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Abstract There are many academic and commercial stream
processing engines (SPEs) today, each of them with its own
execution semantics. This variation may lead to seemingly
inexplicable differences in query results. In this paper, we
present SECRET, a model of the behavior of SPEs. SECRET
is a descriptive model that allows users to analyze the behav-
ior of systems and understand the results of window-based
queries (with time- and tuple-based windows) for a broad
range of heterogeneous SPEs. The model is the result of
extensive analysis and experimentation with several com-
mercial and academic engines. In the paper, we describe the
types of heterogeneity found in existing engines and show
with experiments on real systems that our model can explain
the key differences in windowing behavior.
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1 Introduction

Stream computing is passing from the domain of pure
research into the real world of commercial systems. Many
research projects (e.g., [1,6,17], and others) have shown how
data can be processed as it pours into a system from a diver-
sity of sources such as sensors, online transactions, and other
feeds. Each system proposed its own set of operators, win-
dowing constructs, and, in some cases, whole new query
languages (e.g., [2,10]). As these systems have been com-
mercialized [7,25,26], they have added features to meet the
needs of their own customers. There are no standards today
for querying streams; each system has its own semantics and
syntax. For the purchaser or user of an SPE, the choices
are confusing. Without a clear understanding of features and
semantics, applications are not portable and can be hard to
build, even on a given SPE.

Even common capabilities may be expressed differently
by different SPEs. For example, both StreamBase [25] and
Coral8 [7] allow time-based windows where a window is
defined by an interval size (in units of time) and where dif-
ferent windows are separated by a slide value that specifies
how many units of time separate the start of different con-
secutive windows. To specify such a window in StreamBase,
the user has to write “[SIZE x ADVANCE y TIME]”.
In Coral8, the same function is requested with the “KEEP
x SECONDS” clause. StreamBase allows an arbitrary slide
value for a window (specified by the ADVANCE clause);
Coral8 only permits two values: 1 time unit or a slide that is
equal to the window size. Worse yet, the underlying seman-
tics of such common features as windows is often radically
different. Even if we set window size and slide to the same
values in Coral8 and StreamBase, we can get different query
results due to hidden differences in their query execution
models.
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Recently, a few abstract models for streams and windows
have been proposed [13,14,20], for the most part not asso-
ciated with any existing system. These models define only
a portion of the behavior expected of an SPE. While they
are useful as guides to future SPE developers, they do little
to help users understand existing SPEs, and even less for
comparing or explaining the behaviors of different SPEs.

We have proposed a general model, SECRET [5], for
describing and predicting the behavior of these diverse sys-
tems. Our model is a descriptive model, not another execution
model. It strives to explain, and to allow the comparison of,
the differing behaviors found in existing SPEs. The model is
the result of detailed analysis and experimentation with a set
of real commercial and academic systems. We believe that
our unique approach of creating a descriptive and explana-
tory model offers significant benefits to potential users of
stream systems, both before and after they choose an engine
for building their applications.

In this paper, we extend SECRET with tuple-based win-
dows and add a new commercial system, Oracle CEP [19]
to the experiments. These extensions are added with careful
and minimal changes to the base model, staying loyal to its
core design principles. We preserve the four basic dimensions
of SECRET, but reformulate their definitions to capture a
new behavior of Oracle CEP, and to support tuple-based win-
dows, taking into account the change in windowing domain
(from time to tuple-id’s) as well as the “evaporating tuples”
[12] behavior of time-driven SPEs. Last but not least, we
present a wide range of experiments systematically showing
that SECRET can correctly predict SPEs’ time- and tuple-
based window execution semantics under various input and
query settings. These changes validate SECRETs extensibil-
ity, expressivity, and simplicity.

The next section illustrates the differences in features and
semantics of several SPEs. With these differences as moti-
vation, Sect. 3 presents the basics of our proposed model,
SECRET. We detail SECRET for time-based windows in
Sect. 4 and for tuple-based windows in Sect. 5. Section 6
demonstrates, through an extensive set of examples run on
different engines, how our model predicts the results that sim-
ilar queries will generate for the different systems. In Sect. 7,
we provide an assessment of SECRET’s design principles as
well as discussing its potential extensions and uses. Related
work is covered in Sect. 8. Finally, we conclude in Sect. 9
with a discussion of future work.

2 Motivation

Heterogeneity across SPEs comes in three forms:

1. Syntax heterogeneity: Since there is no standard lan-
guage for stream processing, different SPEs use different lan-

guage clauses (keywords) to define common constructs (e.g.,
windows).
2. Capability heterogeneity: SPEs vary in their support for
different query types. This variance is also exposed at the
language syntax level. For example, Coral8 offers a clause
that controls how often a query result should be emitted, a
feature we have not encountered in any other system.
3. Execution model heterogeneity: Below the language
level, hidden from application developers, each SPE exe-
cutes queries based on an underlying query execution model.
Differences in these models are subtle and hence may be
especially confusing. As a result, we focus on analyzing the
execution semantics of SPEs in this paper.

To motivate the type of descriptive model we propose,
consider the following three examples, defined on a simple
input stream InStream(Time, Val) of tuples. Time
represents the application timestamp of the tuple in seconds,
andVal, an integer value, represents the content of the tuple.
Our queries compute an average over Val, and OutSt-
ream(Avg) is the output stream containing the results of
the query.

Example 1 Differences in window construction

Consider a query which continuously computes the average
value of the tuples in the input stream using a time-based
tumbling window of size 3 s.1 We ran this query in two dif-
ferent SPEs: Oracle CEP [19] and StreamBase [25], with the
following results:

Intuitively, we expected to see the result of Oracle CEP
in both engines (i.e., the first three tuples belong to the first
window, the next three to the second window, etc.). However,
StreamBase produced a different result (i.e., the first two
tuples belong to the first window, the next three to the second
window, etc.). Given the simplicity of the input and the query,
this points to an important difference in the way these engines
construct their windows.

Example 2 Differences in window evaluation

Consider a query which continuously computes the average
value of tuples over a time-based window of size 5 s that slides
by 1 s. We ran this query in four different SPEs: Coral8 [7],
Oracle CEP [19], STREAM [23], and StreamBase [25], with
the following results:

1 In a tumbling window, the size of the window is equal to its slide.
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StreamBase produced a different result than the other
SPEs. Why? In Coral8, Oracle CEP, and STREAM, the aver-
age operator is invoked on a window whenever the window’s
content changes (i.e., when a tuple is added to or expires
from the window), whereas in StreamBase, the invocation
happens every second, even if the tuple content of the win-
dow stays the same. As a result, the first two input tuples are
aggregated multiple times in StreamBase as opposed to once
in the other SPEs. Thus, the evaluation strategy used by an
SPE is another important factor affecting the query results.

Example 3 Differences in processing granularity
Consider a query which computes the average value of tuples
over a tuple-based tumbling window of size 1 tuple.We ran
this query in the same four SPEs with the following results:

We observed two different result sets. Coral8 and Stream-
Base produced a result for every tuple, while Oracle CEP and
STREAM produced results for only a subset of the tuples.
Why? Coral8 and StreamBase react to each tuple arrival
separately and produce a result, whereas Oracle CEP and
STREAM react to each application timestamp, choosing a
single tuple with that timestamp in this example, since the
window size is 1. Simply, the same query is executed as
“compute an average value for every tuple” in Coral8 and
StreamBase, and “compute an average value for the most
recent tuple” in Oracle CEP and STREAM, leading to dif-
ferent results. Thus, the processing granularity used by an
engine is another important factor affecting the query result.

The examples above (selected from many we have ana-
lyzed) show that we need a way to understand, express, and
predict the query execution behaviors of different SPEs. Our
model, SECRET, takes up this challenge.

3 SECRET model basics

This section introduces our model. We start by defining
some basic terms and then give an overview of the model.
Sections 4 and 5 will go into detail for time- and tuple-based
windows, respectively.

We start with definitions for a set of basic stream process-
ing concepts and constructs that we use in our model, together
with any relevant assumptions we make.

Definition 1 (Time Domain) The time domain T is a discrete,
linearly ordered, countably infinite set of time instants t ∈ T.
We assume that T is bounded in the past, but not necessarily

in the future. In order to simplify time arithmetic, we will
also assume that the time domain is the domain of integers
(T = Z).

Definition 2 (Stream) A stream S is a countably infinite set
of elements s ∈ S. Each stream element s : 〈v, tapp, t sys,

t id, bid〉 consists of a relational tuple v conforming to a
schema S, with an application time value tapp ∈ T, a system
time value t sys ∈ T, a tuple-id value t id ∈ N

+, and a batch-id
value bid ∈ N

+ (see below for the definition of “batch”). We
use the notation s.tapp, s.t sys , s.t id, and s.bid to denote the
application time value, system time value, tuple-id value, and
batch-id value of stream element s, respectively. We assume
that elements of a stream S are totally ordered by their t sys

and t id values (where the two orderings should agree with
each other), while they are partially ordered by their tapp and
bid values.

In the above definition (as in related work [22]), we
have used two different notions of time: “application time”
(tapp) and “system time” (t sys). These both take values
from our time domain T, but carry two different mean-
ings, and therefore are used for two different purposes
in our model.The value tapp captures the time informa-
tion that is associated with the occurrence of the applica-
tion event that a stream element represents (usually pro-
vided by the data source) and therefore will be used as the
basis for query execution over the stream, whereas t sys cap-
tures the time information that is associated with the occur-
rence of the related system event (arrival of the correspond-
ing stream element at the system) and therefore will be
used as the basis for reasoning about tuple arrival events
in the system and how the system should react to them.
Elements in a stream are assigned unique t sys values, but
multiple elements can share the same tapp value. There-
fore, streams are totally ordered by the t sys values of their
elements, whereas they are partially ordered by their tapp

values. Similarly, elements in a stream are assigned unique
t id values, and therefore, streams are totally ordered by the
t id values of their elements.
Definition 3 (Batch) A batch B of stream elements for a
given stream S is a finite subset of S, where all b ∈ B have
an identical tapp. Each such batch is given a unique batch-id
bid ∈ N such that, for all b ∈ B, b.bid = bid, indicating that
b belongs to the batch that is uniquely identified by bid. For
tuples t1 and t2 where t1.t sys < t2.t sys , then t1.bid ≤ t2.bid.

Batches are used to define a further ordering among simul-
taneous tuples [12]. By definition, all tuples in a given batch
have the same tapp value, but that does not mean that all
tuples with the same tapp value are in the same batch. For
example, we can have four tuples with tapp = 5 in two con-
secutive batches of two tuples each. Therefore, a new batch
can arrive without tapp advancing. This implies that streams
are also partially ordered by their bid values.
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Definition 4 (Window) A window W over a stream S is a
finite subset of S.

