
Towards Observability Data Management at Scale
Suman Karumuri
Slack Technologies

skarumuri@slack-corp.com

Franco Solleza, Stan Zdonik
Brown University

{fsolleza,sbz}@cs.brown.edu

Nesime Tatbul
Intel Labs and MIT

tatbul@csail.mit.edu

ABSTRACT
Observability has been gaining importance as a key capability
in today’s large-scale software systems and services. Moti-
vated by current experience in industry exemplified by Slack
and as a call to arms for database research, this paper outlines
the challenges and opportunities involved in designing and
building Observability Data Management Systems (ODMSs)
to handle this emerging workload at scale.

1 INTRODUCTION
On May 12, 2020 at 4:45pm PST, the cloud-based business
communication platform Slack experienced a total service
disruption [9]. To its millions of users, the outage lasted for
48 minutes; within Slack, the cascade of events that led to
this outage began at 8:45am PST. It all started with a software
performance bug that was caught and immediately rolled back
during a routine code deployment. This triggered the auto-
scaling of Slack’s web tier, ramping it up to more instances
than the hard limit allowed by the load-balancer. This in turn
exposed a bug in how Slack updates the list of hosts in the
load-balancer: some load-balancers had a mix of old, stale,
and new unregistered host instances. Eight hours later, the
only active host instances were the oldest ones still regis-
tered to the load-balancers. When the auto-scaling program
started scaling hosts down for the night, it shut down these
old instances. Since all remaining instances registered to the
load-balancers were either stale or new and unregistered, the
service experienced a total outage.

While this description of the Slack incident lays out the
logical sequence of events that led to the outage, identifying
the root cause of the problem required “all hands on deck"
[9]. As soon as the alert was raised, engineers from multiple
teams got together and explored several possible hypotheses
based on operational data visible through their monitoring,
dashboarding, and alerting infrastructure. This incident illus-
trates Observability in action, a critical capability not only at
Slack, but at many other large software companies [2].

Today’s web-scale, user-facing software systems and ser-
vices (e.g., Slack, Google, Facebook, Twitter) are built and
operated on micro-services managed by highly elastic and
shared infrastructures. This cloud-native software ecosystem
is increasingly more distributed, heterogeneous, and complex,
making it challenging to predict their behavior in the face
of failures and varying load [1]. Observability is emerging

Figure 1: Observability

as a key capability for monitoring and maintaining cloud-
native systems to ensure their quality of service to customers
[25]. Borrowed from control theory, the notion of observabil-
ity brings better visibility into understanding the complex
behavior of software using telemetry collected from the sys-
tem at run time [14]. Beyond simple black-box monitoring,
observability provides deeper contextual insight about the cor-
rectness and performance of systems. Its goal is to minimize
time to insight - a critical measure of understanding what
is happening in the system, and why. As such, observability
is inherently a data-intensive and time-sensitive process that
involves humans in the loop (e.g., DevOps teams) [27].

We see observability as a data management problem. Sys-
tems are instrumented to generate large volumes of heteroge-
neous time series data that must indexed, stored, and queried
in near-real time. Instrumentation can emit four types of data:
(i) numeric data like gauges and counts, (ii) highly structured
data on system events, (iii) logs of unstructured strings, and
(iv) a graph of the execution path of a request. In industry,
these are referred to as Metrics, Events1, Logs, and Traces.

Since observability is critical for meeting service-level
objectives (SLOs) for web companies with millions of users,
there is a lot of industrial activity in this domain. However,
current solutions consist of a patchwork of various specialized
tools to cater to the different needs of each time series data
type. These ad-hoc solutions do not scale well and incur
high performance overheads, operational complexities, and
infrastructure costs [13]. There is a growing need to rethink
the current design of data and software infrastructures to
enable observability data management at scale.

In this vision paper, we analyze the data management re-
quirements of observability workloads (§2) and challenges
1Many observability practitioners represent events as highly structured strings
and a subset of logs. In §2, we describe how the structured nature of events
warrants separate consideration from logs.

