization is well-studied [6, 39]. However, effective query opti-
mizers must take into account that most cardinality estimates tend
to become significantly less accurate as the number of joins in-
creases [26]. While deep neural networks are generally regarded
as black boxes, here we show that Neo is capable of learning when
to trust cardinality estimates and when to ignore them.

To measure the robustness of Neo to cardinality estimation er-
rors, we trained two Neo models with an additional feature at each
tree node. The first model received the PostgreSQL optimizer’s car-
dinality estimation (PostgreSQL), and the second model received
the true cardinality (True cardinality). We then plotted a histogram
of both model’s outputs across every state encountered while opti-
mizing queries in the JOB workload when the number of joins was
≤ 3 and > 3, introducing artificial error.

Figure 13a and 13b shows the histogram of value network pre-
dictions for the PostgreSQL model for states with≤ 3 or> 3 joins,
respectively. Figure 13a shows that, when there are at most 3 joins,
an increase in cardinality estimation error from zero orders of mag-
nitude to two and five orders of magnitude causes an increase in the
variance of the distribution: when the number of joins is at most
3, Neo learns a model that varies with the PostgreSQL cardinality
estimate. However, in Figure 13b, we see that the distribution of
network outputs hardly changes at all when the number of joins is
greater than 3: when the number of joins is greater than 3, Neo
learns to ignore the PostgreSQL cardinality estimates all together.

Figure 13c and 13d show that when Neo’s value model is trained
with true cardinalities as inputs, Neo learns a model that varies its
prediction with the cardinality regardless of the number of joins.
In other words, when provided with true cardinalities, Neo learns

to rely on the cardinality information regardless of the number of
joins. This demonstrates that Neo is capable of learning which in-
put features are reliable, even when the reliability of those features
is dependent on factors such as the number of joins.

6.4.4 Per Query Performance
Next, we analyze Neo’s performance at the query level. The

absolute performance improvement (or regression) in seconds for
each query in the JOB workload between the Neo and PostgreSQL
plans (executed on PostgreSQL) are shown in Figure 14 (purple).
While Neo improves the execution time of some queries, by up to
40 seconds, Neo also worsens the execution time of a few of queries
(e.g., query 24a becomes 8.5 seconds slower).

In contrast to a traditional optimizer, Neo’s optimization goal can
easily be changed. So far, we always aimed to optimize the total
workload cost, i.e., the total latency across all queries. However,
we can also change the optimization goal to optimize for the rela-
tive improvement per query (green bars in Figure 14), as discussed
in Section 4. This implicitly penalizes changes in the query per-
formance from the baseline (e.g., PostgreSQL). When trained with
this optimization goal, the total workload time is still accelerated
(by 289 seconds, as opposed to nearly 500 seconds), and all but
one query sees improved performance from the PostgreSQL base-
line (29b regresses by 43 milliseconds). This provides evidence
that Neo responds to different optimization goals, allowing it to be
customized for different scenarios.

It is possible that Neo’s loss function could be further customized
to weigh queries differently depending on their importance to the
user, i.e. query priority. It may also be possible to build an op-
timizer that is directly aware of service-level agreements (SLAs).
We leave such investigations to future work.

1714

 0

 100

 200

 300

 400

 500

 600

PostgreSQL SQLite SQL Server Oracle

Po
st

g
re

S
Q

L
o
p
ti

m
iz

e
r

S
Q

Li
te

 o
p
ti

m
iz

e
r

Po
st

g
re

S
Q

L
o
p
ti

m
iz

e
r

S
Q

L
S
e
rv

e
r

o
p
ti

m
iz

e
r

Po
st

g
re

S
Q

L
o
p
ti

m
iz

e
r

O
ra

cl
e
 o

p
ti

m
iz

e
r

Ti
m

e
 (

m
)

Engine

Neural network time
Query execution time

(a) For each engine, training time for Neo to match
the performance of the plans generated by the Post-
greSQL optimizer and each engine’s correspond-
ing optimizer (identical for PostgreSQL). JOB.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Engine

R-Vectors
R-Vectors (no joins)

Histograms
1-Hot

(b) Effect of different featurizations on latency
of Neo’s query plans after 100 training iterations
(JOB dataset). Normalized to the latency of each
DBMS’ corresponding optimizer’s query plans.

