
Large-scale DNA Sequence Analysis in the Cloud:
A Stream-based Approach

Romeo Kienzler1, Rémy Bruggmann2, Anand Ranganathan3, Nesime Tatbul1

1 Department of Computer Science, ETH Zurich, Switzerland
romeok@student.ethz.ch, tatbul@inf.ethz.ch

2 Bioinformatics, Department of Biology, University of Berne, Switzerland
remy.bruggmann@biology.unibe.ch

3 IBM T.J. Watson Research Center, NY, USA
arangana@us.ibm.com

Abstract. Cloud computing technologies have made it possible to an-
alyze big data sets in scalable and cost-effective ways. DNA sequence
analysis, where very large data sets are now generated at reduced cost
using the Next-Generation Sequencing (NGS) methods, is an area which
can greatly benefit from cloud-based infrastructures. Although existing
solutions show nearly linear scalability, they pose significant limitations
in terms of data transfer latencies and cloud storage costs. In this paper,
we propose to tackle the performance problems that arise from having
to transfer large amounts of data between clients and the cloud based on
a streaming data management architecture. Our approach provides an
incremental data processing model which can hide data transfer latencies
while maintaining linear scalability. We present an initial implementa-
tion and evaluation of this approach for SHRiMP, a well-known software
package for NGS read alignment, based on the IBM InfoSphere Streams
computing platform deployed on Amazon EC2.

Keywords: DNA sequence analysis, Next-Generation Sequencing (NGS),
NGS read alignment, cloud computing, data stream processing, incre-
mental data processing

1 Introduction

Today, huge amounts of data is being generated at ever increasing rates by
a wide range of sources from networks of sensing devices to social media and
special scientific devices such as DNA sequencing machines and astronomical
telescopes. It has become both an exciting opportunity to use these data sets
in intelligent applications such as detecting and preventing diseases or spotting
business trends, as well as a major challenge to manage their capture, transfer,
storage, and analysis.

Recent advances in cloud computing technologies have made it possible to
analyze very large data sets in scalable and cost-effective ways. Various platforms
and frameworks have been proposed to be able to use the cloud infrastructures
for solving this problem such as the MapReduce framework [2], [4]. Most of

2

these solutions are primarily designed for batch processing of data stored in a
distributed file system. While such a design supports scalable and fault-tolerant
processing very well, it may pose some limitations when transferring data. More
specifically, large amounts of data has to be uploaded into the cloud before the
processing starts, which not only causes significant data transfer latencies, but
also adds to the cloud storage costs [19], [26].

In this short paper, we mainly investigate the performance problems that
arise from having to transfer large amounts of data in and out of the cloud
based on a real data-intensive use case from bioinformatics, for which we pro-
pose a stream-based approach as a promising solution. Our key idea is that data
transfer latencies can be hidden by providing an incremental data processing
architecture, similar in spirit to pipelined query evaluation models in traditional
database systems [15]. It is important though that this is done in a way to also
support linear scalability through parallel processing, which is an indispensable
requirement for handling data and compute-intensive workloads in the cloud.
More specifically, we propose to use a stream-based data management archi-
tecture, which not only provides an incremental and parallel data processing
model, but also facilitates in-memory processing, since data is processed on the
fly and intermediate data need not be materialized on disk (unless it is explicitly
needed by the application), which can further reduce end-to-end response time
and cloud storage costs.

The rest of this paper is outlined as follows: In Section 2, we describe our use
case for large-scale DNA sequence analysis which has been the main motivation
for the work presented in this paper. We present our stream-based solution
approach in Section 3, including an initial implementation and evaluation of our
use case based on the IBM InfoSphere Streams computing platform [5] deployed
on Amazon EC2 [1]. Finally, we conclude with a discussion of future work in
Section 4.

2 Large-scale DNA Sequence Analysis

Determining the order of the nucleotide bases in DNA molecules and analyzing
the resulting sequences have become very essential in biological research and
applications. Since 1970s, the Sanger method (also known as dideoxy or chain
terminator method) had been the standard technique [22]. With this method, it
is possible to read about 80 kilo base pairs (bp) per instrument-day at a total
cost of $150. The Next-Generation Sequencing (NGS) methods, invented in 2004,
dramatically increased this per-day bp throughput, and therefore, the amount
of data generated that needed to be stored and processed [27]. To compare with
the Sanger method above, with NGS, the cost for sequencing 80 kbps has fallen
to less than $0.01 and is done in less than 10 seconds. Table 1 shows an overview
of speed and cost of three different NGS technologies compared to the Sanger
method. The higher throughput and lower cost of these technologies have led
to the generation of very large datasets that need to be efficiently analyzed. As
stated by Stein [25]:

3

Sanger Roche 454 Illumina 2k SOLID 5

read length 700-900 500 100 75

GB per day 0.00008 0.5 25 42

cost per GB $2,000,000 $20,000 $75 $75

Table 1. Compared to the Sanger method, NGS methods have significantly higher
throughput at a significant fraction of their costs.

