
The ETH Zurich Systems Group
and Enterprise Computing Center

Gustavo Alonso Donald Kossmann Timothy Roscoe Nesime Tatbul

Andrew Baumann Carsten Binnig Peter Fischer Oriana Riva Jens Teubner
Systems Group

Department of Computer Science, ETH Zurich
Zurich 8092, Switzerland

http://www.systems.inf.ethz.ch/

1. INTRODUCTION
Computer science is facing a fundamental paradigm shift.

Multicore architectures, application virtualization, and cloud
computing each present on their own radical departures in
the way software is built, deployed, and operated. Taken
together, these trends frame a scenario that makes sense
from many points of view (usability, scalability, flexibility,
development cost) but is also radically different from what
we know today. It is fair to say that a coherent answer to
the challenges raised by the combination of these trends has
yet to emerge from either academia or industry.

From an academic perspective, these challenges are par-
ticularly difficult because they imply a considerable depar-
ture from established procedures. To start with, multi-
core computers, the virtualization of computing platforms,
and the replacement of the one-computer-one-local-copy-of-
a-program approach by cloud computing each demand an
interdisciplinary approach. In practice, it is likely that tra-
ditional disciplines such as operating systems, distributed
systems, software engineering, or data management will re-
quire major revision as the boundaries between them become
blurred.

A further challenge for both academic and (to some ex-
tent) industrial research is the impossibility of exploring
the important design, architectural, and algorithmic chal-
lenges ahead using a small number of computers. Indus-
trially meaningful systems today are large distributed plat-
forms (hundreds, thousands, ten of thousands nodes) with
complex multi-layered architectures, often geographically dis-
tributed over the globe. Academia often lacks both access
to such systems and basic information on the operations,
constraints and requirements involved.

The Systems Group, together with the Enterprise Com-
puting Center (ECC) are two recent initiatives at the ETH
Zurich Department of Computer Science to respond to these
challenges. The goal of the Systems Group is to redefine, re-
structure, and reorganize systems research to avoid the pit-
falls of looking at complex problems from a single, isolated
perspective. The goal of the ECC is to establish new re-
lationships between academia and industry that are longer
term, more productive for all sides, and give academic re-
search direct access to real systems and empirical data about
the functioning of these systems.

In this short paper, we present both these initiatives and
some of the associated research projects. We hope our ideas

will inspire others; we are convinced that such research struc-
tures are essential for academic research to remain compet-
itive and relevant in todays computing environment.

2. VISION AND APPROACH
Our vision of how mainstream computing is evolving is

based on the three trends mentioned above: multicore, vir-
tualization, and cloud computing. To these, we add perva-
sive computing, and note that the most common information
access terminals in the near future will be portable devices
rather than traditional computers.

We summarize the vision as follows: software will run on
manycore (>16 cores) computers with heterogeneous hard-
ware (not all cores and processing units will have the same
capabilities). Applications will be deployed on clusters of
thousands if not millions of machines, distributed world-
wide. The hardware resources of these clusters will be virtu-
alized into logical, dynamically configured computing plat-
forms. Through virtualization and the notion of software as
a service, applications on such platforms will operate in a
computing cloud: physically separated from the application
client or human user). The principle access device for the
cloud will be future portable computing and communication
devices, of which today’s mobile phones are a precursor.

Our research agenda revolves around the many related
challenges in moving from where we are and what we know
today towards this emerging vision of computing:

1. Managing resources in a heterogeneous multicore com-
puter that itself increasingly resembles a distributed
system, and architecting applications (specially data
management applications) to efficiently exploit heter-
geneous multicore machines.

2. Architecting applications to efficiently exploit thou-
sands of hetergeneous multicore machines, and build-
ing software platforms (database systems, data stream
processors, application servers) on this hardware in-
frastructure.

3. Evolving existing software systems into multicore ap-
plications, and determining which parts of standard
applications can run on specialized, dedicated hard-
ware and which are the appropriate abstractions for
programming such hardware.