 1

 10

 100

 1000

 10000

JOB TPC-H Corp

Ti
m

e
 t

o
 b

u
ild

 (
m

)

Dataset

Joins
No joins

(c) Row vector training time for all three datasets.
The ”join” variant performs partial denormaliza-
tion, which is included in the measured time. The
”no join” variant performs no denormalization.

Figure 11

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Engine

R-Vectors
R-Vectors (no joins)

Histograms
1-Hot

(a) After training on JOB, new queries (Ext-JOB)
are introduced. Solid bars represent the average
normalized latency of Neo’s initial plans for the
Ext-JOB queries. Patterned bars show the aver-
age normalized latency of Neo’s plans after seeing
Ext-JOB queries 5 times. Normalized to plans
created by each DBMS’ optimizer.

 50

 100

 150

 200

 250

4 5 6 7 8 9 10 11 12 14 17

S
e
a
rc

h
 T

im
e
 (

m
s)

Number of Joins

 1

 2

 3

 4

 5

Fa
ct

o
r

W
o
rs

e
 T

h
a
n
 B

e
st

(b) After training, we plot the average query per-
formance normalized to the best seen performance
based on the number of joins in a query and the
time spent in search. For queries with ≤ 9 joins,
the best seen performance is achieved with only
100ms of search time. Queries with more joins
needed up to 230ms of search time.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100

A
cc

u
ra

cy
 (

s²
)

Iterations

Accuracy on final policy
Accuracy on previous policy

(c) Accuracy (MSE) of the value network per train-
ing iteration. Blue shows the accuracy of the value
network at iteration i (x-axis) at predicting the la-
tency of plans produced at iteration 100. Green
shows the accuracy of the value network at itera-
tion i at predicting the latency of plans produced at
the previous iteration (iteration i− 1).

Figure 12: Robustness and accuracy (all using Neo trained on JOB with PostgreSQL for 100 iterations)

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

(a) PostgreSQL, ≤ 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

(b) PostgreSQL, > 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

(c) True cardinality, ≤ 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

(d) True cardinality, > 3 joins

Figure 13: Histograms of Neo’s normalized value network outputs for the JOB dataset when trained with PostgreSQL’s cardinality estimates
(Figure 13a and 13b) and with true cardinalities (Figure 13c and 13d). Each plot shows histograms representing artificially adding 0, 2, and
5 orders of magnitude of random noise (error) to the cardinality estimates given to Neo. For query plans with 3 or fewer joins (13a and 13c),
Neo’s predictions vary when error is added. However, for query plans with more than 3 joins (13b and 13d), the model trained with
PostgreSQL’s estimates (13b) shows significantly less variance than the model trained with true cardinalities (13d). This is evidence that
Neo can learn to “trust” its inputs conditionally. Note that Neo does not receive explicit cardinality estimates in any other experiment.

-50

-40

-30

-20

-10

 0

 10

 20

1
6

b
1

7
d

1
7

a
1

7
c

1
7

f
6

d
*

1
7

e
2

5
c

1
8

a
2

0
a

8
a

1
8

c 6
f

1
7

b
3

0
c

2
5

a
*

7
a
*

1
6

c
1

9
d

1
6

d
7

c*
2

6
c

2
0

b
2

6
a
*

2
2

d
2

2
c

1
2

c
3

1
c

1
4

c
3

0
b

3
0

a
1

0
a
*

3
1

a
7

b
*

2
5

b
3

1
b

6
b

1
3

c
2

3
c

1
3

a
1

3
b

2
2

b
1

3
d

2
0

c* 2
d 2
c

2
6

b
1

4
b

1
6

a
1

1
c*

1
4

a
2

a
1

1
d

2
b

2
2

a
2

1
a

1
1

b
1

1
a
*

3
b

3
a

2
8

b
9

d
*

2
1

b
2

1
c

4
c

2
9

a
1

0
c

6
a

1
5

d
2

7
c

1
2

a
5

b 6
c

8
b

6
e

1
d

5
a 5
c

1
b

1
5

b
*

8
d

9
a
*

8
c

1
c

9
b
*

3
2

a 3
c

1
a

1
9

b
1

0
b

3
3

b
2

7
b
*

1
5

c
1

9
a

1
2

b
*

4
a

2
4

b
*

3
2

b
*

9
c* 4
b

2
7

a
1

9
c

2
8

c
3

3
c

2
9

c
3

3
a

2
9

b
2

3
a

1
5

a
2

3
b

2
8

a
1

8
b

2
4

a

D
iff

e
re

n
ce

 f
ro

m
 P

o
st

g
re

S
Q

L
(s

)

Query

Workload cost
Relative cost

Figure 14: Absolute difference in time for Neo and PostgreSQL plans for each JOB query after training for 100 iterations with workload vs.
relative cost functions (lower is better). Queries suffixed with * are part of the test set, and are never added to Neo’s experience.