“Genome biologists will have to start acting like the high energy physi-
cists, who filter the huge datasets coming out of their collectors for a tiny
number of informative events and then discard the rest.”

NGS is used to sequence DNA in an automated and high-throughput process.
DNA molecules are fragmented into pieces of 100 to 800 bps, and digital versions
of DNA fragments are generated. These fragments, called reads, originate from
random positions of DNA molecules. In re-sequencing experiments the reads are
mapped back to a reference genome (e.g., human) [19] or - without a reference
genome - they can be assembled de novo [23]. However, de novo assembly is more
complex due to the short read length as well as to potential repetitive regions
in the genome. In re-sequencing experiments, polymorphisms between analyzed
DNA and the reference genome can be observed. A polymorphism of a single bp
is called Single Nucleotide Polymorphism (SNP) and is recognized as the main
cause of human genetic variability [9]. Figure 1 shows an example, with a ref-
erence genome at the top row and two SNPs identified on the analyzed DNA
sequences depicted below. As stated by Fernald et al, once NGS technology be-
comes available on a clinical level, it will become part of the standard healthcare
process to check patients’ SNPs before medical treatment (a.k.a., “personalized
medicine”) [12]:

“We are on the verge of the genomic era: doctors and patients will have
access to genetic data to customize medical treatment.”

Aligning NGS reads to genomes is computationally intensive. Li et al give an
overview of algorithms and tools currently in use [19]. To align reads containing
SNPs, probabilistic algorithms have to be used, since finding an exact match
between reads and a given reference is not sufficient because of polymorphisms
and sequencing errors. Most of these algorithms are based on a basic pattern
called seed and extend [8], where small matching regions between reads and the
reference genome are identified first (seeding), and then further extended. Ad-
ditionally, to be able to identify seeds that contain SNPs, a special algorithm
that allows for a certain difference during seeding needs to be used [16]. Un-
fortunately, this adaptation further increases the computational complexity. For
example, on a small cluster used by FGCZ [3] (25 nodes with a total of 232 CPU
compute cores and 800 GB main memory), a single genome alignment process
can take up to 10 hours.

4

Fig. 1. SNP identification: The top row shows a subsequence of the reference genome.
The following rows are aligned NGS reads. Two SNPs can be identified. T is replaced
by C (7th column) and C is replaced by T (25th column). In one read (line 7), a
sequencing error can be observed where A has been replaced by G (last column).
Source: http://bioinf.scri.ac.uk/tablet/.

Read alignment algorithms have been shown to have a great potential for lin-
ear scalability [24]. However, sequencing throughput increases faster than com-
putational power and storage size [25]. As a result, although NGS machines are
becoming cheaper, using dedicated compute clusters for read alignment is still a
significant investment. Fortunately, even small labs can do the alignment by us-
ing cloud resources [11]. Li et al state that cloud computing might be a possible
solution for small labs, but also raises concerns about data transfer bottlenecks
and storage costs [19]. Thus, existing cloud-based solutions such as CloudBurst
[24] and Crossbow [17] as well as the cloud-enabled version of Galaxy [14] have
a common disadvantage: before processing starts, large amounts of data has to
be uploaded into the cloud, potentially causing significant data transfer latency
and storage costs [26].

In this work, our main focus is to develop solutions for the performance
problems that stem from having to transfer large amounts of data in and out
of the cloud for data-intensive use cases such as the one described above. If we
roughly capture the overall processing time with a function f(n, s) ∝ cs + s

n ,

5

where n is the number of CPU cores, s is the problem size 4, and c is a constant
for data transfer rate between a client and the cloud, our main goal is to bring
down the first component (cs) in this formula. Furthermore, we would like to do
it in a way that supports linear scalability. In the next section, we will present
the solution that we propose, together with an initial evaluation study which
indicates that our approach is a promising one.

3 A Stream-based Approach

In the following, we first present our stream-based approach in general terms,
and then describe how we applied it to a specific NGS read alignment use case
together with results of a preliminary evaluation study.

3.1 Incremental Data Processing with an SPE

We propose to use a stream-based data management platform in order to reduce
the total processing time of data-intensive applications deployed in the cloud
by eliminating their data transfer latencies. Our main motivation to do so is to
exploit the incremental and in-memory data processing model of Stream Pro-
cessing Engines (SPEs) (such as the Borealis engine [7] or the IBM InfoSphere
Streams (or Streams for short) engine [13]).

SPEs have been primarily designed to provide low-latency processing over
continuous streams of time-sensitive data from push-based data sources. Appli-
cations are built by defining directed acyclic graphs, where nodes represent oper-
ators and edges represent the dataflows between them. Operators transform data
between their inputs and outputs, working on finite chunks of data sequences
(a.k.a., sliding windows). SPEs provide query algebras with a well-defined set
of commonly used operators, which can be easily extended with custom, user-
defined operators. There are also special operators/adapters for supporting ac-
cess to a variety of data sources including files, sockets, and databases. Once an
application is defined, SPEs take care of all system-level requirements to exe-
cute it in a correct and efficient way such as interprocess communication, data
partitioning, operator distribution, fault tolerance, and dynamic scaling.

