
S-Store: A Streaming NewSQL System
for Big Velocity Applications

Ugur Cetintemel1, Jiang Du2, Tim Kraska1, Samuel Madden3, David Maier4,
John Meehan1, Andrew Pavlo5, Michael Stonebraker3, Erik Sutherland4,

Nesime Tatbul2,3, Kristin Tufte4, Hao Wang3, Stanley Zdonik1

1Brown University 2Intel Labs 3MIT 4Portland State University 5CMU

ABSTRACT
First-generation streaming systems did not pay much attention to
state management via ACID transactions (e.g., [3, 4]). S-Store is
a data management system that combines OLTP transactions with
stream processing. To create S-Store, we begin with H-Store, a
main-memory transaction processing engine, and add primitives to
support streaming. This includes triggers and transaction workflows
to implement push-based processing, windows to provide a way
to bound the computation, and tables with hidden state to imple-
ment scoping for proper isolation. This demo explores the benefits
of this approach by showing how a naïve implementation of our
benchmarks using only H-Store can yield incorrect results. We also
show that by exploiting push-based semantics and our implementa-
tion of triggers, we can achieve significant improvement in transac-
tion throughput. We demo two modern applications: (i) leaderboard
maintenance for a version of “American Idol”, and (ii) a city-scale
bicycle rental scenario.

1. INTRODUCTION
Managing high-speed data streams generated in real time is an

integral part of today’s big data applications. In a wide range of
domains from social media to financial trading, there is a growing
need to seamlessly support incremental processing as new data is
generated. At the same time, the system must ingest some or all of
this data into a persistent store for on-demand transaction or analyt-
ical processing. In particular, this is true for applications in which
high-velocity data updates a large persistent state such as leader-
board maintenance or online advertising. In these situations, there
is need to manage streaming and non-streaming state side by side in
a way that ensures transactional integrity and performance.

Today’s stream processing systems lack the required transactional
robustness, while OLTP databases do not provide native support for
data-driven processing. In this work, our goal is to build a single,
scalable system that can support both stream and transaction pro-
cessing at the same time. We believe that modern distributed main-
memory OLTP platforms, also known as NewSQL systems [5], pro-
vide a suitable foundation for building such a system, since (i) they
are more lightweight than their traditional disk-based counterparts;

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

(ii) like streaming engines, they offer lower latency via in-memory
processing; and (iii) they provide strong support for state and trans-
action management. Thus, we introduce S-Store, a streaming OLTP
system that realizes our goal by extending the H-Store DBMS [6]
with streams.

We propose to demonstrate the S-Store streaming NewSQL sys-
tem and several of its novel features that include:
Architecture: S-Store makes a number of fundamental architec-
tural extensions to H-Store that generally apply to making any main-
memory OLTP system stream-capable. Thus, the first goal of this
demonstration is to highlight our architectural contributions.
Transaction Model: S-Store inherits H-Store’s ACID transaction
model and makes several critical extensions to it. The streaming
nature of the data requires dependencies between transactions, and
S-Store provides ACID guarantees in the presence of these depen-
dencies. We will show how our extended model ensures transac-
tional integrity.
Performance: S-Store’s native support for streams not only makes
application development easier and less error-prone, but also boosts
performance by removing the need to poll for new data and by re-
ducing the number of round-trips across various layers of the sys-
tem. We demo these features by comparing H-Store and S-Store.
Applications: S-Store can support a wide spectrum of applications
that require transactional processing over both streaming and non-
streaming data. The demo will present a select set of these applica-
tions, highlighting different technical features of the system as well
as its support for diverse workloads.

The rest of this paper provides an overview of the S-Store system
and the details of our demo scenarios.

2. S-STORE SYSTEM OVERVIEW
S-Store belongs to a new breed of stream processing systems de-

signed for high-throughput, scalable, and fault-tolerant processing
over big and fast data across large clusters. Like its contempo-
raries such as Twitter Storm/Trident [9] or Spark Streaming [10],
S-Store supports complex computational workflows over streaming
and non-streaming data sets. S-Store is unique in that all data access
in S-Store is SQL-based and fully transactional.