Windows can be defined in many ways. In this paper,
we will mainly focus on “time-based windows” and “tuple-
based windows”. In time-based windows, stream elements
whose tapp values fall into a certain tapp interval constitute a
window. Likewise, in tuple-based windows, stream elements
whose t id values fall into a certain tid interval constitute a
window. More formally:

Definition 5 (Time-based Window) A time-based window
W = (o, c] over a stream S is a finite subset of S containing
all data elements s ∈ S where o, c ∈ T and o < s.tapp ≤ c.

Definition 6 (Tuple-based Window) A tuple-based window
W = (o, c] over a stream S is a finite subset of S containing
all data elements s ∈ S where o, c ∈ Z and o < s.tid ≤ c.

In general, systems do not process arbitrary sets of win-
dows, but rather require the windows to have a specific rela-
tionship to each other defined by two parameters, size (ω)
and slide (β). More formally:

Definition 7 (Window Size and Slide) The set W of all win-
dows defined over a stream S must satisfy the following three
constraints:

1. Size(ω): All windows must be the same size. That is:
For time-based windows where o, c, ω ∈ T and ω > 0,
∀ W = (o, c] ∈ W, c−o = ω. For tuple-based windows
where o, c, w ∈ Z and ω > 0, ∀ W = (o, c] ∈ W,
c − o = ω.

2. Slide(β): The distance between consecutive windows
must be the same. For two windows W1 = (o1, c1] and
W2 = (o2, c2], we require that o1 �= o2. Furthermore,
we say W1 and W2 are consecutive if o1 < o2 and there
is no window W ′ = (o′, c′] such that o1 < o′ < o2. For
all consecutive windows W1 and W2 in W, we require
that: For time-based windows where o2, o1, β ∈ T and
β > 0, o2 − o1 = β. For tuple-based windows where
o2, o1, β ∈ Z and β > 0, o2 − o1 = β.

3. Slide should not be greater than size (β ≤ ω).

At tapp = t , we say a time-based window W = (o, c] is
open, if o < t ≤ c. A window is closed, if c < t . Similarly,
at tid = i , we say a tuple-based window W = (o, c] is open,
if o < i ≤ c. A window is closed, if c < i .

We are now ready to describe our model. We named
our model SECRET, as it captures window-based query
execution semantics along four complementary dimensions:
ScopE, Content, REport, and Tick. Given a query’s window
parameters, ScopE provides information about potential win-
dow intervals. Content then helps us map those intervals into
actual window contents, for a given input stream. REport
states under what conditions those window contents become

Fig. 1 SECRET of a query plan

visible to the query processor for evaluation. Finally, Tick
models what drives an SPE to take action on a given input
stream. Tick is the actual entry point to the control loop of our
model, creating a chain reaction by invoking Report, which
in turn invokes Content, which builds on Scope (Tick →
REport → Content → ScopE).

We have designed SECRET based on a number of prin-
ciples. First of all, SECRET must be expressive so that it
can capture the key behaviors of a broad range of stream
systems. Second, it should be simple (i.e., easy to under-
stand and to apply, avoiding complicated and redundant fea-
tures). Third, the features should be orthogonal to each other.
Furthermore, SECRET should be extensible, offering the
ability to add new features if necessary as new SPEs or query
types are encountered. Finally, for clarity, we want our model
to separate the operational aspects of how the SPE processes
streams from the non-procedural effects of that processing.
For example, we should be able to talk about how windows
are formed independently of their content. By contrast, when
the system chooses to evaluate results depends heavily on its
processing model. The model should also make a clear sep-
aration between data-level issues (e.g., values in a stream),
query-level issues (e.g., window size) and system-level issues
(e.g., when the engine takes an action).

Figure 1 illustrates how we use SECRET to explain the
semantics of a given query plan. SECRET is compositional
in the same way a query plan is composed of a sequence of
operators. We next define each of the SECRET parameters
in detail, first for time-based windows (Sect. 4) and then for
tuple-based windows (Sect. 5).

4 SECRET for time-based windows

We define the SECRET parameters from Scope to Tick.

4.1 Scope

For a query q, the function Scope maps an application time
value t to an interval over which q should be evaluated. We
define the active window at time t as the open window at t
with the earliest start time.

We assume a value t0 ∈ T that denotes the application
time instant of the start of the very first window in a given
system. Its value is system specific, since different systems
use a different starting point for their application time line.

123



Modeling the execution semantics of stream processing engines with SECRET 425

Hence, the initial window (W0) starts at time t0, the next one
(W1) starts at time t0 + β, and window i (Wi ) starts at time
t0 + iβ. Let Wi = (oi , ci ] be the i th window in W.

The index of the active window at time t , n, is given by:

n = max(0, 
 t − t0 − ω

β
�)

This formula is obtained as follows: W0 closes at t0 + ω;
W1 closes at t0 + ω + β; and Wn closes at time t0 + ω + nβ.
At time t , we are interested in the earliest open window,
which is the smallest n that satisfies t ≤ t0 + ω + nβ (i.e.,
n > (t − t0 − ω)/β). Intuitively, n = 0 if the first window
that opened at t0 (and to be closed at t0 + ω) is still open.
Otherwise, a new window has been opened every β time
units. Then to find n for the earliest open window at t , we
need to divide the total elapsed time since the close of the
first window (i.e., t − (t0 + ω)) by β (and round it up to get
a whole number).

Hence, the start time of Wn = (on, cn] is on = t0 + nβ,
and Scope at time t (Scope : T → (T, T]) is defined as
follows:

Scope(t) =
{

∅ if t < t0
(on, t] otherwise

Figure 2 illustrates our Scope formulation for time-based
windows. As a simple example, assume we have a query q
with a window of size 5 s and of slide 2 s, to be run on a
system with t0 of 30 s. Then the window scope at t = 34 s is
Scope(34) = (30, 34], since n = 0 and o0 = 30.

There are a few important points to note about Scope:
1. The scope of a window for a given application time

solely depends on an SPE’s t0 parameter and the query’s
window parameters (which define W). All these parameters
are non-operational.

2. During our analysis, we observed that systems may
interpret the window slide value in two different ways, lead-
ing to two different window construction mechanisms. Some
construct their windows at every slide in the backward direc-
tion, i.e., every new slide signals the end of a window which
started ω time units ago [2,20]. Others construct their win-
dows at every slide in the forward direction, so every new
slide signals the beginning of a new window [1,25]. The
window scopes produced for these two alternative interpreta-
tions differ only by a fixed amount δ, and therefore, one can
choose one of these models and calibrate the starting time
of the very first window t0 by δ in case the other model’s

Fig. 2 Scope of a time-based window

behavior is desired. As a result, t0 is allowed to take negative
values.

3. Our Scope formula focuses on the time interval for the
active window. This is one of many ways one could define
Scope. Some previous work defines Scope to be the time
interval for the most recently closed window [2,20]. One
could also define Scope as the set of intervals for all open
windows. We need a general and flexible Scope definition
that could be used to explain the behavior of systems that
report their results on partial windows as well as those that
do so on closed windows only.

In SECRET, we use the forward interpretation of slide,
since it is finer grained than its backward counterpart and
therefore enables reporting of partial as well as full windows.

4.2 Content

Scope defines the interval for query evaluation at application
time t . Content specifies the set of elements of stream S that
are in this scope. As such, Content makes the mapping from
the application time interval of a window to a set of data
elements. We can formally define the content of a time-based
window (Content : T × T → S) at application time instant
t and system time instant τ as follows:

Content (t, τ ) = {s ∈ S : s.tapp ∈ Scope(t) ∧ s.t sys < τ }

Note that unlike Scope, the result of Content depends
on actual contents of the input stream, which only become
available at run time. Therefore, Content (t, τ ) may return
different results for the same t value, depending on how much
of the input stream is already available (determined by τ )
when it is invoked.

4.3 Report

The Report dimension in our model defines the conditions
under which the window contents become visible for fur-
ther query evaluation and result reporting. SPEs use different
reporting strategies as illustrated in Example 2 of Sect. 2. We
have identified four basic reporting strategies.

1. Content change (Rcc): reporting is done for application
time t , only if the content has changed since last report-
ing. Given a specific system time instant τ , we represent
last reporting as of τ with a pair < tapp, t sys > that cor-
responds to the most recent Report invocation that the
reporting condition was satisfied. More formally:

last_rep(τ ) = max_pair{< x, y > |
y ≤ τ ∧ Report (x, y). second = 1}
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Fig. 3 Tick models for time-based windows

where, given a set P of unique < tapp, t sys > pairs,
max_pair returns the most recent of them based on the
following:

max_pair(P) =
{

max_pair_ne(P) ifP �= ∅
< t0, τ0 > otherwise

max_pair_ne(P) = {p ∈ P| ∀p′ ∈ P, p′ �= p ∧
(p′.tapp < p.tapp ∨
(p′.tapp = p.tapp ∧ p′.t sys < p.t sys))}

Above, τ0 represents an initial system time value that
is smaller than the t sys of the very first tuple in the
stream.

2. Window close (Rwc): reporting is done for application
time t , only when the active window closes.

3. Non-empty content (Rne): reporting is done for applica-
tion time t , only if the content at t is not empty.

4. Periodic (Rpr ): reporting is done for application time t ,
only if it is a multiple of a given reporting frequency, λ.

Furthermore, some systems use multiple strategies (e.g.,
the content must have changed and be non-empty). Hence,
we will use four boolean variables (Rcc, Rwc, Rne, Rpr ),
each of which can be set to true or false by a system. When
all four variables are false, it is interpreted as there is no
condition on reporting; therefore reporting of Content (t, τ )

takes place every time it is triggered by the previous step
of the model. This is the default behavior in our SECRET
model.

Given the above, we define Report for time-based
windows (Report : T × T → S × N) as follows:

Report (t, τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Content (t, τ ), 1) if (¬Rcc ∨ Content (t, τ ) �= Content (

last_rep(τ ).tapp, last_rep(τ ).t sys ))

∧(¬Rwc ∨ (|Scope(t)| = ω∧
t < max{s.tapp |s ∈ S ∧ s.t sys ≤ τ }))
∧(¬Rne ∨ Content (t, τ ) �= ∅)

∧(¬Rpr ∨ mod(t, λ) = 0)

(∅, 0) otherwise

Report returns a pair of values (a,b), (a) content of the
window or empty set and (b) whether the reporting condition
is satisfied (1) or not (0). Please note that the latter values is
required in the last rep formula of the content-change report-
ing strategy (Rcc).