94 SIGMOD Record, December 2008 (Vol. 37, No. 4)



4. Appropriate methodologies for developing, deploying,
and maintaining modern applications in the cloud, and
building application modules that can be automati-
cally configured and dynamically managed in a virtual
environment.

5. Determining which new classes of applications are pos-
sible in such environments.

6. Seamlessly integrating portable computing and com-
munication devices and applications running in the
computing cloud.

We approach these challenges by building real, complete
systems as well as designing new algorithms, data structures,
and protocols. In doing so, we try to inhabit this new world
of large-scale computing as much as possible. However, this
in turn cannot be done piecemeal at the level of individual
research projects; it requires a substantial, long-term com-
mitment of both people and resources. The Systems Group
and the Enterprise Computing Center are a means to sustain
such a research agenda.

3. THE SYSTEMS GROUP
Practical pursuit of our research vision requires a critical

mass of people exploring and constructing systems, and the
necessary complementary expertise to tackle all key aspects
of the problem.

We formed the Systems Group by merging the research
groups of four professors in different areas: Gustavo Alonso
(distributed systems, middleware), Donald Kossmann (data
management, databases), Timothy Roscoe (operating sys-
tems, networking), and Nesime Tatbul (data streams, dis-
tributed data management). The Group today has five se-
nior researchers and 28 Ph.D. students.

Unlike many“laboratories” or “institutes”, the group truly
functions as a single unit. For example, all students are
assigned at least two professors in the group as advisors,
based on the area they are working in. By having several
real advisors (who actually act as such), students are forced
from day one to explain their ideas to people from different
areas and to look at their own work from varied perspectives.

Students collaborate in teams on the development of par-
ticular systems. Interaction across the group takes place
in individual meetings (discussing the work of the individ-
ual student), project meetings (discussing the work on a
project), strategic meetings (discussing the interactions across
systems and projects), and at presentations and discussions
where the whole group is involved. These meetings promote
the constant exchange of ideas from networks, operating sys-
tems, distributed systems, and databases systems. They are
also the source of new ideas and solutions that give us the
necessary leverage to tackle many of the research questions
listed above.

While such an interdisciplinary approach is not new in
many universities, we have made it a mandatory part of the
doctoral studies. There is naturally an intrinsic cost to this,
since it takes longer to develop a common understanding of
the problem at hand (simply because more angles are being
considered at the same time). However, the effort is worth-
while: in two years of operation, we have many examples of
successful, creative, and innovative projects generated from
this process.

4. ENTERPRISE COMPUTING CENTER
Any research institution faces the problem of obtaining

adequate funding while maintaining the freedom to pursue
a coherent agenda. In our case, we are privileged to work
at ETH Zurich, a university explicitly created for top-tier
education and research. The generous funding available is
a reflection of Switzerland’s commitment to research, and
the understanding that research must have substantial in-
dependence from industry and other external agencies. The
base funding provided for each professor allowed us to cre-
ate the Systems Group while neither compartmentalizing
our research agenda nor tailoring it to the vagaries of any
funding agency. This is particularly important since many
of the challenges we are pursuing are not yet well-formulated
in the way required by some funding sources – in fact, part
of our work is to formulate these problems more precisely.

However, even in the generous research environment that
exists at ETH Zurich, systems work in academia increasingly
requires access to large computing and software infrastruc-
tures beyond the means of a single institution (a situation
that has lead to the recent creation of shared research plat-
forms such as PlanetLab [9]). Our research agenda requires
an understanding of, and access to, computer systems used
in industry that simply cannot be replicated at a university.
The Enterprise Computing Center was created to address
this and provide a vehicle for validating ideas and prototypes
against real systems. Besides helping to fund our research,
it creates an open and ongoing dialog between us and in-
dustry that speeds up tech transfer and keeps the research
focused and honest. The ECC brings the insights of indus-
try to academic research without actually tying the work to
particular products or corporate strategies.