18 SIGMOD Record, December 2020 (Vol. 49, No. 4)



Data Type Queries Storage Volume Retention

Metrics numeric
string metadata

aggregations
filters on metadata

compressed time series
hybrid column store

4B time series/day
12M samples/second
12 TB/day (compressed)

30 days

Events highly structured strings or binary filters on exact string matches column store 250 TB/day (raw) 3-24 months
Logs semi-structured strings approximate string search inverted index 90 TB/day (raw) 7 days
Traces DAGs of durations of execution disassociated graph search columnar / inverted index 2 TB/day (raw) 14 days

Table 1: The four categories of observability time series (MELT) widely differ in their characteristics and needs

experienced by today’s systems using Slack’s observability in-
frastructure as an exemplar (§3). Then we identify the general
design principles for building web-scale ODMSs and provide
the blueprint of a new architecture to realize them (§4).

2 METRICS, EVENTS, LOGS, TRACES
The fundamental challenge of ODMSs is timely insight into
a system’s state in the face of massive data volumes and het-
erogeneity. This section analyzes observability data in four
categories: Metrics, Events, Logs, and Traces (MELT). We
first discuss unique characteristics of these categories, fol-
lowed by their common requirements for data management.

2.1 Metrics

Figure 2: A Metric for number of HTTP requests/second

Metrics provide quantitative measurements of system per-
formance and availability at a specific point in time. They
encompass three types of numeric data: (i) counters are values
that can only increase or be reset to zero (e.g., total number
of HTTP requests received); (ii) gauges are values that can go
up or down to reflect system state (e.g., the number of HTTP
requests waiting to be responded to); and (iii) histograms
sample observations over a fixed time interval, counting them
in configurable buckets (e.g., HTTP request durations or re-
sponse sizes). In addition to a numeric value and a timestamp,
metrics also include metadata as a set of key-value pairs,
called tags. Tags identify a specific instance of a metric. A
unique combination of a metric and tags is called a time series.
A pair of a timestamp and a value is called a sample. Figure 2
provides an example metric, http, measuring the number of
HTTP requests per second. Each measurement is tagged with
the data center, host, and path metadata for the request’s ori-
gin. There are three (color-coded) time series in this example,
each with monotonically increasing timestamps.

Metrics are used in two ways: (i) to generate alerts on un-
expected system state, or (ii) for analytical and dashboarding

queries. Alerts are generated using small queries on the most
current data (e.g., total number of HTTP requests per host per
minute). Analytical queries may involve data from arbitrary
times to observe system-wide trends (e.g., total number of
HTTP requests per host per minute in dc1 over the last day).
More complex analytics (e.g., similarity search or clustering
[18, 21]) may also be performed.

Metrics require a hybrid storage engine. Prometheus [20],
a widely used metric storage engine, employs a compressed
storage strategy for the values of the metric and an inverted in-
dex for associated tags. This strategy results in high compres-
sion rates and fast filtering operations. Other storage strategies
(e.g., data series storage [17]) have also been proposed. Slack
generates about 4 billion time series per day, at the rate of 12
million samples per second, collecting 12TB (compressed) of
metrics data every day. These are retained for 30 days.
2.2 Events
Events are highly structured data emitted during run time.
Frequently, they come from a finite set of possible values.
For example, there are 9 HTTP request methods (e.g., GET,
POST) and a finite set of response status codes (e.g., “404:
Not Found”). Events may also be used for high-cardinality
data with higher dimensions (e.g., customer-ids and network
addresses). Because events are emitted as structured strings
or in a compact binary format [25], prior literature on ob-
servability typically considers events as a subcategory of logs
(discussed in §2.3) [12, 25]. We categorize them separately,
because the data model, queries, and access patterns for events
are substantially different from those for logs.