1715

6.5 Value Network Accuracy
Neo’s value network is responsible for accurately predicting the

final latency of partial and complete query plans. We evaluated the
value network’s accuracy during training on the JOB dataset using
PostgreSQL. After each iteration, we measured the mean squared
error (MSE) of the value network’s prediction vs. the true latencies
of the plans produced (1) in the previous iteration and (2) in the
final iteration. Figure 12c shows the results. Initially, the value
network does a relatively poor job estimating the latencies of both
the previous iteration and the final iteration. However, as training
continues, the two curves converge. The convergence of the two
curves – the value network’s accuracy on the most recent iteration
vs. the last iteration – is indicative that the policy is becoming
stable [54], a desirable property that generally (but not nessecarily)
correlates with decreased runtime variance.

6.6 Search
Neo uses the trained value network to search for query plans until

a fixed-time cutoff (Section 4.2). Figure 12b shows how the perfor-
mance of a query with a particular number of joins (selected ran-
domly from the JOB dataset, executed on PostgreSQL) varies as the
search time is changed. Note that the x-axis skips some values (the
JOB dataset has no queries with 13 joins). Here, query performance
is given relative to the best observed performance. For example,
when the number of joins is 10, Neo found the best-observed plan
whenever the cutoff time was greater than 120ms. We also tested
significantly extending the search time (to 5 minutes), and found
that such an extension did not change performance regardless of
the number of joins in the query (up to 17 in the JOB dataset).

The relationship between the number of joins and sensitivity to
search time is unsurprising: queries with more joins have a larger
search space, and thus require more time to optimize. While 250ms
to optimize a query with 17 joins is acceptable in many scenarios,
other options [59] may be more desirable when this is not the case.

6.7 Row Vector Training Time
Neo builds its R-Vector encoding using the open source gen-

sim package [47]. Figure 11c shows the time taken to train row
vectors on each dataset, for both the “joins” (partially denormal-
ized) and “no joins” (normalized) variants [34]. The time to train a
R-Vector encoding is related to the size of the database. For the
JOB dataset (≈ 4GB), the “no joins” variant trains in under 10 min-
utes, whereas the “no joins” variant for the Corp dataset (≈ 2TB)
requires two hours to train. The “joins” variant takes significantly
longer to train, e.g. three hours (JOB) to over a day (Corp).

Building row vectors may be prohibitive in some cases. How-
ever, compared to Hist, we found that the “joins” variant (on av-
erage) resulted in 5% faster query times and that the “no joins”
variant (on average) resulted in 3% faster query times. Depending
on the multiprocessing level, query arrival rate, etc., row vectors
may “pay for themselves” quickly: for example, the training time
for the “joins” variant on the Corp dataset is “paid for” after 540
hours of query processing, since the row vectors speed up query
processing by 5% and require 27 hours to train. As the corporation
constantly executes 8 queries simultaneously, this amounts to just
three days. The “no joins” variant (improves performance by 3%,
takes 217 minutes to train) is “paid for” after just 15 hours.

We do not analyze the behavior of row vectors on a changing
database. It is possible that, depending on the database, row vectors
quickly become “stale”, or remain relevant for long periods of time.
New techniques [13,61] suggest that retraining word vector models
when the underlying data has changed can be done quickly, but we
leave investigating these methods to future work.

7. RELATED WORK
Query optimization has been studied for more than forty years [11,

51]. Yet, query optimization is still an unsolved problem [30],
especially due to the difficulty of accurately estimating cardinali-
ties [26, 27]. The LEO optimizer was the first to introduce the idea
of a query optimizer that learns from its mistakes [53]. In follow-
up work, CORDS [19] proactively discovered correlations between
any columns using data samples in advance of query execution.