The ECC model is based on long-term collaboration be-
tween industry and academia, sustained through close inter-
action. Rather than collaboration on a per-project basis, the
ECC establishes a framework in which to discuss research
opportunities and to define concrete projects that are of mu-
tual interests to all parties involved. This requires industrial
partners to commit time and people to ECC, not just funds.
It typically happens when both the Systems Group and the
industrial partner have established that there are areas of
common interest, and the long term research carried out by
the Systems Group can be of value to the company. Con-
crete projects can then be defined and carried out under
several possible models: students working mostly at ETH
Zurich, students working mostly at the industrial partner,
or a hybrid approach where frequent visits between part-
ners facilitate the tech transfer. In all cases, the students
are full Ph.D. students at ETH Zurich, advised by ETH
professors and subject to the same requirements and stan-
dards than any other Ph.D. student. The ECC and the
research projects conducted through it are fully integrated
into the rest of the Systems Group. With regard to IP, the
IP is owned by both ETH and the industry partner if not
specified otherwise; if the company wants to own all the IP,
the company must pay overheads to ETH accordingly. In
all cases, it is guaranteed by the ETH contracts that the
students may publish all research results.

The ECC also provides a common ground for different
companies to meet and develop a common understanding
of problems faced across industries. We organize an annual
workshop with all partners to discuss the project progress,
identify avenues for further research, and exchange ideas and

SIGMOD Record, December 2008 (Vol. 37, No. 4) 95



results. The first such workshop took place in November,
2008 at Monte Verita, in Ascona, Switzerland.

The current ECC partners are Credit Suisse, Amadeus,
and SAP. All are interested in several of the research chal-
lenges above and were already individually exploring dif-
ferent versions of our vision. These partners have comple-
mentary interests, do not compete in the market, and are
committed to an open research collaboration, a principle we
intend to maintain as more partners are added.

5. RESEARCH PROJECTS
To concretize the discussion, we describe a collection of

inter-related projects being pursued in the Group. Some are
under the auspices of the ECC, while some involve other in-
dustry collaborations. We make a somewhat arbitrary clas-
sification into multicore machine-related projects, building
blocks for future applications, and finally cloud computing.

5.1 Multicore and New Platforms
This first group of projects is about exploiting and man-

aging resources at the level of single machines, as a basis for
the higher layers of both applications and the distributed
infrastructure they will run on.

5.1.1 Operating systems: Barrelfish
Barrelfish is a new operating system developed in the

Systems Group in collaboration with Microsoft Research in
Cambridge, UK. Barrelfish is open source, written largely
from scratch, and targets emerging hetergeneous multicore
systems and the application runtimes being developed for
them.

Barrelfish is a reaction to challenges both from application
software and emerging hardware. In software, increasingly
sophisticated languages and runtimes are appearing to al-
low programmers to effectively express parallelism in their
programs, ranging from parallel combinators in functional
languages to re-architected database query engines, but it is
not clear that current I/O APIs for operating systems like
Windows and POSIX can efficiently support such systems
without the OS becoming the bottleneck.

In hardare, the increasing number of CPU cores is ac-
companied by an increasing diversity in computer system
architectures: machines themselves are becoming more di-
verse, heterogeneous cores within a machine are becoming
the norm, and memory systems are increasingly non-uniform.
Current OS architectures are ill-equipped to exploit such a
complex and varying feature set without an explosion in code
complexity.

Barrelfish applies two key insights to these challenges.
Firstly, the machine is treated for the most part as a dis-
tributed system in its own right: message passing and agree-
ment protocols are used wherever possible between cores
rather shared memory to reduce expensive cross-system locks
and contention for both the memory system and intercon-
nect.