4.4 Tick

Tick defines the condition which drives an SPE to take action
on its input (also referred to as “window state change” or
“window re-evaluation” [12]). Like Report , T ick is part of a
system’s internal execution model. While some systems react
to individual tuples as they arrive, others collectively react to
all or subsets of tuples with the same tapp value. During our
analysis, we have identified three main ways that systems
“tick”: (a) tuple-driven, where each tuple arrival causes a
system to react; (b) time-driven, where the progress of tapp

causes a system to react; (c) batch-driven, where either a new
batch arrival or the progress of tapp causes a system to react.2

These different Tick behaviors for time-based windows are
illustrated in Fig. 3. We show two time lines for t sys and
tapp. Tuple arrivals are shown on the time line for t sys , and
window scopes are shown underneath, on the time line for
tapp. Circles around the tuples show the units of tuples that
the system will react to at one time, whereas the arrows show
to which application time instant those units belong. Note
that the tuples are the same in all three figures and that the
four tuples in the middle have the same tapp value.

The tick models described above are based on the detec-
tion of three events: new tuple arrival, the progress of appli-
cation time, and new batch arrival. The detection of each of
these events is really based on the detection of new tuple
arrival, since both application time information as well as
batch-id information are carried in the tuples. Every new
tuple arrival can only be uniquely detected if we check
whether the stream has a tuple corresponding to every system
time instant (for which there can be either one or none).

Two key ideas helped us structure our formulation:

1. At every tick, SECRET needs to check the report-
ing condition. However, since T ick operates on system
time units and Report for time-based windows oper-
ates also on application time units, we need a mapping
between them. We achieve this mapping with five map-
ping functions (app, prev_app, batch, prev_batch,
and prev_t ick). The mapping is purely based on what
is observed in the input stream and not on any synchro-
nization assumption between t sys and tapp time lines.

2 Remember from Definition 3 that a new batch can arrive without tapp

advancing.
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2. Since tick events can only be detected at new tuple
arrivals, this will be a basic condition in our formula-
tion. We must be able to account for irregularities in tuple
arrival such as simultaneous tuples (i.e., multiple tuples
with a common tapp) and gaps (i.e., absence of tuples
at certain tapp). To detect simultaneous tuples, we need
to be able to compare the current tapp with the previous
tick time. To handle gaps, the arrival of a new tuple with
tapp causes all application time instants between tapp and
the previous tick time to invoke Report so that we do not
miss any important application time instants. This is why
we need mapping functions that map current instants as
well as previous ones.

First, we define S(τ ) and SI (τ ) as follows:

S(τ ) denotes the set of tuples in stream S that has arrived
through time instant τ .

S(τ ) = {s ∈ S|s.t sys ≤ τ }
SI (τ ) denotes the set of tuples in stream S that has arrived
at time instant τ . There can be at most one such tuple.

SI (τ ) = {
s ∈ S|s.t sys = τ

}
We use the following mapping functions to define T ick
for time-based windows:

app(τ ): Given a system time instant τ , returns the appli-
cation time value of the tuple that has arrived at τ .

app(τ ) = {s.tapp|s ∈ SI (τ ) ∧ SI (τ ) �= ∅}
prev_app(τ ): Given a system time instant τ , returns the
application time value of the most recent tuple that has
arrived before τ . If no such tuple exists, it returns t0.

prev_app(τ ) = max(max{t0, s.tapp|s ∈ S(τ − 1)})
batch(τ ): Given a system time instant τ , returns the
batch-id value of the tuple that has arrived at τ .

batch(τ ) = max{s.bid|s ∈ SI (τ )}
prev_batch(τ ): Given a system time instant τ , returns
the batch-id value of the most recent tuple that has arrived
before τ . If no such tuple exists, it returns b0 (where b0

represents an initial batch-id value that is smaller than
the bid of the very first tuple in the stream).

prev_batch(τ ) = max(b0, max{s.bid|s ∈ S(τ − 1)})
prev_t ick(τ ): Given a system time instant τ , returns the
application time value of the most recent tuple that has
arrived before τ for which the result of the tick was non-
empty. If no such tuple exists, it returns t0.

prev_t ick(τ )

= {max(t0, app(max(x |x < τ ∧ T ick(x) �= ∅)))}

Based on the above, we will now formulate the T ick :
T → {S} of time-based windows for each tick model.
All formulas follow a similar structure.

In a tuple-driven system, Tick is triggered under two con-
ditions: (i) if a tuple arrives whose tapp is the same as the
previous tick time, or (ii) if a tuple arrives whose tapp is
greater than the previous tick time. The former ensures that
the system reacts to each tuple in a simultaneous sequence,
whereas the latter ensures that the system also reacts to the
application time instants where there might be a gap.

T ick(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{Report (app(τ ), τ ). f irst} if SI (τ ) �= ∅∧
prev_tick(τ ) = app(τ )⋃x<app(τ )

x=prev_tick(τ ) Report (x, τ ). f irst if SI (τ ) �= ∅∧
app(τ ) > prev_tick(τ )

∅ otherwise

In a time-driven system, there is no need to react to each
tuple in a simultaneous sequence separately, and therefore,
the first condition in the tuple-driven case is skipped. On the
other hand, the second condition needs to be triggered if a
tuple with a new tapp arrives (which means that tapp has
advanced, to which the system must react).

T ick(τ ) =

⎧⎪⎨
⎪⎩

⋃x<app(τ )

x=prev_tick(τ ) Report (x, τ ). f irst if SI (τ ) �= ∅∧
app(τ ) > prev_app(τ )

∅ otherwise

Finally, a batch-driven system acts like a modified tuple-
driven system. We need to check both the condition for simul-
taneous tuples as well as for a tuple with a new tapp arriving.
The only difference is that we need to additionally check if
the new tuple arrival initiates a new batch by checking if the
new batch-id is greater than the previous one.

T ick(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Report (app(τ ), τ ). f irst} if SI (τ ) �=∅∧
prev_tick(τ )=app(τ )∧
batch(τ )> prev_batch(τ )⋃x<app(τ )

x=prev_tick(τ ) Report (x, τ ). f irst if SI (τ ) �= ∅∧
batch(τ )> prev_batch(τ )

∅ otherwise

In Table 1, we present a sample trace of the model for the
scenario shown in Fig. 3.

The table shows when each of the three models triggers
Report and with which time values. The time-driven model
invokes Report only when time advances, once for each time
point including the gap time (tapp = 3). The tuple-driven
model invokes Report at every new tuple arrival. Finally,
the batch-driven model invokes Report at every new batch
arrival as well as time advance (tapp = 3).

5 SECRET for tuple-based windows

In this section, we will formally define the four SECRET
dimensions for tuple-based windows. The core structure of
our model stays the same, but the change in window domain
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Table 1 Tick example for time-based windows

Table 2 Time-based versus
tuple-based: number and
granularity of report invocations
per window domain value

requires us to formalize the dimensions slightly differently.
We first discuss the conceptual differences and then present
the formulas.

5.1 From time-based to tuple-based

The main structural difference between time- and tuple-based
windows is the change in window domains. For time-based
windows, windows are defined in terms of application time
units, and therefore, window size and slide take values from
the tapp domain. For tuple-based windows, windows are
defined in terms of number of tuples, and therefore, window
size and slides take values from the tid domain. This change
will directly affect the Scope formulation and indirectly the
Content that builds on Scope. The Tick and Report dimen-
sions in SECRET are affected in more subtle ways due to the
interplay between window domains (time-based vs. tuple-
based) and tick domains (time-driven vs. tuple-driven).3

Through Tick, SECRET maps tuples from the domain
of tuple arrival events (i.e., the t sys domain) to the window
domain over which the query operates (i.e., the tapp domain
for time-based windows and the tid domain for tuple-based
windows). This mapping defines the number and granular-
ity of Report invocations per window domain value. This is
where the two window domains lead to an important differ-
ence (Table 2). For time-based windows, tuple-driven Tick
may invoke Report one or more times per tapp value, includ-
ing once for each simultaneous tuple as well as once for
every gap; time-driven Tick invokes Report exactly once
per tapp value, including once for every gap as well; and
batch-driven Tick may invoke Report one or more times per
tapp value, including once for each batch as well as once for
every gap. On the other hand, for tuple-based windows, time-
driven and batch-driven Tick may invoke Report with multi-
ple t id values at a time (when there are simultaneous tuples
or batches, respectively). This was certainly not the case in
time-based windows, where Tick always invoked Report with
a single tapp value at a time. When this happens, time- and
batch-driven systems make a choice across those multiple t id

3 We will exclude the batch-driven tick from the discussion for now,
since it has similar implications as time-driven tick.

values.4 SECRET can easily capture this choice as part of its
Report dimension (Sect. 5.4).

These differences can be better understood by examining
the input streams.

Regular input: For regular input (i.e., no simultaneity or
gaps), all tick types behave similarly: tapp and tid both
increment by one, and therefore, Report is invoked for all
tick types exactly once per tapp and t id for time- and tuple-
based windows, respectively.
Input with simultaneity: When there are simultaneous
tuples in the input, and the tick types and window domains do
not match, we see a major difference in tick behavior. Tuple-
driven tick + time-based window needs to tick once for every
tuple arrival event, and therefore, it causes multiple reactions
for the same tapp value. Time-driven tick + tuple-based win-
dow needs to tick once for every time-passing event, and
therefore, it causes a single reaction for multiple t id values.
On the other hand, when tick types and window domains
match, ticking once for every window domain value is suf-
ficient, as simultaneity either does not mean anything in this
case (i.e., tuple-driven tick + tuple-based window) or is nat-
urally captured in the tick behavior already (i.e., time-driven
tick + time-based window).
Input with gaps: While time gaps in the input directly affect
time-based windows (as both gaps and windows refer to
the tapp domain), they can be completely ignored for tuple-
based windows, as gaps in the tapp domain do not mean
anything in the t id domain over which the windows are
constructed.

5.2 Scope

For tuple-based windows, Scope maps a tuple-id value i
(instead of an application time value t) to an interval over
which a query q should be evaluated (Definition 7). The
active window is defined as the earliest open window as of a
given t id value i (instead of a given tapp value t).

4 This is also the explanation for the “evaporating tuples” situation
described by Jain et al. [12], which can happen when a system ignores
some of the simultanenous tuples while building a tuple-based window
whose size is not large enough to accomodate all such tuples.
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Fig. 4 Scope of a tuple-based window

We assume a value i0 ∈ Z that denotes the first tuple-id
of the first tuple-based window in a given system.5 Like t0
for time-based windows, the value of i0 is system specific.
Hence, the initial window (W0) starts at tuple-id i0, the next
one (W1) starts at tuple-id i0 + β, window 2 (W2) starts at
tuple-id i0 + 2β, and so forth.