Since proposed [60], deep learning is seeing traction in databases
research. For example, recent work [20, 57] showed how to ex-
ploit reinforcement learning for Eddies-style, fine-grained adap-
tive query processing. The SkinnerDB system [56] shows how
regret-bounded reinforcement learning can be applied to dynami-
cally improve the execution of an individual query in an adaptive
query processing system [56]. [43] used reinforcement learning to
build state representations of traditional optimizers. [44] offered
query-driven mixture models as an alternative to histograms and
sampling for selectivity learning. [22,28] proposed a deep learning
approach to cardinality estimation, specifically designed to capture
join-crossing correlations. Word2vec-style embeddings have been
applied to data exploration [14] and error detection [17]. The clos-
est works to ours are [25, 35], which proposed a learning based
approach exclusively for join ordering, and only for a given cost
model. The key contribution of Neo is that it provides an end-to-
end, continuously learning solution to the database query optimiza-
tion problem. Our solution does not rely on any hand-crafted cost
model or data distribution assumptions.

This paper builds on recent progress from our own team. Re-
JOIN [35] proposed a deep reinforcement learning approach for
join order enumeration, which was generalized into a broader vi-
sion in [36]. Decima [32] proposed a reinforcement learning-based
scheduler, utilizing a graph neural network. SageDB [23, 24] laid
out a vision towards building a new type of data processing system
that makes heavy used of learned components. This paper is one of
the first steps to realizing this overall vision.

8. CONCLUSIONS
This paper presents Neo, the first end-to-end learning optimizer

that generates highly efficient query execution plans using deep
neural networks. Neo iteratively improves its performance through
a combination of reinforcement learning and a search strategy. On
four database systems and three query datasets, Neo consistently
outperforms or matches existing commercial query optimizers (e.g.,
Oracle’s and Microsoft’s) which have been tuned over decades.

In the future, we plan to investigate methods for generalizing a
learned model to unseen schemas (using e.g. transfer learning [8]).
We are interested in measuring the performance of Neo when boot-
strapping from both more primitive and advanced commercial op-
timizers. Critically, Neo ignores many pieces of database state
that are critical to achieving optimal query performance: cache
state, concurrent queries, other applications on the same server, etc.
While traditional optimizers tend to ignore these factors as well,
Neo lays a foundation for building query optimizers that automat-
ically adapt to such external factors – doing so may only require
finding appropriate ways of encoding these factors as inputs to the
value network, or may require significantly more research.

9. ACKNOWLEDGMENTS
This research is supported by Google, Intel, and Microsoft as

part of the MIT Data Systems and AI Lab (DSAIL), NSF IIS 1815701,
NSF IIS Career Award 1253196, and an Amazon Research Award.
We also thank Tim Mattson (Intel) for his valuable feedback.

1716

10. REFERENCES
[1] Embedding tools,

https://github.com/parimarjan/db-embedding-tools.
[2] Ext-JOB queries, https://git.io/extended job.
[3] PostgreSQL database, http://www.postgresql.org/.
[4] T. Anthony, Z. Tian, and D. Barber. Thinking Fast and Slow

with Deep Learning and Tree Search. In Advances in Neural
Information Processing Systems 30, NIPS ’17, pages
5366–5376, 2017.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization.
arXiv:1607.06450 [cs, stat], July 2016.

[6] B. Babcock and S. Chaudhuri. Towards a Robust Query
Optimizer: A Principled and Practical Approach. In
Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, pages
119–130, New York, NY, USA, 2005. ACM.

[7] R. Bellman. A Markovian Decision Process. Indiana
University Mathematics Journal, 6(4):679–684, 1957.

[8] Y. Bengio. Deep Learning of Representations for
Unsupervised and Transfer Learning. In Proceedings of
ICML Workshop on Unsupervised and Transfer Learning,
ICML WUTL ’12, pages 17–36, June 2012.

[9] R. Bordawekar and O. Shmueli. Using Word Embedding to
Enable Semantic Queries in Relational Databases. In
Proceedings of the 1st Workshop on Data Management for
End-to-End Machine Learning (DEEM), DEEM ’17, pages
5:1–5:4, 2017.

[10] P. P. Brahma, D. Wu, and Y. She. Why Deep Learning
Works: A Manifold Disentanglement Perspective. IEEE
Transactions on Neural Networks and Learning Systems,
27(10):1997–2008, Oct. 2016.