S-Store builds on the H-Store NewSQL system [6]. H-Store is
a high-performance, in-memory, distributed OLTP system designed
for shared-nothing clusters. It targets OLTP workloads with short-
lived transactions, which are pre-defined as parameterized stored
procedures (i.e., SQL queries embedded in Java-based control code)
that are invoked by client requests at run time. As with most dis-
tributed database systems, a good H-Store design partitions the data-
base in a way that processes most of the transactions in a single-sited
manner, minimizing the number of distributed transactions and re-
ducing the overhead of coordination across multiple partitions [8].



Figure 1: S-Store Architecture

In the single-sited case, H-Store runs all transactions serially, re-
moving the need for fine-grained locks and latches. Fault tolerance
is achieved through a technique that combines command logging
and periodic snapshotting [7]. S-Store inherits all of these core fea-
tures and extends them in non-trivial ways. We intend to demon-
strate these extensions for the single-sited case.

S-Store is essentially a client-server system that follows H-Store’s
architecture. Each server node consists of two layers: the partition
engine (PE) and the execution engine (EE). The PE is responsible
for receiving and managing transaction requests from clients in the
form of stored procedure invocations (each consisting of a name
and a set of input parameter values). This includes tasks such as
query planning and transaction management (i.e., scheduling, re-
covery, distributed transaction coordination). On the other hand, the
EE is responsible for low-level storage management and query pro-
cessing tasks such as indexing and operator execution.

Fig. 1 shows S-Store’s high-level architecture. The base architec-
ture is directly inherited from H-Store as described above. In addi-
tion, a number of extensions are made to enable native stream pro-
cessing support in the engine (shown in boldface in Fig. 1). These
include: (i) management of inputs from streaming clients and com-
plex workflows of stored procedures at the PE layer, (ii) manage-
ment of stream- and window-based queries at the EE layer, (iii)
management of in-memory stream and window state.

In the following, we describe the key features of our design that
enabled these architectural extensions:
Streams, Windows, Triggers, and Workflows: We have added
four new constructs to H-Store: (i) streams to differentiate contin-
uously flowing state from regular stored state; (ii) windows to de-
fine finite chunks of state over (possibly unbounded) streams; (iii)
triggers to indicate computations to be invoked for newly generated
data; and (iv) workflows to represent pipelines of dependent stored
procedures triggered by downstream outputs.
Uniform State Management: H-Store’s in-memory tables are used
for representing all states including streams and windows, making
state access both efficient and transactionally safe. Unlike regular
tables, stream and window state has a short lifespan determined by
the queries accessing it. To support this, S-Store provides automatic
garbage collection mechanisms for tuples that expire from stream or
window state.
Data-driven Processing via Triggers: Special insert triggers are
defined on stream or window state in order to enable push-based,
data-driven processing in S-Store. There are two types of triggers:
EE triggers at the query level and PE triggers at the stored procedure
level (shown as red dashed arrows in Fig. 1). The former enable
continuous processing within a given transaction execution, while
the latter do so across multiple transaction executions that are part of

a common workflow. S-Store triggers differ from conventional SQL
triggers in the sense that they react to the presence of data from a
well-defined set of sources (i.e., they act as “control triggers” rather
than “data triggers”).
Stream-oriented Transaction Model: S-Store adopts H-Store’s
transaction model: transactions are defined using stored procedures
and are executed with ACID guarantees. However, the inherent
stream processing semantics in S-Store exposes data and processing
dependencies among transaction executions that are not captured by
this model. Thus, S-Store makes a number of extensions to capture
them and maintain ACID properties in their presence. We sketch
some of these below.
• An S-Store transaction is defined by two things: a stored pro-

cedure definition and a batch of input tuples. For this purpose,
we distinguish between border stored procedures (BSP) and in-
terior stored procedures (ISP). A BSP is one that sits at the in-
put of the workflow (i.e., has no upstream stored procedure).
All others are defined to be ISPs. Transaction executions for
BSPs are defined by a batch of tuples as specified by the user
(e.g., 2 tuples). A transaction based on an ISP is also defined
by batches; however, that batch is generated and appears on the
output stream of the immediate upstream stored procedure. A
transaction commits when its input batch has been completely
processed.

