
Distributed Operation in the Borealis
Stream Processing Engine ∗

Yanif Ahmad
yna@cs.brown.edu

Bradley Berg
bb@cs.brown.edu

Uğur Çetintemel
ugur@cs.brown.edu

Mark Humphrey
msh@cs.brown.edu

Jeong-Hyon Hwang
jhhwang@cs.brown.edu

Anjali Jhingran
anjali@cs.brown.edu

Anurag Maskey†
anurag@cs.brandeis.edu

Olga Papaemmanouil
olga@cs.brown.edu

Alexander Rasin
alexr@cs.brown.edu

Nesime Tatbul
tatbul@cs.brown.edu

Wenjuan Xing
vivian@cs.brown.edu

Ying Xing
yx@cs.brown.edu

Stan Zdonik
sbz@cs.brown.edu

Brown University, Providence, RI. †Brandeis University, Waltham, MA.

ABSTRACT
Borealis is a distributed stream processing engine that is
being developed at Brandeis University, Brown University,
and MIT. Borealis inherits core stream processing functional-
ity from Aurora and inter-node communication functionality
from Medusa.

We propose to demonstrate some of the key aspects of
distributed operation in Borealis, using a multi-player net-
work game as the underlying application. The demonstra-
tion will illustrate the dynamic resource management, query
optimization and high availability mechanisms employed by
Borealis, using visual performance-monitoring tools as well
as the gaming experience.

1. INTRODUCTION
Over the last several years, a great deal of research has

been accomplished in the area of stream processing engines.
Several groups have developed working prototypes [1, 5, 10]
and many papers have been published on detailed aspects of
the technology (e.g., [3, 7]).

Borealis is a distributed stream processing engine (SPE)
that inherits core stream processing functionality from Au-
rora [5] and inter-node communication functionality from
Medusa [13]. The Borealis design is driven by our experience
in using Aurora and Medusa, in developing several stream-
ing applications including the Linear Road benchmark [2],
and in pursuing commercial opportunities. Borealis modifies
and extends both systems in nontrivial and critical ways to
provide advanced capabilities that are commonly required by
newly emerging stream processing applications. In particu-
lar, Borealis extends the basic Aurora system with the ability
to (1) modify various data and query attributes at run time,
in an undisruptive manner, and (2) operate in a distributed
fashion.
∗This work has been supported in part by the National Sci-
ence Foundation under the ITR grants IIS-0325838 and IIS-
0325525.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 ...$5.00.

In this demonstration, we focus on the key aspects of dis-
tributed operation in Borealis. Other unique features (such
as “revision records”, “time travel”, and “control lines” that
enable the first capability described above) are described else-
where [6].

Key reasons for distributing stream processing across mul-
tiple machines include:

• Incremental scalability: The system can scale up
and deal with increasing load or time-varying load spikes,
with the addition of new computational resources.

• High availability: Multiple processing nodes can mon-
itor system health and perform fast fail-over and recov-
ery in the case of failures.

2. BOREALIS ARCHITECTURE
The Borealis SPE accepts a collection of continuous queries

that can be seen as one giant network of operators (a.k.a.
query diagram), and distributes the processing of these queries
across multiple sites. Each Borealis site runs a server whose
major components are shown in Figure 1. Query execution
occurs locally within the Query Processor (QP) module. Bo-
realis I/O Queues feed input data into the QP and route
tuples between remote Borealis nodes and clients.

The Admin module is responsible for controlling the local
QP, performing tasks such as setting up queries, and migrat-
ing diagram fragments. The Admin module coordinates with
our Local Optimizer (LOpt) to find performance enhance-
ments. LOpt employs scheduling techniques, modification of
boxes’ runtime characteristics, and our Load Shedder, which
discards low-priority tuples when the node is overloaded.

Other than the QP, a Borealis node has modules which
communicate with their peers on other Borealis nodes to take
collaborative actions. The Neighborhood Optimizer (NOpt)
uses local load information as well as information from other
NOpts to improve load balance between nodes. The High
Availability (HA) modules on different nodes monitor each
other and take over processing for one another in case of
failure. Local Monitor collects performance-related statistics
as the local system runs to report to local and neighborhood
optimizer modules. The Global Catalog provides access to a
single logical representation of the diagram.

882

Transport Independent RPC (XML,TCP,Local)

QueryProcessor HA
MonitorCatalog

NH

Optimizer
Admin

LocalGlobal

IOQueues

Control DataMeta−data

Borealis Node

Load
Shedder

Local Optimizer
Priority

Scheduler

Storage

Persistent

Processor
Box

Storage Manager

Data Interface Control Interface

Query Processor
Catalog

Local

(Buffers and CP data)

Figure 1: Borealis Architecture

3. DEMONSTRATION FEATURES

3.1 Load Distribution
Borealis has a correlation-based load distributor [12] that

distributes the workload on Borealis servers dynamically. The
load distributor is designed to cope with fluctuating and
bursty workloads. The basic goal is to minimize the aver-
age end-to-end processing latency.