Based on the above, the following formula computes n,
the index of the active window as of tuple-id i :

n = max

(
0,

⌈
i − i0 − ω

β

⌉)

Hence, the start tid of the nth window Wn = (on, cn] is
on = i0 + nβ, and the Scope as of tuple-id value i (Scope :
Z → (Z, Z]) is defined as follows:

Scope(i) =
{

∅ if i < i0

(on, i] otherwise

Figure 4 illustrates our Scope formulation for tuple-based
windows. As a simple example, assume that we have a query
q with a window of size 5 tuples and of slide 2 tuples, to be
run on a system with i0 of 1. Then the window scope as of
tuple-id i = 8 is Scope(8) = (3, 8], since n = 1 and o1 = 3.

5.3 Content

We can formally define the content of a tuple-based window
(Content : Z → S) as of tuple-id i as follows:

Content (i) = {s ∈ S : s.tid ∈ Scope(i)}
Unlike its time-based counterpart presented in Sect. 4.2,

the tuple-based Content formula does not require a sys-
tem time as an input parameter. This is because Content (i)
always returns the same result when called with the same i
value, since tuples have unique tid values.

5.4 Report

For tuple-based windows, as for time-based, Report has four
basic strategies which can be combined: content change
(Rcc), window close (Rwc), non-empty content (Rne), and
periodic (Rpr ).

5 We allow the value of i0 to be negative so that we can flexibly adjust
it to model forward and backward windows in a uniform way as in the
case of time-based windows.

1. Content change (Rcc): reporting is done for tuple-id i ,
only if the content has changed since last reporting.

2. Window close (Rwc): reporting is done for tuple-id i , only
when the active window closes.

3. Non-empty content (Rne): reporting is done for tuple-id
i , only if the content as of tuple-id value i is not empty.

4. Periodic (Rpr ): reporting is done for tuple-id i , only if it
is a multiple of a given reporting frequency, λ.

Note that reporting conditions for Rcc and Rne are always
satisfied for tuple-based windows, since for this type of win-
dows, a system ticks and calls reporting only if a tuple
has arrived (i.e., not for time gaps as in time-based win-
dows), which makes these conditions true by default. While
this simplifies our Report formulation to some extent, we
have to extend our previous formula to model a new report-
ing behavior peculiar to time- and batch-driven systems
with tuple-based windows, in the presence of simultane-
ous tuples or batches. Let us illustrate this behavior with
an example.

Consider a tumbling tuple-based window with size and
slide of 2 tuples each and the input stream shown in the second
column of Table 1. Assume that we have a time-driven system
for which the reporting strategy is window close (Rwc). In this
case, one would expect that tuples with t id values 2, 4, and 6
should close windows, thus leading to reporting. However, in
our time-driven system, tuples 2 through 5 which all have the
same tapp value (2), will be treated as simultanenous tuples,
and therefore, Tick will invoke Report only once for all of
them. As a result, both tuple 2 and tuple 4 can potentially
lead to reporting at the same time. All existing time-driven
systems that we have observed make a choice between such
potential reports, instead of returning all of them. Thus, our
Report formula should account for this choice.

To model this choice, we define a pick function, which can
be customized for different systems. Furthermore, we define
when possible reporting conditions (i.e., window close or
periodic reporting) should fire, based on the set of t id values
received as input.

The window close condition for tuple-based windows
checks if the number of tuples inside a window is equal to
its size. Thus, the wc function returns all tuple-ids in a set I
that satisfy this condition:

wc(I ) = {i ∈ I ||Scope(i)| = ω}

The periodic reporting condition for tuple-based windows
checks if a tuple’s t id is a multiple of a given reporting
frequency λ. Thus, the per function returns all tuple-ids in a
set I that satisfy this condition:

per(I ) = {i ∈ I |mod(i, λ) = 0}
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Fig. 5 Tick models for tuple-based windows

All the time-driven systems we have seen so far choose the
most recent event. For them, pick can be defined as follows:

pick(i) =
{

max(I ) if I �= ∅
i0 − 1 otherwise

The second case in the above formula is to handle the
degenerate case where the tuple-id set to choose from (I ) is
empty. In this case, we return a tuple-id value that is smaller
than i0 so that when Scope is invoked, it will return ∅.

Since some systems use multiple strategies for report, our
formula should allow any logical combination of Rcc, Rwc,
Rne, and Rpr , with a call to Content (pick(I )) being the
default. Note that, when multiple strategies are set to true,
then pick will choose from the tuple-id’s for which all report-
ing conditions are satisfied. For example, if both Rwc and Rpr

are set, then all tuple-id’s that survive both the wc and the
per function (i.e., the intersection of their output) will be the
possible candidates for pick. Also note that, since Rcc and
Rne are always satisfied for tuple-based windows, they will
not have any effect on pick’s input. Lastly, in our formula,
we consider each possible logical combination of Rwc and
Rpr separately, as each of them requires a different reporting
condition to be applied on I .

Given the above, we define Report for tuple-based win-
dows (Report : {Z} → S) as follows:

Report (I )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Content (pick(wc(I ) ∩ per(I ))) if(Rwc ∧ Rpr )

Content (pick(wc(I ))) if(Rwc ∧ ¬Rpr )

Content (pick(per(I ))) if(¬Rwc ∧ Rpr )

Content (pick(I )) if(¬Rwc ∧ ¬Rpr )

5.5 Tick

The basic meaning of Tick and the possible values that it
can take (i.e., tuple-driven, time-driven, batch-driven) are the
same for tuple-based windows as for time-based windows.
These three different Tick behaviors for tuple-based win-
dows are illustrated in Fig. 5. We show two lines for t sys and
tid. Tuple arrivals are shown on the time line for t sys , and
window scopes are shown underneath, on the line for t id.
Circles around the tuples show the units of tuples that the
system will react to at one time, whereas the arrows show to
which tuple-id values those units belong. Note that the tuples
are the same in all three figures and that the four tuples in the

middle have the same tapp value. If we contrast this example
with that of Fig. 3 where we used an identical input stream
but a time-based window, we see that the circles around the
input tuples on the t sys time line are unchanged, since this is
purely determined by the input stream and the tick value of
the system that is reacting to this input. On the other hand,
the mapping of these circles to the window domain is dif-
ferent, since this mapping also involves the window domain
which is now t id instead of tapp. As a result, the different
tick mechanisms all lead to mapping the incoming tuples to
individual t id values.

Before we present the formulas, we would like to high-
light a few important points. First, since simultaneous or
batch sequences still determine tick units for time- and batch-
driven systems, we will reuse the corresponding mapping
functions from Sect. 4.4 (i.e., prev_app and prev_batch,
respectively). However, we need two additional mapping
functions to take us from the tapp and the bid domains into
the t id domain, over which the Report for tuple-based win-
dows operates. Hence, we introduce app_t id and batch_tid,
respectively. Furthermore, for tuple-driven systems, although
gaps and simultaneity need not be detected any more, we
still need a new mapping function, prev_t id, to take us
from the t sys domain into the t id domain. Lastly, in all
tick formulas, Report needs to be invoked with a set of
tuple-id values (and a t sys value), instead of the singular
tapp value (and a t sys value) that was sufficient in the time-
based case.

Thus we define these additional mapping functions:

app_t id(t): Given an application time value t , returns
the tuple-id values of all the tuples that have tapp = t .

app_t id(t) = {s.t id|s ∈ S ∧ s.tapp = t}

batch_t id(b): Given a batch-id value b, returns the tuple-
id values of all the tuples that have bid = b.

batch_t id(b) = {s.t id|s ∈ S ∧ s.bid = b}

prev_t id(τ ): Given a system time instant τ , returns the
tuple-id value of the most recent tuple that has arrived
before τ . If no such tuple exists, it returns i0.

prev_t id(τ ) = max(max{i0, s.t id|s ∈ S(τ − 1)})
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Table 3 Tick example for
tuple-based windows

Using these functions, we now define T ick : T → {S}
for tuple-based windows, for each type of tick. Again, all
formulas follow a similar structure.

In a tuple-driven system, Tick is triggered with each tuple
arrival, which in turn should invoke Report with the tuple-id
of the newly arrived tuple. Since there are neither gaps nor
a notion of simultaneity in the tid domain, Report is simply
invoked at all system time instants for which there is a tuple
arrival, leading to the following simpler formula:

T ick(τ ) =
{

{Report (prev_tid(τ ))} if SI (τ ) �= ∅
∅ otherwise

In a time-driven system, there is no need to react to each
tuple in a simultaneous sequence separately, and therefore,
Tick should be triggered every time a tuple with a new tapp

arrives. Then, Tick will invoke Report once with the set of
tuple-id values of all the tuples inside this sequence. While
in the time-based window case, Report was invoked once per
tapp value, here we need to include all tid values in Report
invocation. Furthermore, since time gaps are not important
for tuple-based windows, there is no need to invoke Report
multiple times to account for the missing tapp values. Thus,
we again end up with a simpler formula:

T ick(τ )=

⎧⎪⎨
⎪⎩

{Report (app_tid(prev_app(τ )))} ifSI (τ ) �=∅∧
app(τ )> prev_app(τ )

∅ otherwise

Finally, a batch-driven system acts like a time-driven
system. For a batch-driven system, Tick should be triggered
every time a tuple with a new bid arrives. Tick will invoke
Report once with the set of all the tuple-id values of that
batch. Again, neither gaps nor simultaneity requires a spe-
cial treatment. Thus, we end up with the following simpler
formula:

T ick(τ )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{Report (batch_tid(prev_batch(τ )))} ifSI (τ ) �= ∅∧
batch(τ ) >

prev_batch(τ )

∅ otherwise

In Table 3, we present a sample trace of the model for
the scenario shown in Fig. 5. The table shows when each of
the three models triggers Report and with which tuple-id
set and system time value. The time-driven model invokes
Report only once when time advances with the set of tuple-
id values observed for the previous application time step.
The tuple-driven model, on the other hand, invokes Report

at every new tuple arrival. Finally, the batch-driven model
invokes Report at every new batch arrival. Note that, unlike
the example shown in Table 1, none of the tick models invokes
Report for gaps in application time.

6 Experiments

The main goal of this section is to show that our proposed
SECRET model can be used to predict and analyze the behav-
ior of a representative set of academic and commercial SPEs.
Additionally, we will also show how differences in individ-
ual SECRET dimensions and their combinations can affect
the query results.

6.1 Setup and methodology

We have tested our model with four different SPEs: the
Coral8 Version 5.5 [7], Oracle CEP Version 11.1 [19], STRE-
AM open-source academic prototype [23], and Stream-
Base Version 6.4 [25]. StreamBase commercialized the
Aurora/Borealis academic prototypes, and therefore, its basic
execution model descends from these two systems. Similarly,
the Oracle CEP engine descends from STREAM’s query exe-
cution model [12], but its implementation is more complete
and it supports a larger set of query types. Lastly, Coral8 is a
widely used commercial system (now owned by SAP), with
a substantially different execution model. We have focused
to explain default behaviors of the engines to a given declar-
ative windowed query. Thus, we cover a significant variety
of SPE models in this study.