• A given stored procedure will be executed many times during
the lifetime of a workflow. We call each of these a transaction
execution (TE). A legal schedule of transaction executions must
preserve the natural order. That is, the first transaction execution
for stored procedure SPi must precede the second transaction
execution for SPi, etc.

• For a given stored procedure, partial window state may carry
over from one TE to the next. This is due to the continuous
nature of streaming applications. A window in SPi may con-
tain state that was produced by previous TEs of SPi. Such state
must be protected from the access of arbitrary TEs. Thus, we
introduce the notion of “scope of a transaction execution” to re-
strict window access to only consecutive TEs of a given stored
procedure.

• The fact that a stored procedure (SP1) may precede another one
(SP2) in a workflow leads to processing dependencies between
their TEs. For a given input batch, the system must produce a
schedule that is equivalent to executing SP1 first and SP2 sec-
ond (a “serializable schedule” in S-Store). Furthermore, when
there are shared writable tables along a workflow, S-Store re-
quires a serial execution of the involved stored procedures.

• In addition to these extensions, we leverage H-Store’s command
logging mechanism to provide an upstream backup based fault
tolerance technique for our streaming transaction workflows.

The native stream processing extensions described above allows
S-Store to use the layered engine architecture in the most efficient
way by embedding the required functionality into the proper compo-
nent. This allows the system to avoid redundant computations (e.g.
for windowing), communication across the layers, and the need to
poll for new data. The latter two are illustrated with the horizon-
tal red dashed arrows replacing the vertical black dashed arrows in
Fig. 1. It is important to note that, although discussed within the
context of H-Store in this paper, we believe that the architectural
additions described above generally apply when extending any in-
memory OLTP engine with streams. In fact, the two-layer engine is
the only H-Store-specific element of our design, which essentially
leads to having two levels of triggers in the engine rather than one.



Figure 2: Real-time Display for Voter Leaderboard

3. DEMONSTRATION SCENARIOS
We will demonstrate the key features of the S-Store system using

two classes of applications: (i) those that resemble classic OLTP
workloads, but also involve streaming inputs and computations, and
(ii) those that apply complex real-time computations over streams as
in classic stream processing workloads, but also involve maintaining
and sharing state with transactional guarantees.

Through these applications, we will show how the built-in stream-
ing and transactional processing primitives in S-Store facilitate re-
liable application development, improve transaction throughput, and
ensure correct executions and results when compared to a pure OLTP
engine (e.g., H-Store).

In the following, we describe two selected application scenarios:
one that is based on the Voter OLTP Benchmark [2], and another
that models a sustainable green city application inspired by the New
York City bike share program [1].

3.1 Voter with Leaderboard
A Canadian game show, Canadian Dreamboat, seeks to join the

ranks of popular teen icon reality shows. At the beginning of the
show, 25 candidates are presented to viewers, who then vote on
which candidate is the most talented. Each voter may cast a sin-
gle vote via text message. Once 100 total votes have been cast, the
system removes the candidate with the lowest number of votes from
the running, as it has become clear that s/he is the least popular.
When this candidate is removed, votes submitted for him or her will
be deleted, effectively returning the votes to the people who cast
them. Those votes may then be re-submitted for any of the remain-
ing candidates. This continues until a single winner is declared.

During the course of the voting, several leaderboards are main-
tained: one representing the top three candidates, one represent-
ing the bottom three candidates, and one representing the top three
trending candidates of the last 100 votes (Fig. 2). With each incom-
ing vote, these leaderboards are to be updated with new statistics
regarding the number of votes each candidate has received.