Secondly, we apply techniques from data management and
knowledge representation to allow the OS and applications
to reason effectively about the machine and optimize their
policies accordingly [8]. Barrelfish includes a constraint logic
programming (CLP) solver as a basic system service, in
place of the name services or configuration databases found
in conventional systems. We hope the powerful combination
of logical inference and constrained optimization will allow

effective exploitation of a wide range of current and future
hardware.

5.1.2 Hardware acceleration: NICs, FPGAs
To explore the potential of specialized hardware in tandem

with Barrelfish, we are studying how to use programmable
Network Interface Cards (NICs) and Field Programmable
Gate Arrays (FPGAs) to speed up specialized operations,
with an initial focus on stream processing.

In the context of programmable NICs, we are studying
the acceleration of message processing as part of algorithmic
trading in conventional financial applications. The challenge
here is to minimize the latency between the arrival of a mes-
sage and the reaction to it.

We are also working on implementing conventional data
stream operators in FPGAs, as a way to determine the sweet
spot for this technology. FPGAs are particularly interesting
because they allow the development of hardware tailored at
runtime, and can be embedded into a CPU socket in multi-
socket PC motherboards.

A longer-term goal of both these efforts is to explore how
Barrelfish can be used to manage and allocate such het-
erogeneous resources, and how applications can be built to
efficiently exploit such heterogeneous platforms.

This work is partially in collaboration with Credit Suisse,
and also supported in part by an IBM Faculty Award to
Nesime Tatbul.

5.1.3 Software architecture: Universal OSGi
The view of the future we subscribe to implies the need

for frameworks for developing, deploying, and managing ap-
plication over manycore and cluster-based systems. The
Universal OSGi project (funded in part by the Microsoft
Research Innovation Cluster in Software for Embedded Sys-
tems) aims to simplify software development software over
both multicore and virtualized clusters. We build on the
well-understood concept of software module, in particular
as embodied in the Java-based Open Services Gateway Ini-
tiative (OSGi) standard. The key idea is to abstract complex
tasks such as deployment of distributed behind traditional
module composition and life-cycle management. Program-
mers develop modules and the platform uses these modules
for distributed deployment in a cluster or for parallelization
on a multicore machine.

We have already validated the basic idea in practice in
two implementations of the OSGi specification. The first,
Concierge (http://concierge.sourceforge.net/) [10], is a high-
performance, low footprint implementation for small devices.
The second is R-OSGi [11], which extends the OSGi model
to support transparent distribution of an application across
different nodes on a network, by mapping remove invoca-
tions and parial failure to module calls and module unload
events respectively. R-OSGi hides the difficulties of devel-
oping distributed software by basing the distribution on the
modular architecture of the application.

The next step is Universal OSGi: applying these ideas
outside the Java world. We have taken the first steps in this
direction by showing how the model of R-OSGi can be used
as fabric for the so-called Internet of Things [12], including
extensions to treat code developed in languages other than
Java as OSGi bundles, turning them into components with
the same characteristics as any other component within an
OSGi framework. We are also developing a C analogue of

96 SIGMOD Record, December 2008 (Vol. 37, No. 4)



OSGi, one use of which is as the object binding model in
Barrelfish.

5.1.4 Multicore query processing: CresCanDo
CresCanDo is a collaboration between the Systems Group

and Amadeus as part of the ECC to provide predictable
performance for unpredictable query and update workloads.
The key idea is to rely on collaborative scans in main-memory
as the only access path for query processing. Scalability
within a node comes from running each scan on a separate
core of a multicore machine. Scalability as a whole comes
from using a large enough cluster of such machines to keep
all data in main memory. The crucial advantage of this ap-
proach is that the query and update response-times become
predictable, independent of any indexing. Horizontally par-
titioning the database and executing all scans in main mem-
ory results in manageable response times. To handle high
update rates, a relaxed consistency model is employed which
does not support serializability but gives strong guarantees
on freshness of data scanned for a given query.