Figure 3 shows an excerpt of raw events emitted by a sys-
tem handling HTTP requests and responses.
Nov 20 17:35:23 2019: 192.168.100.11 POST PATH:/ 200 OK
Nov 20 17:35:24 2019: 192.168.100.10 GET PATH:/ 200 OK
Nov 20 17:35:27 2019: 192.168.100.10 DC=2 HOST=2 505 ERROR
Nov 20 17:35:28 2019: 192.168.101.11 POST PATH:/ 200 OK
Nov 20 17:35:28 2019: 192.168.101.10 GET PATH:/ui/ 404

Figure 3: Events emitted by an HTTP server

In addition to computing trends, events are typically used to
identify specific instances of unexpected system state. For ex-
ample, a SQL query like SELECT * from Events WHERE
ip=192.168.100.11 and method="POST" would show
all POST requests from the queried IP address 192.168.100.
11.

SIGMOD Record, December 2020 (Vol. 49, No. 4) 19



The structured nature of the data and the low selectivity
filter queries make column stores ideal for events. The data
in an event store is usually accessed via SQL queries over a
column store. Slack generates over 250TB of raw events data
per day and stores over 70 PB data at any one time. Event
data is retained for relatively longer periods (3-24 months)
for archival or legal audit purposes.

2.3 Logs
Logs are collections of semi-structured or unstructured strings.
They expose highly granular information with rich local con-
text. This flexibility makes logs crucial to understanding why
unexpected behavior occurred in a service. For example, when
responding to the outage incident, Slack relied on logs to iden-
tify the bug in updating the host list for their load-balancer.
Similarly, for an HTTP request, an application developer
might include a stack trace along with an exception showing
the state of the application in an error log (see Figure 4).

Wed Nov 20 17:35:22 2019: GET / ERROR 500
InternalServerErrorException: HTTP 500 ...

at ServiceUnavailableException ...
at RedirectionException ...

Figure 4: Log entry with a stack trace

Unlike metrics, logs usually contain contextual informa-
tion that can provide more detailed answers to questions like:
“What server error caused the response to have a status of
500?". These needle-in-a-haystack queries are fundamentally
different from the exact-match queries posed over events.
They are best served using inverted index-based storage solu-
tions due to the need for approximate string matches. Slack
collects about 90TB of log data/day to be retained for 7 days.

2.4 Traces
Traces encapsulate information about the execution path of
a request similar to call graphs [8, 11, 23, 24]. In micro-
services and distributed settings, traces are call graphs across
distributed services and include RPC invocations, asynchro-
nous queues, and other inter-service communication. Traces
are represented as directed acyclic graphs (DAGs) where a
vertex represents a unit of execution (e.g., a function call)
called a span and edges indicate a causal ordering (i.e., Lam-
port’s happens-before [10]) from one vertex to another. This
definition is increasingly accepted with industry-wide efforts
like OpenTelemetry [14].

Figure 5 shows an excerpt of a trace of a product lookup
request through the GetProduct service. To respond to this
request, GetProduct calls the ProductLookup service which in
turn makes a database call named MySQLSelect. GetProduct
then formats the result and finally responds to the request. The

trace and its spans encapsulate the structure of the execution
path of this request, and information about this path. The
spans capture the duration of the execution and metadata
stored as tags in the form of key-value pairs.

(a) A table of spans in the execution of the “GetProduct” request.

(b) The trace visualized as a Gantt chart and as a directed graph

Figure 5: An example Trace for an HTTP request

There are usually two steps to accessing a specific trace:
(i) findTraces: a user searches for traces that match a certain
criteria (e.g., HTTP requests since yesterday over 200ms
where a DB call returned at least 2 rows); (ii) getTrace: among
the list of traces returned, a user selects a specific trace to
view as a Gantt chart.

Although tracing has been used in distributed systems for
decades [7], there is little research on the storage and man-
agement of trace data.

At Slack, trace data volumes are lower than others (e.g., 2
TB/day) because of the challenge in instrumenting and man-
aging trace data. To manage this complexity, Slack represents
spans in a format shown in Figure 5a, similar to industry
efforts like OpenTelemetry’s tracing API [14].