This workflow is divided into three stored procedures (Fig. 3).
The first stored procedure (SP1) validates each vote (checks that
the contestant exists, checks that the corresponding phone number
has not yet voted, etc.) and records new votes as they arrive. Once
SP1 has committed, the second stored procedure (SP2) is invoked.
SP2 updates the leaderboards and maintains a running count of the
total number of votes received. Once the count reaches 100, the
third stored procedure (SP3) is invoked. SP3 removes the can-
didate with the lowest number of votes from the Contestants table,
simultaneously removing all votes for that candidate from the Votes

Figure 3: Leaderboard Maintenance Workflow

table and all leaderboards.
Because table state is shared among SP1, SP2, and SP3, they

must run serially. Once the 100th vote is received and recorded,
SP3 will immediately remove the candidate with the least number
of votes before SP1 or SP2 is allowed to run again. This will
guarantee that no votes will be processed out of order and lead to
unexpected results.

H-Store makes no such guarantee. In H-Store, it is possible that
additional votes will be processed by SP1 or SP2 before SP3 has
a chance to run. As a result, potentially valid votes may be thrown
away, or votes for an invalid candidate may be counted incorrectly.
Take for instance a scenario in which candidate X is the contes-
tant with the fewest votes once the 100th vote is received. Ideally,
SP3 will recognize X as having the lowest vote total and remove
him or her from the show before allowing any new votes. However,
suppose that the next 20 new votes arrive, all cast for candidate X ,
pushing his total above candidate Y . If SP3 runs after those votes
are counted, then candidate Y will be removed instead.

Furthermore, it is possible that an incorrect vote may be counted
in H-Store due to a lack of ordering transactions by votes’ arrival
order. Suppose that a user submits a vote for candidate X , then
another vote for candidate Y before the first has been recorded. Ide-
ally, the vote for X should be counted, and the vote for Y rejected.
However, if the ordering is not maintained, the vote for Y may be
counted instead of the vote for X .

Because S-Store processes incoming requests in arrival order and
triggers transactions in workflow order, the problems listed above
do not occur. We intend to show the disparity between S-Store and
H-Store by running the two systems side by side, using one client
to send the same vote requests to each. As votes are counted, the
inconsistencies between the two systems will lead to a difference
in the recorded votes for each candidate. Eventually, this will lead
to not only incorrect candidates being removed from the H-Store
version but also the possibility for a false winner to be selected.

We also intend to show that S-Store is more efficient than H-Store
at handling streaming workloads such as Voter with Leaderboard.
The difference comes from a reduction of Client-to-PE round trips
due to push-based workflow processing, as well as a reduction of
PE-to-EE round trips due to native support for windowing. In both
cases, H-Store requires additional communication to provide sim-
ilar functionality. We intend to show this by running instances of
S-Store and H-Store simultaneously, displaying the number of trans-
actions per second that each is processing.

3.2 Bicycle Sharing
In this scenario, we examine a current trend common in many

progressive cities: bicycle sharing. Take a hypothetical company,
BikeShare, which allows its customers to rent a bike from one of its
many stations throughout the city, ride it, and then return it to any
available dock at any desired station.



Figure 4: BikeShare Streaming Data of a Single Bike

A BikeShare member can check out or return a bike at any Bike-
Share station, effectively issuing an OLTP request to the BikeShare
database through the company’s app. This in turn updates the cur-
rent status of the corresponding bike, dock, and station. A ride ends
upon bike return and the member’s credit card is charged based on
the amount of the time the bike was rented.

Each bike contains a GPS unit, which reports its location at a
high frequency (e.g., once a second) into the BikeShare database,
where it is recorded and analyzed in real time. During a trip, the
rider is able to gain information about the distance s/he has traveled,
his or her average and maximum speeds throughout the trip, as well
as other aggregate statistics such as calories burned. In addition,
s/he will be able to track the path s/he traveled and gain information
about specific portions of the ride including nearby stations. Bike-
Share is also able to use this information to collect usage statistics
and detect anomalies (for instance, a bike traveling at 60 mph may
indicate that the bike is on the back of a truck, likely being stolen).