The contributions of the project include a novel algorithm
to schedule and process large main-memory scans for queries
and updates on multicore machines [14]. We have also de-
veloped a new logging and local recovery mechanism that
persists all data to disk with little overhead and recovers a
machine after a crash with reasonable effort. While Cres-
CanDo has a clear direction of its own and is already be-
ing tested at Amadeus, it is also a good use case for other
projects. CresCanDo will be ported to Barrelfish as the most
natural OS for such an application, and we are also explor-
ing using Remote Direct Memory Access (RDMA) for fast
recovery strategies for CresCanDo.

5.2 Building Blocks
At a higher level, a number of projects in the systems

group are exploring building blocks for large-scale services.
Each project is focussed on a concrete, independent result,
but these results form important components of the wider
vision.

5.2.1 Storage management for streams: SMS
Flexible and scalable storage management is a key is-

sue in the performance of data-intensive streaming applica-
tions. The SMS project (funded by the Swiss National Sci-
ence Foundation) proposes a stream processing architecture
that decouples query processing from storage management
to flexibly allow fine-tuning of storage mechanisms accord-
ing to application needs. We first define a parametric inter-
face between the query processor and the storage manager,
general enough to capture the architectural, functional, and
performance-related properties of the most common set of
streaming applications. In particular, data access patterns
for reads and updates have the most direct impact on per-
formance. By analyzing the possible forms of these access
patterns we devise a set of corresponding data structures,
access paths, and indices to minimize overall memory con-
sumption and application query response time. The SMS
interface also facilitates multi-query optimization based on
the shared access patterns of multiple queries. A recent
study has shown the performance benefits of the SMS ap-
proach [1].

In addition to supporting performance improvements, SMS
also provides a clean and flexible system architecture that

we have found useful as a building block in other projects.
SMS is the underlying storage manager in XTream, and both
the UpStream and DejaVu projects build on the design for
application-specific performance tuning. Finally, we believe
that SMS-style loose-coupling is also appropriate to feder-
ated stream processing and data management in the cloud.

5.2.2 Interfacing to the cloud: AlfredO
Like many others, we believe mobile devices will be the

main access point to the cloud for many end users. Seam-
lessly integrating code on such devices with applications in
the cloud is therefore a key challenge. Our first steps in this
direction include AlfredO [13]: a lightweight middleware ar-
chitecture that enables users to easily interact with other
systems while providing ease of maintenance and security
for their personal devices.

AlfredO is based on two insights. The first is that inter-
actions with devices like appliances, touch-screens, vending
machines, etc., tend to be short-term and ad-hoc, and so
the traditional approach of pre-installing drivers or inter-
face code for each target device is impractical. Instead, we
employ a distribution model based on the idea of software
as a service: each target device presents its capabilities as
modular service items that can be accessed on-the-fly by a
personal device such as a phone.

The second insight derives from the evolution of client-
server computing from mainframes and terminals, through
two-tier (client-server) systems, to three-tier architectures
such as Web applications: partitioning server functional-
ity leads to better performance, scalability, flexibility, and
adaptability. We model each service in the cloud as a de-
composable multi-tier architecture consisting of presenta-
tion, logic, and data tiers.

These tiers can be selectively distributed to the user’s mo-
bile device through AlfredO depending on the optimal con-
figuration for the task at hand. AlfredO makes extensive use
of R-OSGi (part of the Universal R-OSGi project). Initial
testing has been possible thanks to a generous equipment
grant from Nokia.

Our current work is to use AlfredO in conjunction with
the Rhizoma runtime, employing a mobile phone as an in-
terface to compute-intensive, real-time “recognition, mining
and synthesis” workloads such as 3D scene generation that
cannot be performed purely on the phone.