The load distribution algorithm differs from the traditional
load balancing algorithms in that it not only balances the av-
erage load of the nodes, but also attempts to (1) minimize the
average load variation on the nodes and (2) maximize the av-
erage load correlation of the node pairs. The first goal helps
in minimizing the data queueing latencies and the second
helps in minimizing the number of load migrations needed
and thus, latencies resulting from operator migration.

Our load distributor functions as either a global algorithm
or a pair-wise operator exchange algorithm. The global algo-
rithm allocates all operators on all nodes at the same time,
for example to initially distribute operators. The pair-wise
algorithm redistributes operators between selected node pairs
and is used for dynamic load redistribution.

3.2 Load Shedding
The load shedder is responsible for detecting and handling

overload situations [9]. Load shedding is accomplished by
shedding tuples, by temporarily adding “drop” operators to
the Borealis processing network. The goal of a drop is to
filter out messages, either based on the value of the tuple
or in a randomized fashion, in order to rectify the overload
situation and provide better overall end-to-end latency at
the expense of reduced answer quality. We use loss-tolerance
QoS (i.e., percent tuple delivery) as our quality metric. Our
mechanism also supports query diagrams with multiple levels
of windowed operators via a novel window drop operator [11].

In a distributed scenario, shedding load at a node reduces
load at downstream nodes. Therefore, we can achieve higher
quality outputs if we allow nodes in a chain to coordinate
in choosing where and how much load to shed. We use
a distributed load shedding algorithm which collects local
statistics from nodes and pre-computes potential drop plans
at compile time. We adjust these pre-computed plans at
run-time and instantiate them through the local load shed-
der modules as input rates change and nodes get overloaded
at varying levels. This two-phase approach provides a low-
overhead mechanism for shedding load at run time, when the
system is most in need of CPU cycles for running the queries.

3.3 High Availability
Stream processing applications often have weaker notions

of correctness than the oft-demanded “perfect” recovery in

traditional data-processing, and thus can work with weaker
recovery guarantees. In Borealis, we distinguish and study
three important types of failure recovery. Gap recovery may
lose tuples and state when a failure occurs. Rollback recovery
re-starts query-processing from a checkpoint. It does not lose
any tuples, but it may produce redundant tuples. Precise
recovery, takes over exactly from the point of failure, neither
losing nor duplicating tuples.

In addition to amnesia, a lightweight scheme that provides
high availability without incurring runtime overhead but may
lose tuples during a failure, we also adapt the standard pas-
sive standby and active standby approaches to the stream
processing context. In both techniques, each primary node
periodically sends checkpoint messages that summarize the
node state to a secondary, which takes over from the latest
checkpoint when the primary fails. In addition, the upstream
backup technique, where upstream nodes in the processing
flow act as backups for their downstream neighbors, reduces
the runtime operation overhead while trading off a small frac-
tion of the recovery speed (and recovery guarantees). Details
of our high availability approaches can be found in [8].

3.4 Parallel Processing and Dissemination
Borealis incorporates a partitioning mechanism to support

operator execution in a distributed fashion. Partitioning en-
ables the parallelization of costly operators, and a finer op-
erator granularity to better utilize the available resources.
Borealis incorporates tuple routing mechanisms, supporting
data dissemination through publication points which match
tuples in their input stream against predicates provided by
subscribers to the point.

4. DEMONSTRATION DETAILS
The demonstration will illustrate various aspects of dis-

tributed operation in Borealis using a multi-player network
game as the motivating application. Specifically, Borealis
provides two core functionalities as the game server:

• Borealis will process continuous queries on the game
state, providing aggregated views of the game world.

• Borealis will gracefully adapt to changes in resource
utilization and availability.

4.1 Application: Multi-player Network Game
Our demonstration uses Borealis as the server component

of the Cube engine [4]. Cube is an open-source first person
shooter. In the game, each player represents a combatant
on a three-dimensional map. Players pursue one another
shooting projectiles from their inventory of weapons. The
map also contains items, such as ammunition and armour.
Game clients maintain and communicate these stateful map
entities through the game server. For example, a player’s
state consists of a location, orientation and velocity.

883

Figure 2: Cube screenshot, showing a region.

In professional gaming competitions, players participate in
team competitions. Team gameplay involves a commander,
or manager role, who guides individual players based on ag-
gregated information from all team players. We extend the
Cube game to support a commander role. The commander
dynamically registers continuous queries to monitor the game
state and implement a game strategy based on the results
she gets. Hence, our queries will serve as distributed triggers
that are continually evaluated to track events of interest and
notify the commander in her viewport.