SECRET will be successful if it is possible to set the
four SECRET parameters so that they explain the execu-
tion behavior of each system for a common set of windowed
queries and input configurations. We have done extensive
experiments with these systems to find their respective para-
meter values.

In these experiments, we varied the input data and queries
carefully. More specifically, we explored cases where the
input stream had irregularities due to gaps in application
time or due to simultaneous tuples with common application
times. We examined queries with windows (time- or tuple-
based) in three categories: sliding windows with β = 1,
sliding windows with 1 < β < ω, and tumbling windows
with β = ω.

Not all systems support all possible input/query
configurations (due to capability differences or incomplete
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Table 4 SECRET parameters
of Coral8, Oracle CEP,
STREAM, and StreamBase

implementation). For example, the available release of
STREAM [23] only supports sliding windows with β = 1.
Therefore, we can only test it with this type of query. How-
ever, the same system has an associated research paper that
describes the more general theoretical model underneath its
implementation [2], which we used as a reference where
applicable.

After analyzing the execution of all supported configura-
tions on each system, we obtained the SECRET parameters
for these systems as shown in Table 4. Next, we describe how
we arrived at these values.

For Scope, the system only influences the choice of the t0
or the i0 parameter (i.e., the application time instant or the
tuple-id for the start of the first window, respectively). We
obtained the t0 and i0 formulas in Table 4 by running differ-
ent queries with various size and slide value combinations
on regular input streams multiple times. Running window
queries with β > 1 over regular input streams were very
useful to identify how SPEs construct their windows. While
tuple groupings are easy to observe on regular input streams,
queries having β > 1 help us vary these groupings. On the
other hand, in order to determine Report values of SPEs,
analyzing the results of queries having β = 1 over input
streams with large gaps were helpful. In this case, observa-
tion of repetitive and/or missing results gave us hints about
SPEs’ reporting strategies. Related work has already revealed
the tick models for StreamBase (tuple-driven), Oracle CEP
Engine (time-driven), and STREAM (time-driven) [12]. We
verified these based on experimenting with various input
and query settings. In addition, we found that Coral8 uses
a batch-driven model, based on our own experiments, per-
sonal communication with members of the Coral8 support
team, as well as a blog discussion provided at Coral8’s
website [18]. In Coral8, batches form automatically depend-
ing on how the input adapter feeds tuples into the Coral8
server. Lastly, we note that all tick models behave similarly
when the input is regular. To identify the differences, we
needed to feed irregular input (with simultaneity in particu-
lar) to our sample queries.

We now apply our model on various input and query
settings (including the examples from Sect. 2) that we ran
on the SPEs and show how SECRET can explain the dif-
ferences in their answers. Details of the experiments can be
found in SECRET web site [21]. In these experiments, we
compare the query results produced by the SPEs with those
predicted by our SECRET model simulator.

Fig. 6 Window scopes & contents for Experiment 6.2.1

Throughout our experiments, we run a given query on a
given input stream in all engines which support that query
type. Then, we explain the results by using SECRET. For
each experiment, the discussion proceeds in three steps: (i)
Tick, (ii) Scope and Content, and (iii) Report. We explain
Tick with a table such as Table 7, where the first column
describes the arriving tuple with its necessary properties and
the subsequent columns show whether a given SPE or system
type ticks at that point, and if so, how Report is invoked. We
explain Scope and Content with a figure such as Fig. 6, where
tuple arrivals and window intervals are depicted. Finally,
we explain the Report setting for time-based windowed
queries with a table such as shown in Table 8, where tapp

denotes the application time with which Report is invoked.
For rows in which the reporting condition is met for a given
SPE, the corresponding window scopes and contents are
shown. For tuple-based window queries, we use a modified
table (e.g., Table 16), where I denotes the tuple-id set with
which Report is invoked. For rows in which the reporting
condition is met for a given SPE, the tuple-id that is
chosen and the corresponding window scopes and contents
are shown.

We present our results first for time-based windows and
then for tuple-based windows.

6.2 Experiments with time-based windows

In this first series of experiments, we show that SECRET can
be used to analyze and predict time-based windowed query
execution behavior in SPEs. We ran an exhaustive range of
experiments verifying our purpose; here we present results of
six selected experiments, in increasing order of complexity.

Note that, per Table 4, Coral8 and StreamBase have iden-
tical Scope, and so do Oracle CEP and STREAM for sliding
time-based window queries with β = 1, which is the only
type of queries that STREAM prototype supports. As such,
these pairs of engines will always yield the same Scopes and
Contents for a given query and input. Although our SPEs
have different reporting strategies, this difference may not
be visible, depending on the input and query. For instance
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Table 5 Road-map for Time-based Window Experiments

Table 6 Report for Experiment 6.2.1

sliding window queries with β = 1 over regular input streams
make the difference in reporting invisible. In our experi-
ments, we exercise both cases. Finally, our SPEs include
all types of Tick values, where the batch-driven Coral8 can
also be configured as time- or tuple-driven by adjusting its
input.

As a road-map for the reader, we provide a summary of
the setup, goals, and results of our experiments in Table 5.

6.2.1 Difference in window construction

Example 1 of Sect. 2 shows that even a simple query over
a regular input stream might produce completely different
results on different engines, e.g., the result produced by Ora-
cle CEP does not have a single common value with Stream-
Base. Next, we discuss how this example can be explained
by SECRET.

Step 1. Tick: Since the input stream does not contain any
simultaneous tuples, the tick difference between the time-
driven Oracle CEP and the tuple-driven StreamBase will not

be visible in this experiment (i.e., the arrival of a new tuple
corresponds to the arrival of a new tapp value).
Step 2. Scope and Content: Given tt1=10, ω=3, and β=3,
t0 is calculated as 9 and 8 s for Oracle CEP and StreamBase,
respectively. Figure 6 depicts their corresponding window
scopes and contents. Oracle CEP’s windows are shifted by
1 s compared to those of StreamBase.
Step 3. Report: Table 6 illustrates the execution trace
of our Report formula for the experiment. Although Ora-
cle CEP and StreamBase have different reporting strate-
gies, they seem to report similarly, since in this exper-
iment there are no empty windows, and therefore, con-
tent change and window close conditions happen to coin-
cide. Despite this, the two query results still differ due
to these engines’ difference in window construction (see
Fig. 6).

6.2.2 Difference in report

Example 2 of Sect. 2 shows that the same query on the
same input stream might produce different results on dif-
ferent SPEs. While Coral8, Oracle CEP, and STREAM gave
similar query results for this query, StreamBase gave a dif-
ferent one. We show how SECRET explains this situation.

Step 1. Tick: The four systems in Example 2 have three
different tick values: Coral8 is batch-driven, Oracle CEP
and STREAM are time-driven, and StreamBase is tuple-
driven. However, differences in the ticks’ effect can only be
seen when there are simultaneous tuples in the input stream.
Table 7 illustrates the execution trace of our Tick formula (see
Sect. 4.4) on Example 2 for Coral8, Oracle CEP, STREAM,
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Table 7 Tick for Experiment 6.2.2

and StreamBase, respectively. One can quickly see that on
that input, all three systems “tick” in exactly the same way.
Step 2. Scope and Content: Using Table 4, t0 equals 24, 25,
24, and 25 for Coral8, Oracle CEP, STREAM and Stream-
Base, respectively. These values are obtained by plugging in
the values for tt1 = 30, ω = 5, and β = 1 in the t0 formu-
las. To calculate the window scopes themselves, SECRET
uses the Scope formula presented in Sect. 4.1. Figure 7
depicts the corresponding window scopes and contents. Due
to their common t0 values, Coral8 and StreamBase share the
same window scopes and contents, while Oracle CEP and
STREAM exclude the very first scope. However, since the
very first scope is empty for the given input anyway, in prac-
tice, there is no difference in the scopes and contents of the
four engines (thus, they have “similar” t0).
Step 3. Report: Table 8 displays the execution trace for the
report parameter in Experiment 6.2.2 at the application time
instants when reporting is called. If the reporting condition
is true for a window, the scope and the actual content of the
window are calculated and the content then becomes visi-
ble to the aggregation operator. More specifically, Stream-
Base reports only the contents of non-empty windows when
they close, which happens at every second until the last tuple
expires. On the other hand, Coral8 reports only the contents
of non-empty windows when their contents change, which
happens at time 30, 31, 35, and so on. Finally, Oracle CEP
and STREAM report only the contents of the windows when
they close and their contents change, which, in this exam-
ple, happens at exactly the same time points as for Coral8.
Unlike Oracle CEP, STREAM reports only non-empty win-
dows, but in this experiment since there is no empty window
for Oracle CEP and STREAM, the difference is not present.
The table shows that SECRET correctly models Coral8’s,
Oracle CEP’s, STREAM’s results as {10, 15, 20, . . .} and
StreamBase’s results as {10, 15, 15, 15, 15, 20, . . .} when

Fig. 7 Window scopes & contents for Experiment 6.2.2

an average is applied over their window contents. Hence,
differences in their Report parameters explain the different
results.

6.2.3 Difference in tick

In this experiment, we show that different tick models can
yield different results for a given query on a given input
stream. For this experiment, we chose a fixed input with
simultaneous tuples and a batch-driven system, Coral8, but
we configured the batches in three different ways to create
the three different tick scenarios. We did this using Coral8’s
atomic bundling mechanism [7]. If each individual tuple is
placed in a separate bundle, then Coral8 acts like a tuple-
driven system, since it then reacts to every new input arrival
(i.e., tuple ∼ batch). On the other hand, if we place all of the
simultaneous tuples in a common bundle, Coral8 works like
a time-driven system, since it then reacts to all such tuples
collectively when the time advances (i.e., time unit ∼ batch).
For all other configurations, Coral8 behaves like a normal
batch-driven system.