2.5 Common Characteristics of MELT Data
As discussed in the previous subsections and summarized
in Table 1, the data, query, and storage models for the four
types of time series in an ODMS differ widely. However,
MELT data also shares several important characteristics that
influence how they should be managed overall.
Data characteristics. Fundamentally, all MELT data is im-
mutable and append-heavy. Furthermore, because of the dy-
namic distributed environment, the volume of data generated
over time is highly variable (i.e., bursty). For example, a ma-
jor auto-scaling event or a new log exception can increase
input data volume rates by 10-fold for a short period of time.
Query characteristics. A bias to freshness accurately sum-
marizes the general nature of queries on all observability data.
To illustrate, Table 2 shows the percent distribution of Slack
queries by data age, indicating that >97% of all queries are on
data that is less than 24 hours old. During an incident, fresh
data is needed not only to understand the current state of the
system, but also to quickly see if the remediation is having the

20 SIGMOD Record, December 2020 (Vol. 49, No. 4)



Data Age Logs (19.6M) Metrics (17M) Traces (46K)
<1 hour 92.5 94.7 85.2
<2 hours 92.6 95.2 94.8
<4 hours 94.5 97.5 95.0
<1 day 99.8 99.8 97.3

Table 2: % of queries by data age (with total query vol-
umes in parentheses) for 1+ months of querying statistics
over logs, metrics, and traces at Slack. More than 97% of
the queries are for data produced in the last 24 hours.

intended effect. This implies that fresh data typically needs to
be more accessible and available than older data. Furthermore,
during major incidents, it is not uncommon to have twice the
normal number of users interacting with the dashboards and
writing custom queries against MELT data. Most queries are
for dashboards and alerts that typically query only a small
percentage of the collected data, but also require sub-second
latencies to support real-time decision making [15].
Life-cycle management. Along with the bias to freshness,
historical data is still required for a smaller percentage of
queries when looking for longer term trends or for legal/business
purposes. For example, during the aforementioned outage,
Slack engineers looked at data over the last few weeks to
check for any seasonal patterns. Hence, MELT data com-
monly requires data life-cycle management for fresh and
historical data side by side, indicating that a tiered storage
strategy based on data age should be designed into the ODMS.

3 TODAY’S CHALLENGES
Current ODMS solutions deployed in industry are custom-
built approaches that only partially address the requirements
of MELT data management. These systems are built as a re-
sult of reactive implementation [13], without guiding design
principles and therefore face similar practical challenges. In
this section, we present Slack’s current observability system
infrastructure as a case study to reveal the key practical chal-
lenges to be considered when architecting a scalable ODMS.

3.1 Observability at Slack
Figure 6 depicts Slack’s current observability system infras-
tructure. Like many industry solutions, it consists of multiple
tools, ingestion pipelines, and storage engines to collect, store,
and serve MELT data generated by Slack applications.

Slack uses Prometheus [20], a single-node pull-based sys-
tem, to store and serve metrics. It scrapes metrics data from
HTTP endpoints exposed by Slack applications. For high
availability, Slack uses a pair of Prometheus servers, each
maintaining an independent copy of the data. Each applica-
tion is allocated a pool of 2 to 64 Prometheus servers. In total,
Slack runs about 100 such pools.

Events, logs, and traces (ELT) are pushed to Apache Kafka.
For durability, Secor [19] consumes and writes the raw data

Figure 6: In Slack’s current observability infrastructure,
an engineer manages and queries four independent sys-
tems, using different query APIs and tools.

to Amazon S3. A custom Apache Spark job copies and trans-
forms this data into a columnar Parquet file, also stored into
Amazon S3 [26, 28]. These Parquet files can be queried via
SQL using Presto [22]. In addition, Slack uses Logstash to
ingest logs into Elasticsearch, and an internal tool to ingest
traces into a vendored tracing solution and an in-house trace
store backed by Elasticsearch [4]. Logs are retained for 7 days
and traces for 14 days. Logs and traces are also written to a
data warehouse (Presto) for historical querying.