[11] S. Chaudhuri. An Overview of Query Optimization in
Relational Systems. In ACM SIGMOD Symposium on
Principles of Database Systems, SIGMOD ’98, pages 34–43,
1998.

[12] R. Dechter and J. Pearl. Generalized Best-first Search
Strategies and the Optimality of A*. J. ACM, 32(3):505–536,
July 1985.

[13] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. H. Hovy, and
N. A. Smith. Retrofitting Word Vectors to Semantic
Lexicons. In The 2015 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL ’15, pages
1606–1615, 2015.

[14] R. C. Fernandez and S. Madden. Termite: A System for
Tunneling Through Heterogeneous Data. In AIDM @
SIGMOD 2019, aiDM ’19, 2019.

[15] L. Giakoumakis and C. A. Galindo-Legaria. Testing SQL
Server’s Query Optimizer: Challenges, Techniques and
Experiences. IEEE Data Eng. Bull., 31:36–43, 2008.

[16] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier
Neural Networks. In G. Gordon, D. Dunson, and M. Dudı́k,
editors, Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics,
volume 15 of PMLR ’11, pages 315–323, Fort Lauderdale,
FL, USA, Apr. 2011. PMLR.

[17] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas.
HoloDetect: Few-Shot Learning for Error Detection.
arXiv:1904.02285 [cs], Apr. 2019.

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,
B. Piot, D. Horgan, J. Quan, A. Sendonaris,
G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and

A. Gruslys. Deep Q-learning from Demonstrations. In
Thirty-Second AAAI Conference on Artifical Intelligence,
AAAI ’18, New Orleans, Apr. 2017. IEEE.

[19] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic Discovery of Correlations and Soft
Functional Dependencies. In ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages
647–658, 2004.

[20] T. Kaftan, M. Balazinska, A. Cheung, and J. Gehrke.
Cuttlefish: A Lightweight Primitive for Adaptive Query
Processing. arXiv preprint, Feb. 2018.

[21] D. P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. In 3rd International Conference for Learning
Representations, ICLR ’15, San Diego, CA, 2015.

[22] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and
A. Kemper. Learned Cardinalities: Estimating Correlated
Joins with Deep Learning. In 9th Biennial Conference on
Innovative Data Systems Research, CIDR ’19, 2019.

[23] T. Kraska, M. Alizadeh, A. Beutel, Ed Chi, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and
Vikram Nathan. SageDB: A Learned Database System. In
9th Biennial Conference on Innovative Data Systems
Research, CIDR ’19, 2019.

[24] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.
The Case for Learned Index Structures. In Proceedings of the
2018 International Conference on Management of Data,
SIGMOD ’18, pages 489–504, New York, NY, USA, 2018.
ACM.

[25] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and
I. Stoica. Learning to Optimize Join Queries With Deep
Reinforcement Learning. arXiv:1808.03196 [cs], Aug. 2018.

[26] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. How Good Are Query Optimizers, Really?
PVLDB, 9(3):204–215, 2015.

[27] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. Query optimization through
the looking glass, and what we found running the Join Order
Benchmark. The VLDB Journal, pages 1–26, Sept. 2017.

[28] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte.
Cardinality Estimation Using Neural Networks. In
Proceedings of the 25th Annual International Conference on
Computer Science and Software Engineering, CASCON ’15,
pages 53–59, Riverton, NJ, USA, 2015. IBM Corp.

[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi.
A survey of deep neural network architectures and their
applications. Neurocomputing, 234:11–26, Apr. 2017.

[30] G. Lohman. Is Query Optimization a ‘”Solved” Problem? In
ACM SIGMOD Blog, ACM Blog ’14, 2014.

[31] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’15, June 2015.

[32] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng,
and M. Alizadeh. Learning Scheduling Algorithms for Data
Processing Clusters. arXiv:1810.01963 [cs, stat], 2018.

[33] G. Marcus. Innateness, AlphaZero, and Artificial
Intelligence. arXiv:1801.05667 [cs], Jan. 2018.

[34] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: Towards
A Learned Query Optimizer. arXiv:1904.03711 [cs], Apr.
2019.

1717

[35] R. Marcus and O. Papaemmanouil. Deep Reinforcement
Learning for Join Order Enumeration. In First International
Workshop on Exploiting Artificial Intelligence Techniques for
Data Management, aiDM ’18, Houston, TX, 2018.