In this demonstration, we interject Borealis at the net-
work layer of the Cube engine. Cube’s network messages
are Borealis tuples and Borealis implements the game server
application logic. We run the game on a custom map, driv-
ing inputs from our workload generator. The map consists
of several buildings, each of which represents a team’s base.
We consider two types of primitives over which continuous
queries may be specified: regions and entities (i.e., players
and items) in the game world. The commander view sup-
ports the selection of regions (as seen in Figure 2) and en-
tities to query dynamically. Some examples of continuous
queries are:

• Detect when more than 20 enemy combatants are near
my team’s base (expressed as a join over regions).

• Detect when total health of the team falls below 50%
(expressed as an aggregate on players and a filter).

4.2 System and Performance Visualization
The Borealis system’s monitoring tools will display in real

time the current configuration (including information on which
machines are executing particular boxes) and the perfor-
mance of the run-time system. Our performance monitor-
ing tool will primarily be used to visualize end-to-end tuple
latency, and tuple loss through the use of sequence numbers.

Our demonstration includes a team commander’s view side-
by-side with the performance visualizer. The commander
view provides a three-dimensional view of the game world,
from a top-down vantage point. Our continuous queries’ out-
puts act as notifications to the commander, represented in
either a textual form (e.g., for counters), or a visual form
(e.g., coloring players).

4.3 Setup
In our demonstration, Borealis runs on a local-area net-

work of laptop machines. The continuous queries for both
the game and commander run in the background and are au-
tomatically distributed across the machines running Borealis

servers. Additionally, one machine acts as a workload gener-
ator that will introduce adjustable load into the system both
in terms of the number of scripted players in the game world,
and the frequency of updates from these players.

Our demonstration highlights the effect of the aforemen-
tioned Borealis features to gracefully handle an ever-increasing
workload. We commence with a single Borealis server run-
ning the game query. As the game load increases, we intro-
duce an additional Borealis server, and execute our load dis-
tribution algorithm to balance the load across the machines
by moving operators. Consequently, tuple latencies as seen
in the performance visualizer, will be kept low and the game
experience as witnessed in the commander view, satisfactory.

At this stage, our workload generator continues to ramp
up the number of players and their update frequencies. Our
two Borealis servers available will be in an overloaded state,
triggering our distributed load shedding algorithm. Subse-
quently, end-to-end latencies drop, yet we witness the loss
of tuples in our performance visualizer. Players in the com-
mander view will move less smoothly, and jump from spot to
spot in the game world.

To demonstrate high availability, we will disconnect one
of the machines from the network. The high availability
mechanism will automatically react to this failure by having
another machine take over the processing of the “crashed”
machine. The participants will probably observe a “blip” in
the latency immediately after the failure, during the recovery
period, but the game will continue to operate.

5. ACKNOWLEDGEMENTS
We thank all members of the Borealis project for their valu-
able comments and continual support.

6. REFERENCES
[1] A. Arasu et. al. STREAM: The Stanford Stream Data

Manager. In ACM SIGMOD Conference, June 2003.
[2] A. Arasu et. al. Linear Road: A Stream Data Management

Benchmark. In VLDB Conference, August 2004.
[3] A. Arasu, S. Babu, and J. Widom. CQL: A Language for

Continuous Queries Over Streams and Relations. In DBPL
Workshop, September 2003.

[4] Cube. http://www.cubeengine.com.
[5] D. Abadi et. al. Aurora: A Data Stream Management

System. In ACM SIGMOD Conference, June 2003.
[6] D. Abadi et. al. The Design of the Borealis Stream

Processing Engine. In CIDR Conference, January 2005.
[7] D. Carney et. al. Operator Scheduling in a Data Stream

Manager. In VLDB Conference, September 2003.
[8] J-H. Hwang et. al. High-Availability Algorithms for

Distributed Stream Processing. In IEEE ICDE Conference,
April 2005.

[9] N. Tatbul et. al. Load Shedding in a Data Stream Manager.
In VLDB Conference, September 2003.

[10] S. Chandrasekaran et. al. TelegraphCQ: Continuous
Dataflow Processing. In ACM SIGMOD Conference, June
2003.

[11] N. Tatbul and S. Zdonik. Window-aware Load Shedding for
Data Streams. Technical Report CS-04-13, Brown
University, Computer Science, November 2004.

[12] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic Load
Distribution in the Borealis Stream Processor. In IEEE
ICDE Conference, April 2005.

[13] S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel,
M. Balazinska, and H. Balakrishnan. The Aurora and
Medusa Projects. IEEE Data Engineering Bulletin, 26(1),
March 2003.

884