3.2 Practical Challenges
Slack’s current ODMS architecture faces a number of practi-
cal challenges unique to the requirements of growing observ-
ability workloads. Although we use Slack as a case study, we
believe that almost all ODMSs currently deployed in industry
face one or more of these practical challenges. We group these
challenges into three overarching categories:
High Operational Complexity. The infrastructure to serve
MELT data at Slack contains over 20 separate software com-
ponents. Each component has a unique architecture and, as
a result, needs custom operations for cluster management,
security, and capacity planning. This heterogeneity leads to
complex solutions. For example, Prometheus is a single-node
system and maintains independent copies of the data to meet
high-availability requirements. Meanwhile, although Elastic-
search has built-in replica management, at Slack’s scale, it is
challenging to manage and operate. During the May 12 inci-
dent, data volumes spiked to 4 times the normal peak volume.
In such scenarios, the monitoring team performs complex
scale-up operations to continue ingesting fresh telemetry data.
Maintaining Low Query Latency. Queries on observability
data are highly skewed. Over 97% of queries access data
< 24 hours old for near-real-time alerting. Dashboards and
major incidents or product changes result in significant spikes
in the number of queries putting significant pressure on the
ODMS. During the May 12 incident, Slack looked at the data

SIGMOD Record, December 2020 (Vol. 49, No. 4) 21



for the prior 8 hours while handling 2 times the historical
peak load. The high operational complexity in Slack’s ODMS
makes scaling in response to overall query workload and
maintaining low query latency a significant challenge.
High Infrastructure Cost. At the petabyte scale, meeting
ever-increasing data retention requirements and ensuring data
availability in bursty workloads quickly becomes costly. At
Slack, significant time is spent in balancing the cost of infras-
tructure, performance, durability, and availability of the data.
For example, Slack duplicates processing ELT in Presto for
availability and durability, at the risk of slower performance
and higher infrastructure costs. Slack also provisions based
on historical peaks to handle spiky workloads such as during
the May 12 incident. The new peak load is now 2 times the
peak load prior to the incident. This provisioning strategy
adds to the infrastructure cost.

4 ODMS DESIGN PRINCIPLES
We now propose a set of design principles that address the
real-world requirements and challenges described in prior
sections. Considering the heterogeneous nature of MELT data
and the need for reducing the complexity of managing this
data while meeting the query performance requirements in a
scalable manner, we believe that an ODMS should adhere to
four core design principles:
Decouple real-time and historical data management. §2
and Table 2 showed that the ODMS’s workload is signifi-
cantly different from hybrid database workloads that combine
OLAP and OLTP (e.g., HTAP [16]). It ingests petabytes of
potentially bursty immutable writes and queries are biased
to data < 24 hours old. ODMSs designed with this workload
in mind decouple real-time and historical data management.
This decoupling maintains fast ingestion rates, low query la-
tency on recent data, and minimizes the cost of storing and
accessing historical data.
Unify MELT data life-cycle management. Time ties all
MELT data management to a common framework. The unique
real-time and historical data management strategies should be
governed in a unified data life-cycle based on data age. Doing
so should abstract away the movement of data from real-time
to historical storage, and decrease the cost and complexity of
transparently accessing all data over arbitrary periods of time.
Provide a single query interface for MELT data. Observ-
ability queries commonly require data from different MELT
types. A single query interface abstracts the individual stor-
age and processing requirements of MELT data, decreasing
the complexity of writing these queries, and providing oppor-
tunities for optimization across the storage strategies. This
principle lends itself to a “polystore-like” pluggable storage
engine architecture [3].
Support cloud-native, distributed deployment. Because of
the highly bursty nature of both reads and writes, various tiers

Figure 7: In the new architecture based on ODMS design
principles, a user manages and queries a single system.

of the system should be distributed and elastic by design,
so that the system can scale with the changing workload. A
cloud-native ODMS allows the observability team to make a
flexible trade-off between cost and performance for serving
MELT data based on workload and the data life-cycle.

These four principles must be integrated into the design
process of architecting an ODMS. Unlike current industry
practice where ODMSs are built as a patchwork of features
responding to ad-hoc requirements, following these principles
results in a coherent architecture that provides control over
an ODMS’s complexity, performance, and cost.