More concretely, for a fixed input stream of tuples

we obtained the following three configurations: STuple (one
tuple per batch), STime (all simultaneous tuples in the same

Table 8 Report for Experiment 6.2.2
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Table 9 Different input batch configurations (i.e., tick models) in Coral8 of Experiment 6.2.3 and 6.2.4

batch), and SBatch (two simultaneous tuples per batch). With
the batch-id (shown in bold), the input streams are:

Then we ran a query on these three input streams, which
continuously computes the sum of values over a sliding
window of size 4 s and slide of 1 s, yielding the following
results:

Step 1. Tick: Table 9 shows the execution trace of our batch-
driven Tick formula for STuple, STime, and SBatch, each
simulating a different Tick value. The tick condition returns
true, if the batch-id of the newly arrived tuple is greater than
the previous tuple’s batch-id. STuple ticks at every new tuple
arrival, STime ticks every time tapp changes, and SBatch
ticks at every new batch arrival. The first column in the
table refers to the arrival of the tuple. For instance, when
the third tuple (t3) arrived, STuple ticked since the batch-
id of the tuple was greater than that of the previously seen
tuple. Consequently, Report was called, and the content of
the window (the table shows only the V al attribute of the
tuples) became visible for the evaluation of the sum oper-
ator. On the other hand, STime and SBatch did not tick,
since the batch-id of the tuple remained the same. As a
result of different Tick models, the SPEs called Report at
different time instants, which led to different actual win-
dow contents as shown in Table 9. This trace clearly shows
how SECRET’s Tick can capture the effect of the three tick
behaviors on window content reporting. To see the com-
plete picture, we need to also examine Scope, Content, and
Report.
Step 2. Scope and Content: Given tt1 = 3, ω = 4, and
β = 1, t0 can be calculated as -2 s for Coral8. Accordingly,
Fig. 8 depicts the window scopes and contents based on the
Scope formula of Sect. 4.1.

Fig. 8 Window scopes & contents for Experiments 6.2.3, 6.2.4

Step 3. Report: In Fig. 8, windows which have produced
results because of changes in their contents are denoted with
fine dots. SECRET correctly models the result for STuple as
{10, 30, 60, 100, 150, …}, for STime as {10, 150, …}, and
for SBatch as {10, 60, 150, …}.

6.2.4 Difference in report and tick

In this experiment, we show the combined effect of different
semantic decisions made by engines on the result of a given
input and query. More specifically, we will show the effect
of different report and tick strategies. For this experiment,
we used the same input stream and query as for Experiment
6.2.3. Additionally, we included the rest of the engines (Ora-
cle CEP, STREAM, and StreamBase). The following results
were given by the engines:

Step 1. Tick: In this experiment, we cover all tick values such
that Coral8 is batch-driven; StreamBase is tuple-driven; and
Oracle CEP, and STREAM are time-driven. As in Exper-
iment 6.2.3, since the input stream contains simultaneous
tuples, we expect to see differences in how these systems
’tick’. As expected, StreamBase ticks exactly like tuple-
driven Coral8, and similarly, Oracle CEP and STREAM tick
exactly like time-driven Coral8 (see Table 9 of Experiment
6.2.3).
Step 2. Scope and Content: For the given query (ω = 4,
β = 1 s) and tt1 = 3, t0 is calculated as −2 s for Coral8
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Table 10 Report of Oracle CEP, STREAM, and StreamBase in Experiment 6.2.4

and StreamBase, and −1 s for Oracle CEP and STREAM.
Figure 8 depicts the window scopes and contents for this
experiment. Coral8 and StreamBase share the same scope
and contents, whereas Oracle CEP and STREAM exclude
the very first window (thus, they have “similar” t0).
Step 3. Report: Tables 9 and 10 together illustrate the
execution trace of our Report formula for all engines
involved in this experiment. Table 9 shows, as we dis-
cussed in the previous experiment, how Report was trig-
gered differently for three different tick configurations of
Coral8. In Table 10, we additionally show the execution
trace of our Report formula for Oracle CEP, STREAM,
and StreamBase, where it can be clearly seen that the
former two engines report differently than the latter one.
While StreamBase reports only the contents of the closed
windows, both Oracle CEP and STREAM report every time
the window content changes. Furthermore, we can also see
the combined effect of both different ticking and reporting
behaviors, if we compare the result of StreamBase (tuple-
driven and window close) with that of time- or batch-driven
configurations of Coral8 (time-driven and content change,
batch-driven and content change, respectively). SECRET
was able to predict both of these differences correctly.

6.2.5 Difference in window construction and report

In this experiment, we continue to show the combined
effect of different semantic choices made by the engines.
More specifically, we will show the simultaneous effect of
different window construction and reporting strategies. For
this experiment, we used the following regular input:

We ran a tumbling window of size 3 s in Coral8, Oracle
CEP, and StreamBase, computing a sum over the values in
each window. We obtained the following results:

Fig. 9 Window scopes & contents for Experiment 6.2.5

A glance over the result sets shows that the result given
by StreamBase is a subset of that given by Coral8. How-
ever, the result produced by Oracle CEP does not have a
single common value with either Coral8 or StreamBase.
Next, we discuss how these results can be explained by
SECRET.

Step 1. Tick: Since the input stream does not contain any
simultaneous tuples, tick differences will not be visible in this
experiment, even though the engines have different ticks.
Step 2. Scope and Content: Given tt1=11, ω=3, and β=3,
t0 is calculated as 8, 9, and 8 s for Coral8, Oracle CEP, and
StreamBase, respectively. Figure 9 depicts their correspond-
ing window scopes and contents: Coral8 and StreamBase
share the same window scope and contents, whereas Oracle
CEP’s windows are shifted by 1 s compared to those of Coral8
and StreamBase.
Step 3. Report: Table 11 illustrates the execution trace of our
Report formula for the experiment. As discussed before, all
engines in this experiment have the same tick behavior. What
causes differences in their results is different window con-
struction and reporting strategies. If we compare the reporting
behavior of Coral8 and StreamBase, we clearly see that dif-
ferent reporting strategies yield different results. On the other
hand, if we compare Oracle CEP and StreamBase, although
they have different reporting strategies, they seem to report
similarly, since in this experiment each window has a unique
content. Despite this, their results still differ due to their dif-
ference in window construction (see Fig. 9). Finally, when
we compare the result of Coral8 with that of Oracle CEP,
we see the combined effect of both window construction and
reporting differences between these engines.

6.2.6 Difference in window construction, report, and tick

In this last experiment with time-based windows, our
goal is to show the combined effect of different window
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Table 11 Report for
Experiment 6.2.5

Table 12 Tick for Experiment 6.2.6

construction, reporting, and tick strategies. For this experi-
ment, we used the following input streams with simultaneity:

We ran a tumbling window of size 3 s in Coral8, Ora-
cle CEP, and Streambase, computing a sum over the values
of each window. The following results were given by the
engines:

Step 1. Tick: The engines included in this experiment all
have different tick strategies: Coral8 is batch-driven, Oracle
CEP is time-driven, and StreamBase is tuple-driven. With
a simultaneous input stream, the effect of tick differences
becomes visible in this experiment. Table 12 illustrates the
execution of our tick formula for all engines, including three
alternative configurations of Coral8.

Fig. 10 Window scopes & contents for Experiment 6.2.6

Step 2. Scope and Content: Given tt1 = 3, β = 3, and
ω = 3 s, t0 is calculated as −1, 0, and −1, for Coral8, Oracle
CEP, and StreamBase, respectively. Due to their common
t0 value, Coral8 and StreamBase share the same window
scopes and contents, whereas Oracle CEP’s window scopes
and contents are shifted by 1 s. Figure 10 depicts the corre-
sponding window scopes and contents.

Step 3. Report: Table 13 illustrates how the engines in
this experiment report their window contents. The differ-
ence in results of tuple-driven Coral8 and StreamBase origi-
nates from different reporting strategies. On the other hand,
the difference between Oracle CEP and StreamBase origi-
nates from different window construction. The only differ-
ence among different Coral8 configurations is their different
ticks. When we compare the result given by Oracle CEP with
the result of tuple-driven Coral8, we see that the difference
is caused by the combined effect of different ticks, report-
ing, and window construction strategies. As this experiment
clearly shows, SECRET is able to systematically explain
even complex behavioral differences across a wide variety of
SPEs.
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Table 13 Report for experiment 6.2.6

Table 14 Road-map for Tuple-based Window Experiments

6.3 Experiments with tuple-based windows

In the next series of experiments, we show that SECRET can
be used to analyze and predict tuple-based windowed query
execution behavior in SPEs. We ran an exhaustive range of
experiments; here we present results of five selected experi-
ments, in increasing order of complexity.

Again, per Table 4, Oracle CEP and STREAM have iden-
tical Scopes (i0 = β −ω), and so do Coral8 and StreamBase
(i0 = 0). As such, these pairs of engines will always yield
the same Scopes and Contents for a given query and input.
Furthermore, as explained in Sect. 5.4, content change, non-
empty, and λ = 1 conditions are always true for tuple-based
windows, which makes Oracle CEP, STREAM, and Stream-
Base always identical in terms of their Report, while always
satisfying the Report condition for Coral8. Finally, our SPEs
cover all types of Tick values, where the batch-driven Coral8
can also be configured as time- or tuple-driven by adjusting
its input. Remember that although Oracle CEP and STREAM
seem to have exactly the same SECRET parameters for tuple-

based windows, they differ in their query capabilities (i.e.,
STREAM only supports queries with β = 1).

Table 14 provides a summary of the setup, goals, and
results of our experiments.

6.3.1 Difference in window construction

In this experiment, we show that different window construc-
tion strategies can yield different results for a given query
and input stream. For this experiment, we chose a regular
input stream, where there are no simultaneous tuples:

We ran a query on this input stream which computes the
sum of the values over a window of size 3 and slide 2 tuples
in Oracle CEP and StreamBase (STREAM can’t support this
query and Coral8 introduces a difference in Report, which we
will analyze separately in Experiment 6.3.2). The following
results were given by the engines:
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Table 15 Ticks for Experiment 6.3.1 and 6.3.2

Fig. 11 Window scopes & contents for Experiment 6.3.1 and 6.3.4

Both engines gave the same number of results, but with
completely different values. Next, we show how SECRET
explains the situation.

Step 1. Tick: Although Oracle CEP and StreamBase have
different ticks (see Table 4), we do not see the effect of
tick differences in this experiment, since we have a regu-
lar input stream where each tuple has a unique application
time. More specifically, arrival of a new tuple corresponds to
the arrival of a new tapp value. Table 15 illustrates the execu-
tion trace of our Tick formula (see Sect. 5.5) on Experiment
6.3.1. As expected, both engines “tick” in exactly the same
way.

Step 2. Scope and Content: Given that ω = 3 and β

= 2, i0 can be calculated as −1 for Oracle CEP and 0 for
StreamBase by using the formulas in Table 4. Accordingly,
Fig. 11 depicts the window scopes and contents for Oracle
CEP and StreamBase for Experiment 6.3.1.

As can be seen from the figure, Oracle CEP and Stream-
Base construct their windows differently, even for the same
query. More specifically, at every slide value (2nd, 4th, . . .

tuple-id), Oracle CEP engine constructs its windows in the
backward direction, whereas StreamBase constructs them in
the forward direction. SECRET captures this difference with
the help of the i0 parameter as explained in Sect. 5.2.