In order to promote bike availability at all stations, BikeShare also
offers real-time discounts for users who drop off their bikes at sta-
tions in need of bikes. The discounts for dropoff stations near the
user are continuously updated depending on the available number
of bikes at those stations as well as the current position of the user.
The user may accept a discount offer for a nearby station of his or
her choice by clicking on a button on the company’s app. This in
turn assigns the selected offer to the user for a period of 15 minutes,
while removing it from the list of available discounts for that station.
The discount will expire if the user does not make a bike return to
the corresponding station within the allotted period, possibly mak-
ing that discount available to other nearby users. Nearby discounts
are dynamically calculated in real time based on all streaming bike
positions, continuously changing the status of the stations as check-
outs or returns take place, as well as the discount acceptances or
expirations occurring for specific users. Transactional processing is
required to ensure correct calculation of these discounts.

This workload involves pure OLTP (e.g., bike checkouts and re-
turns), pure streaming (e.g., real-time statistics and alerts), and a
combination of the two (e.g., real-time discount calculation). S-
Store makes it possible to handle the entire workload within a single
system. With this demonstration, we intend to show the versatility of
S-Store, and the ease with which a developer may create an applica-
tion featuring two traditionally disparate functionalities. The demo
will feature several map-based GUIs. For example, one will inter-
act with BikeShare users for displaying ride statistics and nearby
stations with discounts, as well as receiving OLTP requests on bike
checkouts, bike returns, and discount offer acceptances (Fig. 4 and
Fig. 5). Another one will be used by the BikeShare company for
real-time monitoring purposes (e.g., displaying BikeShare stations

Figure 5: Map of BikeShare Stations and Nearby Discounts

with the number of bikes and docks that are available at each, loca-
tions of all bikes that are currently being ridden, stolen bike alerts).
The demonstration will feature virtual users borrowing and return-
ing bikes, and real-time discounts being offered as one BikeShare
station starts running out of bikes due to a sudden increase in check-
outs.

4. SUMMARY
From our experience with stream processing applications, it is

clear that they all require persistent state. We described S-Store,
a new system that addresses the state management shortcomings
of previous stream processing systems. In particular, it incorpo-
rates ACID transactions by building on H-Store, a main-memory
OLTP DBMS. Our demo will illustrate this functionality through
the lens of two applications that require transactional support. We
also demonstrate the somewhat surprising result that, by using the
streaming components, S-Store can achieve higher throughput than
H-Store alone, while still providing transactional guarantees.
Acknowledgments. We thank the PSU BikeShare Capstone team
and Hong Quatch from Intel/PSU for their contributions to the Bike-
Share application. This research was funded in part by the Intel
Science and Technology Center for Big Data.

5. REFERENCES
[1] CitiBike. http://www.citibikenyc.com/.
[2] H-Store Supported Benchmarks. http://hstore.cs.brown.

edu/documentation/deployment/benchmarks/.
[3] D. J. Abadi et al. Aurora: A New Model and Architecture for

Data Stream Management. The VLDB Journal, 12(2), 2003.
[4] A. Arasu et al. STREAM: The Stanford Data Stream

Management System. In Data Stream Management:
Processing High-Speed Data Streams, 2004.

[5] M. Aslett. How will the database incumbents respond to
NoSQL and NewSQL? The 451 Group, 2011.

[6] R. Kallman et al. H-Store: A High-Performance, Distributed
Main Memory Transaction Processing System. In VLDB,
2008.

[7] N. Malviya et al. Rethinking Main Memory OLTP Recovery.
In ICDE, 2014.

[8] A. Pavlo et al. Skew-Aware Automatic Database Partitioning
in Shared-Nothing, Parallel OLTP Systems. In SIGMOD,
2012.

[9] A. Toshniwal et al. Storm @Twitter. In SIGMOD, 2014.
[10] M. Zaharia et al. Discretized Streams: Fault-tolerant

Streaming Computation at Scale. In SOSP, 2013.

http://www.citibikenyc.com/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/

	Introduction
	S-Store System Overview
	Demonstration Scenarios
	Voter with Leaderboard
	Bicycle Sharing

	Summary
	References