Figure 7 shows an overview of such an architecture that re-
alizes these design principles. It unifies the data life-cycle for
MELT data into a single ODMS infrastructure. Unlike Slack’s
current system, which is influenced by modern Lambda archi-
tectures [5], this design is influenced by the design of modern
polystore architectures [3]. This decreases the storage require-
ments and complexity of maintaining multiple data pipelines,
and addresses the need for transparently coordinating multiple
storage engines.
Data ingestion and storage. All MELT input data from in-
strumented applications are ingested into a Replicated Log
Service (e.g., Apache Kafka [6]). The Real-time Indexing tier
comprised of storage engines specific to each data type pulls
data from the log service and indexes them for fast access.
Periodically, indexed data files are migrated to the Persistent
Storage tier similar to Amazon S3. This migration is coor-
dinated by the Cluster Manager. At query time, the Query
Engine coordinates the Real-Time Indexing and Persistent
Storage tiers using the Metadata Store. When necessary, the
Query Engine pulls hot historical data from the Persistent
Storage tier into the Hot Data Cache to maintain query per-
formance.
Query processing. The Query Engine services all queries.
Using the Metadata Store, it coordinates between the three
data tiers (Real-Time Indexing, Persistent Storage, and Hot

22 SIGMOD Record, December 2020 (Vol. 49, No. 4)



Data Cache) to filter data based on time-range and to optimize
queries across multiple data types (akin to joins by time). It
determines optimal data placement based on expected query
distributions and costs. For example, ad-hoc queries that ac-
cess data in Persistent Storage may not need to be cached.
However, when accessing historical data repeatedly while
resolving an issue, the query engine might decide to copy
data to the Hot Data Cache to minimize query latency.
Distribution and availability. The ODMS’s distribution strat-
egy should maintain high availability during bursty periods
of new data and during periods with particularly heavy query
load. The Real-Time Indexing and Hot Data Cache tiers are
natively elastic, where independent replicas are spun-up on-
demand. The Query Engine’s Cluster Manager monitors the
Real-Time Indexing tier’s workload to determine whether
to scale up any of the component stores. During periods of
particularly heavy data writes (e.g., from instrumented appli-
cations) or queries on fresh data, it scales up the Real-Time
Indexing tier. During particularly heavy reads of historical
data, it scales up the Hot Data Cache. The two-tier design
also helps support variable availability of data (e.g., higher
availability guarantees for more recent/valuable data).

The architecture is generalizeable to settings where observ-
ability telemetry is unified in a centralized ODMS that makes
the MELT data easily accessible to users. An ODMS archi-
tecture following these principles is intended to help during
peak loads such as the one during Slack’s May 12 incident.
The Query Engine provides a single query interface and a
unified view of the MELT data. It provides an abstraction over
the complexity of querying and managing the heterogeneous
types and their life-cycles across the Real-Time Indexing
and the historical Persistent Storage tiers. The elastic Hot
Data Cache responds to peak loads based on data access
patterns to maintain low query latency. Finally, the Cluster
Manager manages data life-cycles and operational complex-
ity in this system. It also scales or shrinks based on the work-
load, thereby decreasing the system’s overall infrastructure
cost. These principles result in shorter time to insight during
peak loads and decrease overall complexity and costs.

5 CONCLUSION
Observability data management is an emerging area of re-
search that requires more attention from the database com-
munity. In this paper, we discussed real-world experience
with observability data and its use cases at Slack – a cloud-
based team collaboration service. The heterogeneous nature
of time series data as well as varying workload characteristics
call for a new observability data management architecture. In
response, we proposed a new cloud-native polystore-like ar-
chitecture that decouples real-time and historical data access
tiers from the underlying persistent storage and the querying
tier in a way that enables scaling them independently. We

are currently working on building an initial prototype of this
design to test with production data from Slack.

