
Aurora: A Data Stream Management System

D. Abadi┼, D. Carney§, U. Çetintemel§, M. Cherniack┼, C. Convey§, C. Erwin§, E. Galvez┼, M. Hatoun§, A.
Maskey┼, A. Rasin§, A. Singer§, M. Stonebraker±, N. Tatbul§, Y. Xing§, R. Yan§, S. Zdonik§

┼ Brandeis University § Brown University ± M.I.T.

1. INTRODUCTION

Streams are continuous data feeds generated by such sources as
sensors, satellites, and stock feeds. Monitoring applications track
data from numerous streams, filtering them for signs of abnormal
activity, and processing them for purposes of filtering,
aggregation, reduction, and correlation. Aurora [1,2,3] is a
general-purpose data stream manager that is being designed and
implemented (at Brandeis University, Brown University, and
M.I.T.) to efficiently support a variety of real-time monitoring
applications.

2. OVERVIEW OF AURORA
Aurora is being designed to deal with large numbers of

asynchronous, push-based data streams. An Aurora processing
network represents a set of continuous queries as a loop-free,
directed graph of stream-oriented operators. The tuples get
processed as they flow through the network and then delivered to
the corresponding applications.

Aurora users build continuous queries out of a small set of well-
defined operators that implement standard filtering, mapping, and
windowed aggregate and join operations. The windowed
operations have optional timeout and slack parameters that enable
them to deal with slow and out-of-order arrivals, respectively.

Each Aurora application defines one or more Quality of Service
(QoS) functions/graphs, each defining the utility of query results in
terms of a performance or quality metric. Currently, QoS is
captured by three graphs: (1) a latency graph, (2) a value-based
graph, and (3) a loss-tolerance graph. The latency graph indicates
how QoS drops as the results are delayed. The value-based graph
defines the relative importance of the output values. The loss-
tolerance graph is a simple way to describe how averse the
application is to approximate or incomplete answers. The
operational goal of the run-time system is to maximize the total
QoS delivered to the applications.

The key components of the Aurora run-time system are the
scheduler, the storage manager, and the load shedder. The
scheduler decides which operators to execute and in which order to
execute them. The scheduler pays special attention to reducing
operator scheduling and invocation overheads. In particular, the
scheduler batches (i.e., groups) multiple tuples and operators and
executes each batch at once.

The storage manager is designed for storing ordered queues of
tuples instead of sets of tuples (relations). It also combines the
storage of push-based queues with pull-based access to historical

data stored at connection points.
The load shedder is responsible for detecting and handling

overload situations. The latter is accomplished by shedding tuples
by temporarily adding “drop” operators to the Aurora processing
network. The goal of a drop is to filter messages, either based on
the value of the tuple or in a randomized fashion, in order to
rectify the overload situation and provide better overall QoS at the
expense of reduced answer quality.

Aurora has a GUI that allows the construction of arbitrary
Aurora networks, specification of QoS graphs, stream-type
inferencing, and zooming. Users construct an Aurora network by
simply dragging and dropping operators from the operator palette
and connecting them to each other, as well as to the input sources
and output applications.

The current Aurora prototype is implemented on top of Debian
GNU/Linux and consists of about 75K lines of C++ code
augmented by another 50K lines of Java code that implements the
GUI.

3. SYSTEM DEMONSTRATION
The system demonstration will include the illustration of query

specification using the GUI, the Aurora performance/system
monitoring tools that display in real-time the current state and the
performance of the run-time system, and the execution of sample
monitoring applications.

One application we will demonstrate is a tactical command-and-
control application that was developed with the MITRE
Corporation. The application is fed simulated data streams giving
the locations of various classes of friendly and enemy units.
Aurora’s QoS specifications are exercised to show that in
resource-limited times, the most critical information is delivered to
the user.

We will also present an environmental monitoring application.
Ongoing research uses live fish to detect the presence of toxins in
water supplies. Sensors measure and report water quality and the
fishes’ breathing rates. In the demonstration, Aurora correlates
sensor data from potentially noxious water, with baseline sensor
data from clean water, to alert the user about potential
contamination.

4. REFERENCES
[1] Carney, Cetintemel, Cherniak, Convey, Lee, Seidman,

Stonebraker, Tatbul and Zdonik. Monitoring Streams – A
New Class of Data Management Applications, Proceedings of
Very Large Databases (VLDB), Hong Kong, August, 2002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06…$5.00.

[2] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, Y. Xing, S. Zdonik. Scalable Distributed Stream
Processing. In proceedings of the First Biennial Conference
on Innovative Database Systems (CIDR'03), Asilomar, CA,
January 2003.

[3] The Aurora Project.
 http://www.cs.brown.edu/research/aurora

	INTRODUCTION
	OVERVIEW OF AURORA
	SYSTEM DEMONSTRATION
	REFERENCES