[36] R. Marcus and O. Papaemmanouil. Towards a Hands-Free
Query Optimizer through Deep Learning. In 9th Biennial
Conference on Innovative Data Systems Research, CIDR
’19, 2019.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
Estimation of Word Representations in Vector Space.
arXiv:1301.3781 [cs], Jan. 2013.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
and G. Ostrovski. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

[39] G. Moerkotte, T. Neumann, and G. Steidl. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation
Errors. PVLDB, 2(1):982–993, 2009.

[40] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional
Neural Networks over Tree Structures for Programming
Language Processing. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI ’16, pages
1287–1293, Phoenix, Arizona, 2016. AAAI Press.

[41] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,
G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
Learning for Entity Matching: A Design Space Exploration.
In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 19–34, New
York, NY, USA, 2018. ACM.

[42] B. Nevarez. Inside the SQL Server Query Optimizer. Red
Gate books, Mar. 2011.

[43] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi.
Learning State Representations for Query Optimization with
Deep Reinforcement Learning. In 2nd Workshop on Data
Managmeent for End-to-End Machine Learning, DEEM ’18,
2018.

[44] Y. Park, S. Zhong, and B. Mozafari. QuickSel: Quick
Selectivity Learning with Mixture Models.
arXiv:1812.10568 [cs], Dec. 2018.

[45] M. Poess and C. Floyd. New TPC Benchmarks for Decision
Support and Web Commerce. SIGMOD Records,
29(4):64–71, Dec. 2000.

[46] A. G. Read. DeWitt clauses: Can we protect purchasers
without hurting Microsoft. Rev. Litig., 25:387, 2006.

[47] R. Řehůřek and P. Sojka. Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks,
LREC ’10, pages 45–50. ELRA, May 2010.

[48] S. Schaal. Learning from Demonstration. In Proceedings of
the 9th International Conference on Neural Information
Processing Systems, NIPS’96, pages 1040–1046, Cambridge,
MA, USA, 1996. MIT Press.

[49] M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert,
and E. Yoneki. LIFT: Reinforcement Learning in Computer
Systems by Learning From Demonstrations.
arXiv:1808.07903 [cs, stat], Aug. 2018.

[50] J. Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, Jan. 2015.

[51] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In J. Mylopolous and

M. Brodie, editors, SIGMOD ’89, SIGMOD ’89, pages
511–522, San Francisco (CA), 1989. Morgan Kaufmann.

[52] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and
tree search. Nature, 529(7587):484–489, Jan. 2016.

[53] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s LEarning Optimizer. In VLDB, VLDB ’01, pages
19–28, 2001.

[54] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition,
1998.

[55] N. Tran, A. Lamb, L. Shrinivas, S. Bodagala, and J. Dave.
The Vertica Query Optimizer: The case for specialized query
optimizers. In 2014 IEEE 30th International Conference on
Data Engineering, ICDE ’14, pages 1108–1119, Mar. 2014.

[56] I. Trummer, S. Moseley, D. Maram, S. Jo, and
J. Antonakakis. SkinnerDB: Regret-bounded Query
Evaluation via Reinforcement Learning. PVLDB,
11(12):2074–2077, 2018.

[57] K. Tzoumas, T. Sellis, and C. Jensen. A Reinforcement
Learning Approach for Adaptive Query Processing.
Technical Reports, June 2008.

[58] L. van der Maaten and G. Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research,
9(Nov):2579–2605, 2008.

[59] F. Waas and A. Pellenkoft. Join Order Selection (Good
Enough Is Easy). In Advances in Databases, BNCD ’00,
pages 51–67. Springer, Berlin, Heidelberg, July 2000.

[60] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and
K.-L. Tan. Database Meets Deep Learning: Challenges and
Opportunities. SIGMOD Rec., 45(2):17–22, Sept. 2016.

[61] L. Yu, J. Wang, K. R. Lai, and X. Zhang. Refining Word
Embeddings Using Intensity Scores for Sentiment Analysis.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 26(3):671–681, Mar. 2018.

[62] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros,
O. Wang, and E. Shechtman. Toward Multimodal
Image-to-Image Translation. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, NIPS ’17, pages 465–476. Curran
Associates, Inc., 2017.

[63] S. Zilberstein. Using Anytime Algorithms in Intelligent
Systems. AI Magazine, 17(3):73–73, Mar. 1996.

1718