5.2.3 Zorba and MXQuery
In a recent Communications of the ACM article [6], the

plethora of programming languages and technologies needed
to build a large-scale application was identified as a ma-
jor limiting factor for cloud computing. Independent of
cloud computing, simplifying the software stack is an impor-
tant part of improving the development, evolvability, and
deployment of applications. Today, SQL is the dominant
programming language at the database layer, Java (or C#
or other object-oriented languages) in the application layer,
and JavaScript is the language of choice in the presentation
layer (the browser).

We are investigating the use of a single programming lan-
guage and server software architecture for all application
tiers. This would allow great flexibility in deployment, al-
lowing application code to move between the client and the
server, or be pushed down to the database. Furthermore, a
“whole program” view would make such applications more

SIGMOD Record, December 2008 (Vol. 37, No. 4) 97



amenable to automatic optimization. Finally, data mar-
shalling between layers becomes more uniform and in some
cases can be eliminated entirely, and the replication of func-
tionality (such as integrity checking or logging) across layers
is avoided.

We have started by developing pluggable processors for
the XQuery language: Zorba and MXQuery. XQuery seems
to be a good match for database queries, application logic,
and user interfaces in the Web browser, and has recently
acquired extensions for REST, Web Services, and window-
based stream processing. While XQuery’s status as a W3C
standard makes it a natural choice, other languages such
as Microsoft’s LINQ are also good candidates; our principle
interests are language-independent and rather concern the
development of new architectures for stream processing [2]
(also used in the XTream project), browser programming [5],
and application servers for the cloud [7].

5.3 Cloud Computing and Virtualization
Our final group of projects builds on the technologies we

have just described, to facilitate the design and implementa-
tion of complete applications and software services deployed
on cloud infrastructures.

5.3.1 Data management in the cloud: Cloudy
Despite the potential cost advantages, cloud-based imple-

mentations of the functionality found in traditional databases
face significant new challenges, and it appears that tradi-
tional database architectures are poorly equipped to operate
in a cloud environment.

For example, a modern database system generally assumes
that it has control over all hardware resources (so as to op-
timize queries) and all requests to data (so as to guarantee
consistency). Unfortunately, this assumption limits scala-
bility and flexibility, and does not correspond to the cloud
model where hardware resources are allocated dynamically
to applications based on current requirements. Furthermore,
cloud computing mandates a loose coupling between func-
tionality (such as data management) and machines. To ad-
dress these challenges, we are developing a system called
Cloudy [3, 4], a novel architecture for data management in
the cloud. Cloudy is a vehicle for exploring design issues
such as relaxed consistency models and the cost efficiency of
running transactions in the cloud.

We are also rethinking the model for distributed and po-
tentially long-running transactions across autonomous ser-
vices (such as those found in the cloud). One key idea is to
employ a reservation pattern in which updates are reserved
before they are actually committed – in some sense, a gener-
alization of 2-phase commit in which the ability to commit
is reserved before the actual commit itself. We are exploring
this pattern in collaboration with Oracle and Credit Suisse
so as to understand its domain of applicability for large-scale
applications and complex infrastructures.

5.3.2 Self-deploying applications: Rhizoma
Data management is only one challenge posed by deploy-

ing long-running services on cloud infrastructures. Selecting
cloud providers is becoming more complex as more play-
ers enter the market, pricing structures change regularly
through competition and innovation, individual providers
experience transient failures and major outages, and appli-
cation deployment must be adjusted (within constraints) to

handle changes in offered load.
Rhizoma [15] explores a novel approach to such challenges.

Instead of the additional complexity and overhead of using
a management console or service separate from the applica-
tion, we bundle a management runtime with the application
which can acquire new resources and deploy further appli-
cation instances as needed, with no separate management
infrastructure required.

A distributed Rhizoma application can span multiple cloud
providers, and is almost entirely autonomous: individual ap-
plication nodes elect a leader that monitors resource avail-
ability and usage, decides on future resource requirements,
acquires and releases virtual machines as required, and de-
ploys new instances of the application where needed.