Step 3. Report: Table 16 illustrates the execution trace of
our Report formula (see Sect. 5.4). Although both engines
report full windows, we see a difference in their results,
since they have different window scopes, and therefore
different window contents. As Table 16 clearly shows,

Fig. 12 Window scopes & contents for Experiment 6.3.2

SECRET correctly models the result for Oracle CEP as
{30, 90, 150, 210, . . .}, and for StreamBase as {60, 120, 180,

240, . . .}, when a sum is applied over their window
contents.

6.3.2 Difference in report

In this experiment, we show that different reporting strate-
gies can yield different results for a given query and input
stream. For this experiment, we used the same regular input
stream as in Experiment 6.3.1, but we ran a tumbling win-
dow query which computes the sum of the values for every
3 tuples. We ran this query in all SPEs that can support it
(Coral8, Oracle CEP, and StreamBase), with the following
results:

We see two different result sets. Oracle CEP and Stream-
Base gave the same results, whereas Coral8 gave different
results. Next, we show how SECRET explains the situation.

Step 1. Tick: Since our input is regular, as in the previous
experiment, we do not see any difference in tick behaviors of
the systems (see Table 15).
Step 2. Scope and Content: According to Table 4, i0 is 0
for Coral8, Oracle CEP, and StreamBase in this experiment.
Figure 12 depicts the corresponding window scopes and con-
tents. Since i0 values and the query parameters are the same
for all engines in this experiment, they have exactly the same
scopes and contents.
Step 3. Report: Since both the ticks and scopes of the
engines are the same for this experiment, what causes the
difference is the different reporting strategies. Table 17
illustrates the execution trace of Report for the engines
(see Sect. 5.4). Coral8 reports partial windows due to its
content change condition, whereas both Oracle CEP and
StreamBase report full windows due to their window close
condition. Therefore, the result produced by Coral8 is a
superset of the result produced by Oracle CEP or Stream-
Base. As can be clearly seen from Table 17, SECRET
correctly predicts the result for Coral8, Oracle CEP, and
StreamBase, when a sum is applied over the indicated win-
dow contents.
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Table 16 Report for
Experiment 6.3.1

Table 17 Report for Experiment 6.3.2

Fig. 13 Window scopes & contents for Experiment 6.3.3

6.3.3 Difference in tick

In this experiment, we analyze Example 3 of Sect. 2. This
example shows that different processing granularities can
yield different results on a given input stream and query. The
input stream that we used in this example had simultaneous
tuples with the following values:

The query we used had a tuple-based tumbling window
of size and slide of 1 tuple, and the following results were
given by the engines:

Next, we analyze these results with SECRET.

Step 1. Tick: In this experiment, we used the default config-
uration of Coral8, which is tuple-driven. Table 18 illustrates
the execution of our Tick formulas from Sect. 5.5 for tuple-
driven (Coral8, StreamBase) and time-driven (Oracle CEP,
STREAM) systems used in this experiment. As expected,
time-driven systems invoke Report only once when time

Table 18 Ticks for Experiment 6.3.3, 6.3.4, and 6.3.5

advances, with the set of tuple-id values observed for the
previous tapp value. On the other hand, tuple-driven systems
invoke Report at every new tuple arrival.
Step 2. Scope and Content: Given the query (ω=1, β=1),
i0 is calculated as 0 for Coral8, Oracle CEP, STREAM, and
StreamBase per Table 4. Figure 13 depicts the corresponding
scopes and contents. Since the i0 value is the same for all
engines for the chosen query, they share the same scopes for
a input stream.
Step 3. Report: Tables 19 and 20 illustrate the execution trace
of Report (Sect. 5.4) for Experiment 6.3.3 in tuple-driven
and time-driven systems, respectively. Since window size and
slide are both equal to 1, the reporting condition is always
satisfied for all the engines. As these tables show, the different
results for this experiment are due to the different ticks these
systems have. In particular, time-driven systems miss some
results due to choosing among simultaneous tuples. Again,
SECRET can capture this difference correctly.
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Table 19 Report of tuple-driven
systems in Experiment 6.3.3

Table 20 Report of time-driven
systems in Experiment 6.3.3

Table 21 Report of Oracle CEP for Experiment 6.3.4

6.3.4 Difference in window construction and tick

In this experiment, we show the combined effect of different
execution semantics on the result of a given input and query.
More specifically, we will show the effect of different window
construction and tick strategies. For this experiment, we used
the same, simultaneous input stream as in Experiment 6.3.3.
We ran the same query as in Experiment 6.3.1, i.e., a tuple-
based window query which computes the sum of the values
over a window of size 3 and slide 2. The following results
were given by Oracle CEP and StreamBase:

The two engines gave not only different numbers of
results, but also completely different values. Next, we show
how SECRET explains these differences.

Step 1. Tick: Oracle CEP has a time-driven tick, whereas
StreamBase has a tuple-driven tick. Since we used the same
input stream as in Experiment 6.3.3, the systems will tick in
the same way as in Table 18. Once again this table reveals that
systems show different tick behaviors due to the simultaneous
tuples in the input stream.

Table 22 Report of StreamBase for Experiment 6.3.4

Step 2. Scope and Content: Using Table 4, i0 is calculated
as −1 for Oracle CEP and 0 for StreamBase, given that ω =
3 and β = 2. Figure 11 depicts the corresponding window
scopes and contents for Oracle CEP and StreamBase. Clearly,
Oracle CEP and StreamBase have different scopes due to their
different i0 values.
Step 3. Report: Tables 21 and 22 illustrate the execution
trace of Report (Sect. 5.4) for Oracle CEP and StreamBase,
respectively. Although both engines report for full windows
due to their window close condition, we see a difference in
their results, since they tick and close their windows at dif-
ferent tuple-id values. This difference is a result of the com-
bined effect of tick and window construction differences, as
SECRET shows.

6.3.5 Difference in report and tick

For this experiment, we used the same, simultaneous input
stream as for Experiment 6.3.4, but with a different query
which computes the sum of the values over a tumbling
window of size 2 tuples. We ran this query in all SPEs that
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Table 23 Report of tuple-driven
systems in Experiment 6.3.5

Table 24 Report of time-driven
systems in Experiment 6.3.5

can support it (Coral8, Oracle CEP, and StreamBase), with
the following results:

Engines gave different numbers of results, with com-
pletely different values. Here we explain why.

Step 1. Tick: Since we used the same input stream as in
Experiment 6.3.3, the systems will tick in the same way as in
Table 18 and again show different behaviors because of the
simultaneous tuples in the input stream.
Step 2. Scope and Content: Given the query (ω=2, β=2),
i0 is calculated as 0 for all engines using Table 4. Figure 14
depicts the corresponding window scopes and contents. Due
to the common i0 value, all engines have the same scopes and
contents in this experiment.
Step 3. Report: Tables 23 and 24 illustrate the execution of
Report (Sect. 5.4) for this experiment. The difference between
the results of tuple-driven Coral8 and StreamBase is caused
by their different reporting strategies. Coral8(tuple) reports
partial windows due to its content change condition, whereas
StreamBase only reports full windows due to its window close
condition. Thus, tuple-driven Coral8’s result is a superset of
StreamBase’s result. For the time-driven systems, we see the
effect of different reporting strategies even more strongly.

Fig. 14 Window scopes & contents for Experiment 6.3.5

Although both engines tick at the same time, different report-
ing strategies cause them to pick different tuple-ids, leading to
different window scopes and contents. When we compare the
results of the time-driven systems with the results of the tuple-
driven systems, we see that the tuple-driven systems’ results
are a superset of the time-driven systems’ results, since tuple-
driven systems tick for every tuple, i.e., at the highest possible
granularity. Overall, this experiment clearly shows the com-
bined effect of report and tick differences across engines,
even on simple queries with identical window scopes and
contents.

7 Discussion

In this section, we briefly discuss: (i) why we believe that
SECRET satisfies the design principles that we have set forth
earlier in Sect. 3, (ii) how SECRET can be further extended,
and (iii) potential uses of SECRET.

7.1 Design principles revisited

As shown in the previous section, SECRET can successfully
explain the execution behavior of four real, representative
SPEs which are quite different from each other. Its expressiv-
ity is the result of careful design choices. For example, Scope
is defined for the earliest open window making it easy for
SECRET to capture the behavior of systems that report partial
window results (e.g., Coral8) as well as full window results
(e.g., StreamBase). Our model embraces simplicity wher-
ever possible. For example, Scope refers to a single active
window and we use the t0 parameters to adjust window inter-
vals rather than distinguishing between forward/backward
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window construction, greatly simplifying our Scope formu-
lation. We do not model real-time effects (e.g., timeouts,
synchronizing application time with system time, etc.), as
this would make it difficult to define a clean, predictable,
and repeatable semantics. SECRET’s features are orthog-
onal and extensible. Each behavior seen in our experiments
is explained in a single way by the model, and the various
aspects can be combined as needed. For example, different
systems may use different combinations of the evaluation
strategies for the Report dimension. Meanwhile, SECRET
also is clear: it decouples the different levels of concerns
from each other and treats them separately. For example,
Scope handles query-level issues, Content handles data-level
issues, and Report and Tick handle system-level issues. Like-
wise, Scope and Content capture non-operational effects of
query processing, whereas Report and Tick capture the oper-
ational ones. Thus, SECRET embodies the characteristics we
desired in our model.

7.2 Extending SECRET

In this section, we discuss how SECRET can be extended
further to model SPEs that differ in input, query, or system
aspects from those discussed so far. We also discuss the exten-
sions we have made to the original model [5] in this paper.

7.2.1 Input aspects

Windows based on System time: In this paper, we have
focused on windows which are based on application time.
Time-based windows can also be defined using system time,
the time at which they arrive at the system. In this case,
tapp = t sys . This case can also be handled by SECRET,
since in practice, it does not matter whether the timestamps
are assigned at the source or by the system at arrival. One
might also imagine time-based windows that are constructed
based on the system time at the point that the tuples hit each
window-based operator. We have excluded this case from
our model, since it has a non-repeatable semantics (e.g., the
behavior would be sensitive to the operator scheduling policy
in the system).

Synchronized Timestamps: In our current model, appli-
cation time information can only be gathered through tuples.
In practice, this strategy might delay the processing if there
is a gap (in terms of system time) between tuple arrivals. In
order to avoid delay, real systems use various mechanisms
to synchronize the application time of tuples with the actual
system time (e.g., heartbeats in STREAM [22], MAXDE-
LAY in Coral8 [7], and TIMEOUT in StreamBase [25]).
Extending our model to consider synchronized timestamps
is straightforward: if a maximum delay threshold is known
in advance, dummy tuples with punctuations can be injected

into the input stream and the application time can be advanced
without waiting for the delayed tuples to arrive.