REFERENCES
[1] R. H. Arpaci-Dusseau et al. 2018. Cloud-Native File Systems. In

USENIX Conference on Hot Topics in Cloud Computing (HotCloud).
[2] C. Chan et al. 2020. Debugging Incidents in Google’s Distributed

Systems. ACM Queue 18, 2 (2020).
[3] J. Duggan et al. 2015. The BigDAWG Polystore System. ACM SIG-

MOD Record 44, 2 (2015), 11–16.
[4] C. Gormley et al. 2015. Elasticsearch: The Definitive Guide. O’Reilly

Media.
[5] M. Hausenblas et al. 2017. Lambda Architecture. http://lambda-

architecture.net.
[6] N. Narkhede et al. 2017. Kafka: The Definitive Guide Real-Time Data

and Stream Processing at Scale. O’Reilly Media.
[7] J. Jeffrey et al. 1987. Monitoring Distributed Systems. ACM Transac-

tions on Computer Systems (TOCS) 5, 2 (1987), 121–150.
[8] J. Kaldor et al. 2017. Canopy: An End-to-End Performance Tracing

And Analysis System. In SOSP. 34–50.
[9] R. Katkov. 2020. All Hands on Deck. https://slack.engineering/all-

hands-on-deck-91d6986c3ee.
[10] L. Lamport. 1976. The Ordering of Events in a Distributed System.

Communications of the ACM 21, 7 (1976), 558.
[11] J. Mace et al. 2015. Pivot Tracing: Dynamic Causal Monitoring for

Distributed Systems. In SOSP. 378–393.
[12] S. More. 2018. A Practical Observability Primer. mStakx.
[13] S. Niedermaier et al. 2019. On Observability and Monitoring of Dis-

tributed Systems – An Industry Interview Study. In ICSOC.
[14] OpenTelemetry. 2019. The OpenTelemetry Open-Source Observability

Framework. https://opentelemetry.io/.
[15] J. O’Shea. 2020. Building Dashboards for Operational Visibil-

ity. https://aws.amazon.com/builders-library/building-dashboards-for-
operational-visibility/.

[16] F. Özcan et al. 2017. Hybrid Transactional/Analytical Processing: A
Survey. In ACM SIGMOD Conference. 1771–1775.

[17] T. Palpanas. 2015. Data Series Management: The Road to Big Sequence
Analytics. ACM SIGMOD Record 44, 2 (2015), 47–52.

[18] T. Palpanas et al. 2019. Report on the First and Second Interdisciplinary
Time Series Analysis Workshops. ACM SIGMOD Record 48, 3 (2019),
36–40.

[19] Pinterest. 2017. Pinterest Secor: A Service for Implementing Kafka
Log Persistence. https://github.com/pinterest/secor.

[20] Prometheus. 2012. Prometheus Documentation. https://prometheus.io/
docs/concepts/metric_types/.

[21] J. Rodrigues et al. 2017. Sieve: Actionable Insights from Monitored
Metrics in Distributed Systems. In ACM Middleware Conference. 14–
27.

[22] R. Sethi et al. 2019. Presto: SQL on Everything. In IEEE ICDE.
[23] Y. Shkuro. 2019. Mastering Distributed Tracing: Analyzing Perfor-

mance in Microservices and Complex Systems. Packt Publishing.
[24] B. H. Sigelman et al. 2010. Dapper: A Large-Scale Distributed Systems

Tracing Infrastructure. Technical Report. Google, Inc.
[25] C. Sridharan. 2018. Distributed Systems Observability: A Guide to

Building Robust Systems. O’Reilly Media.
[26] D. Vohra. 2016. Apache Parquet. In Practical Hadoop Ecosystem: A

Definitive Guide to Hadoop-Related Frameworks and Tools. 325–335.
[27] A. Wiedemann et al. 2019. The DevOps Phenomenon. ACM Queue 17,

2 (2019).
[28] M. Zaharia et al. 2010. Spark: Cluster Computing with Working Sets. In

USENIX Conference on Hot Topics in Cloud Computing (HotCloud).

SIGMOD Record, December 2020 (Vol. 49, No. 4) 23