Developers or service operators specify the policy for de-
ployment of a Rhizoma application as a high-level constrained
optimization problem (such as maximizing available CPU
while minimizing overlay network diameter and monetary
cost), which is used by the leader to make deployment deci-
sions on a continuous basis.

We are currently considering using Rhizoma in a variety
of other projects: in combination with Universal OSGi, and
as an extension to XTream and AlfredO.

5.3.3 Federated stream processing: MaxStream
Despite the availability of several data stream process-

ing engines (SPEs) today, it remains hard to develop and
maintain streaming applications. One difficulty is the lack
of agreed standards, and the wide (and changing) variety
application requirements. Consequently, existing SPEs vary
widely in data and query models, APIs, functionality, and
optimization capabilities. Furthermore, data management
for stored and streaming data are still mostly separate con-
cerns, although applications increasingly require integrated
access to both. In the MaxStream project, our goal is to
design and build a federated stream processing architecture
that seamlessly integrates multiple autonomous and hetero-
geneous SPEs with traditional databases, and hence facil-
itates the incorporation of new functionality and require-
ments.

MaxStream is a federation layer between client applica-
tions and a collection of SPEs and databases. A key idea
is to present at the application layer a common SQL-based
query language and programming interface. The federation
layer performs global optimizations and necessary transla-
tions to the native interfaces of the underlying systems. The
second idea is to implement the federation layer itself using
a relational database infrastructure. By doing so, we can
build on existing support for SQL, persistence, transactions,
and most importantly traditional federation functionality.
Finally, MaxStream leverages the strengths of the underly-
ing engines while the federation layer can compensate for
any missing functionality by itself adding a number of novel
streaming features on top of the relational engine infrastruc-
ture. MaxStream is a collaboration with SAP Labs in the
context of the ECC, and also builds on the SMS storage
manager project.

5.3.4 Global stream overlays: Xtream
The XTream project is looking at stream processing as the

basis for a global scale, collaborative data processing and
dissemination platform where independent processing units
are linked by channels to form intertwined data stream pro-

98 SIGMOD Record, December 2008 (Vol. 37, No. 4)



cessing meshes. In XTream we seek to generalize the data
stream processing model beyond current applications (stock
tickers, sensor data, etc.) to a more general class of per-
vasive streaming applications encompassing a wider range
of heterogeneous information sources and forms of data ex-
change (e-mail, messaging, SMSs, notifications, alarms, pic-
tures, events, etc.).

XTream has been designed as a dynamic and highly dis-
tributed mesh of data processing stages connected through
strongly typed channels, which connect heterogeneous data
sources and sinks through standard interfaces and support
in-network data processing and storage. Stages export stan-
dard interfaces, while the channels provide an underlying
storage and messaging fabric.

The mesh overlay is extensible and configurable at run-
time: stages and channels can be dynamically added and
removed, with the system ensuring continuous operation and
consistent results during this process. Through XTream we
are exploring fundamental design questions for highly dis-
tributed systems and how to bring stringer software engi-
neering design concepts into system architectures.

XTream is funded in part by the Swiss National Science
Foundation. It builds upon R-OSGi (part of the Universal
OSGi project) and the SMS project, and also serves within
the group as a general use-case for large scale pervasive com-
puting using clouds.

6. CONCLUSION
The experience we have accumulated in the last two years

with The Systems Group and the Enterprise Computing
Center has been overwhelmingly positive. The advantages
more than compensate for the intrinsic coordination and
communication cost of a larger working unit, a view shared
by all involved from faculty to PhD students. The Enter-
prise Computing Center has also become a crucial part of
our research, with projects that not only are at the fore-
front of technology but also bring first hand feedback from
industry and have an open door for technology transfer.
More information on the group, ECC, or any of our re-
search or teaching activities can be found in our web pages
(http://www.systems.inf.ethz.ch/). Those interested in
pursuing Master studies at ETHZ, doing a PhD within the
Systems Group, a Post-Doc position, or spending time as a
faculty visitor, should contact the faculty by e-mail.