Out-of-order Streams: SECRET makes certain ordering
assumptions about the elements of a data stream (i.e., total
ordering by t sys and t id as well as partial ordering by tapp and
bid). We use t sys to reason about tuple arrival events in a sys-
tem, and therefore, assume that the system uses a timer with
high enough resolution to assign distinct and monotonically
increasing t sys values to tuples as they arrive. Similarly, we
use t id to reason about tuple counts for tuple-based windows,
and therefore, assume that the system assigns distinct and
monotonically increasing t id values. We believe that these
two ordering assumptions apply in practice without causing
any limitations. On the other hand, the partial order assump-
tion on tapp and bid (which are usually provided by the data
source) might not be met in practice because of network laten-
cies or distributed data sources. Most SPE query processors
assume stream inputs obeying an ordering convention like
in SECRET (e.g., STREAM). In case of out-of-order tuples,
these SPEs buffer input tuples in order to put them into cor-
rect order before passing to the query processor [22]. While
SECRET can explain the behavior of such SPEs, it has to
be extended for other SPEs (e.g., Microsoft StreamInsight
[16]), where the query processor has been designed to work
with potentially out-of-order streams. These systems rely on
stream punctuations and punctuation-aware query process-
ing in order to handle the disorder. SECRET can also be
extended in this direction.

7.2.2 Query aspects

Different Window Types: In a recent publication, we
presented SECRET for time-based windows [5]. In this paper,
we have extended that to include tuple-based windows. Dur-
ing this process, we have observed that the core structure
of SECRET with its four basic dimensions stays the same,
while new requirements for modeling tuple-based windows
(i.e., change of window domains from application time to
tuple-id together with their relevant mappings, the choice -
or evaporation - of tuples behavior) could be added with min-
imal changes after a careful analysis that respects SECRET’s
design principles. As such, this extension has been a valida-
tion of our initial design choices. We have primarily focused
on these two window types, since they not only are com-
monly used in many streaming applications [24], but also
are implemented by almost all SPEs that we have encoun-
tered so far. One can also find more specialized windows in
the literature such as predicate-based windows (e.g., [3]) or
semantic windows (e.g., [8]). For these windows, there is no
fixed windowing domain such as time or tuple-id (and there-
fore, no t0 or i0); instead, they require examining the tuple
contents for determining the window intervals and/or con-
tents. In SECRET terms, this means extending Scope to be

123



444 N. Dindar et al.

predicate-based, which requires bringing Scope and Content
closer. Furthermore, we have to redefine active window, since
windows may slide in arbitrary ways leading to new situa-
tions such as a window being fully contained in another, mul-
tiple windows closing at the same tuple, or windows closing
in a different order than their opening order. In other words,
multiple active windows may need to be maintained at a time,
and accordingly, their closing conditions and reporting orders
should also be specified in SECRET. As a result, we expect
that again the four basic dimensions of SECRET will stay the
same, but their formulation and interaction may change due
to the content-based and irregular sliding behavior of these
windows.

Binary Operators: Our focus so far has been on unary
operators, as they are the foundation for stream queries. We
can also extend our model to handle binary operators (e.g.,
joins). Join operators are fundamentally different from unary
sliding window operators, as they involve two inputs with
two windows. Our model can directly explain how each of
those windows are populated with input tuples (i.e., Tick,
Scope, and Content can be used without any change). One
additional issue to consider is when to make the windows of
the two input streams visible to the join operator. The Report
definition must be extended to address this issue.

7.2.3 System aspects

Although we cover a major subset of SPEs and their
execution models, it would be interesting to expand our
experimental set even further to include other SPEs as well.
The first step in analyzing an SPE with our SECRET model is
to find out what value each SECRET parameter should take
for the given system. If the required knowledge about the
system is not readily available, these values can be obtained
experimentally by executing a set of queries against a range
of inputs. The input stream should have irregularities due
to gaps in application time and due to simultaneous tuples
with common application times. Furthermore, queries should
include some with windows that slide each time unit, win-
dows with slide parameters (i.e., having a slide value greater
than minimum window unit, but less than the window size), or
tumbling windows (i.e., having a slide value of the same size
as the window size). By executing different configurations
of these input and query properties, the SECRET parameter
values can be revealed, as discussed in Sect. 6.1.

In our initial study of SECRET [5], we analyzed three
SPEs (Coral8, STREAM, StreamBase). In this paper, we
have added Oracle CEP to this set. In analyzing Oracle CEP,
we observed a new reporting behavior and revised one of our
Report strategies (Rcc, content change) accordingly. Next,
we will briefly discuss this revision, which illustrates once
again that SECRET lends itself to extension without much
change in its core structure.

Consider a time-based tumbling window of size and slide
of 3 s each. Given an input stream InStream(Time,
Val) = {(1,10), (2,20), (4,30), (5,40),
(7,50), ... }, Oracle CEP reports the following
window contents: {10,20} and {30,40}. If we applied
Rwc ∧ Rcc as they were defined in our original model [5],
SECRET would not return any window contents. This is
because we originally defined Rcc as “report for t only if
the content has changed since t − 1”. At t = 3, the win-
dow closes, but content does not change, as no new tuple has
arrived since t = 2. Likewise, at t = 6, the window closes,
but content does not change, as no new tuple has arrived since
t = 5.

However, in this paper we redefined Rcc as “report for
t only if the content has changed since last reporting”
(Sect. 4.3). This correctly captures Oracle CEPs behavior.
This behavior could not be observed in STREAM, since
STREAM supports only sliding window queries (β = 1).
This change only affects SPEs with Rcc in their report con-
dition and, while more general than the original condition,
is precise enough for the systems we have tested. Finally,
the distinction is irrelevant in tuple-based windows, since in
this case, Rcc is always true anyway for both definitions (see
Sect. 5.4).

7.3 Potential uses of SECRET

The original motivation behind SECRET was to analyze the
query execution behavior of SPEs and their differences. How-
ever, the model can be used for other important purposes as
well.

First, SECRET can also be useful for discovering equiva-
lences among SPEs. These equivalences can then be used
for rewrite-based query optimization in integrated stream
processing settings (e.g., MaxStream [4]). Equivalences can
also be used to semantically translate a query to enable port-
ing of applications across SPEs. For instance, if it is known
that no simultaneous tuples and gaps can occur in a given
input stream, query translation is possible even among SPEs
having different Tick values, as in this case, tuple-, time-, and
batch-driven SPEs all behave similarly in terms of their Tick
behavior. We are pursuing this research direction as part of
our ongoing work [9].

SECRET parameters cover all the key aspects of query
execution: input, query, and system. Based on different appli-
cation input and query requirements, one SPE might be pre-
ferred over another for a given application. For example, if
an application has simultaneous tuples (e.g., position reports
of cars in dense areas of traffic) and there is no well-defined
order among them, using an SPE following a time-driven
Tick model might be a better option since such an engine
would not impose any arrival-related ordering among simul-
taneous tuples. On the other hand, if it is possible to define
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batches among the simultaneous tuples (e.g., based on car
types), an SPE following a batch-driven Tick model might
produce the result faster than a time-driven SPE. Different
reporting strategies may also be better suited for particular
application needs. For instance, for slowly changing datasets
and queries with small window sizes to process them, an SPE
having window content change as its reporting strategy might
be preferred over one with a window close strategy in order
to avoid repeated results.

8 Related work

The earliest models for stream systems sought to pro-
vide a clean semantics for a single system. For example,
STREAM’s CQL provides a formal model based on the rela-
tional model [2]. In addition to the stream data type and
mapping operations between streams and relations, CQL
also introduced the notion of time into the relational model,
essentially adding “time-driven” continuous query execution
semantics.

In the aftermath of the early-generation systems, a few
recent studies have tried to offer cleaner abstract models
without necessarily being tied to a specific system imple-
mentation.

Maier et al. [15] generalizes the denotational semantics
approach of STREAM CQL. They focus on defining the
meaning of a stream itself rather than the complete query exe-
cution semantics. Li et al. [14] have proposed a framework
for defining window semantics based on three functions:
windows, extent , and wids, where the window semantics
is described independent of the execution model. Our work
differs from Li et al. [14], in that we not only consider win-
dow contents but also other operational issues that influence
the query results.

Patroumpas and Sellis have also proposed a formal frame-
work for expressing windows for a CQL-like model [20].
The model is based on a time-parameterized scope function
that specifies a time-based window’s size and progression
in time. This work is not based on real system implementa-
tions, and the proposed formalism has not been tested to see
whether it is powerful enough to capture the existing systems
behaviors.

Most recently, Kramer and Seeger have proposed a pair
of logical and physical operator algebras for stream oper-
ators, applying ideas from temporal databases [13]. Their
approach is similar to that of the STREAM team, with a
few differences. First, every tuple is assigned a time interval
showing its validity period instead of a single timestamp.
Second, the snapshot reducibility concept from temporal
databases is used in finding equivalences for query opti-
mization; however, this concept does not apply to window
operators. Finally, the authors describe the physical imple-

mentation of their operators in their PIPES system. This paper
covers similar semantic issues as in the CQL model and does
not provide constructs to explain the operational aspects of
other SPE systems.

It is hard to get information about underlying formal
models used by current commercial systems [7,11,16,19,
25,26]. Each system seems to use a different model, and
the query results that they generate are not easy to compare.
Jain et al. [12] tried to reconcile the differences across two
of these commercial systems, Oracle CEP and StreamBase.
They only consider the way that window execution is trig-
gered. Though an important first step, this work focuses on
only one aspect of execution behavior (i.e., Tick in SECRET),
just one of the aspects our model captures and explains.

9 Conclusion and future work

The SECRET model describes important differences in the
semantics underlying stream processing models. We devel-
oped SECRET by studying both academic and industrial
SPEs. We have shown, through examples and experimenta-
tion, how SECRET can be used to understand, compare, and
predict the behavior of diverse SPEs. Our model is unique
to date in its comprehensive consideration of common dif-
ferences in execution models, differences that can lead to
surprisingly varied results when even simple stream queries
are executed on different engines.

We have focused on queries with time- and tuple-based
windows and unary operators only, excluding real-time
effects, and analyzed four representative SPEs. We have addi-
tionally discussed some preliminary results on extending
SECRET for other query types, SPEs, and system consid-
erations. In addition to exploring and explaining the differ-
ences between different engines, SECRET can be used to
find equivalences between them. Such equivalences can be
used to devise query rewrite and transformation rules (e.g.,
providing a foundation for query optimization in a federa-
tion of SPEs [4]). We are currently pursuing this interesting
research direction [9].
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