7. ACKNOWLEDGMENTS
In addition to the support we have received from ETH

Zurich, we would also like to thank all our various sponsors
and collaborators, including Amadeus, Credit Suisse, the
European Commission, the FLWOR Foundation, the Hasler
Foundation, IBM, Intel, Microsoft, Nokia, Oracle, SAP, and
the Swiss National Science Foundation (SNF). Finally, we
would also like to thank all the members of the Systems
Group for making it such a fun and successful place to work.

8. REFERENCES
[1] I. Botan, G. Alonso, P. M. Fischer, D. Kossmann, and

N.Tatbul. Flexible and Scalable Storage Management
for Data-intensive Stream Processing. In International
Conference on Extending Database Technology
(EDBT’09), Saint Petersburg, Russia, March 2009.

[2] I. Botan, P. Fischer, D. Florescu, D. Kossmann,
T. Kraska, and R. Tamosevicius. Extending XQuery
with Window Functions. In Proceedings of VLDB
2007, Vienna, Austria, September 2007.

[3] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska. Building a database on S3. In Proceedings
of the ACM SIGMOD Conference, Vancouver,
Canada, June 2008.

[4] D. Florescu and D. Kossmann. Rethinking the cost
and performance of database systems. http:
//www.dbis.ethz.ch/research/publications/index,
December 2008.

[5] G. Fourny, D. Kossmann, T. Kraska, M. Pilman, and
D. Florescu. XQuery in the browser - Demo paper. In
Proceedings of the ACM SIGMOD Conference,
Vancouver, Canada, June 2008.

[6] B. Hayes. Cloud computing. Commun. ACM,
51(7):9–11, 2008.

[7] D. Kossmann. Building Web Applications without a
Database System - Invited Talk. In Proceedings of the
EDBT 2008 Conference, Nates, France, March 2008.

[8] S. Peter, A. Schüpbach, A. Singhania, A. Baumann,
T. Roscoe, P. Barham, and R. Isaacs. Multikernel: An
architecture for scalable multi-core operating systems
(Work-in-Progress report). In Proceedings of OSDI
2009, San Diego, CA, USA, December 2008.

[9] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proceedings of the 1st Workshop on
Hot Topics in Networks (HotNets-I), Princeton, New
Jersey, USA, October 2002.

[10] J. Rellermeyer and G. Alonso. Concierge: A Service
Platform for Resource-Constrained Devices. In
Proceedings of the ACM EuroSys 2007 Conference,
Lisbon, Portugal, March 2007.

[11] J. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications through Software
Modularization. In Proceedings of the
ACM/IFIP/USENIX 8th International Middleware
Conference (Middleware 2007), Newport Beach, CA,
USA, November 2007.

[12] J. Rellermeyer, M. Duller, K. Gilmer, D. Maragkos,
D. Papageorgiou, and G. Alonso. The Software Fabric
for the Internet of Things. In Proceedings of the First
International Conference on the Internet of Things,
Zurich, Switzerland, March 2008.

[13] J. Rellermeyer, O. Riva, and G. Alonso. AlfredO: An
Architecture for Flexible Interaction with Electronic
Devices. In Proceedings of the ACM/IFIP/USENIX
9th International Middleware Conference (Middleware
2008), Leuven, Belgium, December 2008.

[14] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser,
and D. Kossmann. Clockscan: Predictable
performance for unpredictable workloads. Technical
Report, ETH Zurich, in preparation, 2009.

[15] Q. Yin, J. Cappos, A. Baumann, and T. Roscoe.
Dependable Self-Hosting Distributed Systems Using
Constraints. In Proceedings of the 4th Usenix
Workshop on Hot Topics in System Dependability
(HotDep), San Diego, CA, USA, December 2008.

SIGMOD Record, December 2008 (Vol. 37, No. 4) 99