In our approach, we do not provide any new algorithms, but we provide an
SPE-based platform to bring existing algorithms/software into the cloud in a
way that they can work with their input data in an incremental fashion. One
generic way of doing this is to use command line tools provided by most of these
software. For example, in the NGS software packages that we looked at, we have
so far seen two types of command line tools: those that are able to read and
write to standard Unix pipes, and those that can not. We build custom streaming
operators by wrapping the Unix processes. If standard Unix pipe communication
is supported, using one thread, the Unix process is provided with incoming data

4 Problem size for NGS read alignment depends on a number of factors including the
number of reads to be aligned, the size of the reference genome, and the “fuzziness”
of the alignment algorithm.

6

streams and results are read by a second thread. Otherwise, data is written in
chunks to files residing on an in-memory file system. For each chunk, the Unix
process is run once and the produced output data is read and passed on to the
next operator as a data stream.

Figure 2 and Figure 3 contrast how data-intensive applications are typically
being deployed in the cloud today vs. how they could be deployed using our
approach, respectively. Although the figures illustrate our NGS read alignment
use case specifically, the architectural and conceptual differences apply in general.

Fig. 2. Using SHRiMP on multiple nodes as standalone application requires to split
the raw NGS read data into equal-sized chunks, transfer them to multiple cloud nodes,
run SHRiMP in parallel, copy back the results to the client, and finally, merge them
into a single file.

Fig. 3. With our stream-based approach, the client streams the reads into the cloud,
where they instantly get mapped to a reference genome and results are immediately
streamed back to the client.

7

Fig. 4. Operator and dataflow graph for our stream-based incremental processing im-
plementation of SHRiMP.

3.2 Use Case Implementation

We now describe how we implemented our approach for a well-known NGS read
alignment software package called SHRiMP [21] using IBM InfoSphere Streams
[5] as our SPE and Amazon EC2 [1] as our cloud computing platform.

Figure 4 shows a detailed data flow graph of our implementation. A client ap-
plication implemented in Java compresses and streams raw NGS read data into
the cloud, where a master Streams node first receives it. At the master node, the
read stream gets uncompressed by an Uncompress operator and is then fed into a
TCPSource operator. In order to be able to run parallel instances of SHRiMP for
increased scalability, TCPSource operator feeds the stream into a ThreadedSplit
operator. ThreadedSplit is aware of the data input rates that can be handled by
its downstream operators, and therefore, it can provide an optimal load distri-
bution. The number of substreams that ThreadedSplit generates determines the
the number of processing (i.e., slave) nodes in the compute cluster, each of which
will run a SHRiMP instance. SHRiMP instances are created by instantiating a
custom Streams operator using standard Unix pipes. The resulting aligned read
data (in the form of SAM output [6]) on different SHRiMP nodes are merged
by the master node using a Merge operator. Then a TCPSink operator passes
the output stream to a Compress operator, which ensures that results are sent
back to the client application in compact form, where they should be uncom-
pressed again before being presented to the user. The whole chain, including the
compression stages, is fully incremental.

3.3 Initial Evaluation

In this section, we present an initial evaluation of our approach on the imple-
mented use case in terms of scalability, costs, and ease of use. For scalability, we
have done an experiment that compares the two architectures shown in Figure 2
and Figure 3. In the experiment, we have aligned 30000 reads of Streptococcus
suis, an important pathogen of pigs, against its reference genome. Doing this on

8

Fig. 5. At a cluster with size of 4 nodes and above, the stream-based solution incurs
less total processing time than the standalone application. This is because data transfer
time always adds up to the curve of the standalone application.

a single Amazon EC2 m1.large instance takes around 28 minutes. In order to
be able to project this to analyzing more complicated organisms (like humans),
we have scaled all our results up by a factor of 60 (e.g., 28 hours instead of
28 minutes). In all cases, data is compressed before being transferred into the
cloud. To serve as a reference point, assuming a broadband Internet connection,
transferring the compressed input data set into the cloud takes about 90 minutes.

Scalability Figure 5 shows the result of our scalability experiment. The bottom
flat line corresponds to the data transfer time of 90 minutes for our specific input
dataset. This time is included in the SHRiMP standalone curve, where input data
has to be uploaded into the cloud in advance. On the other hand, the stream-
based approach does not transfer any data in advance, thus does not incur this
additional latency. Both approaches show linear scalability in total processing
time as the number of Amazon EC2 nodes are increased. Upto 4 nodes, the
standalone approach takes less processing time. However, we see that as the
cluster size increases beyond this value, the relative effect of the initial data
transfer latency for the standalone approach starts to show itself, reaching to
almost a 30-minute difference in processing time over the stream-based approach
for the 16-node setup. We expect this difference to become even more significant
as the input dataset size and the cluster size further increase.

Costs As our solution allows data processing to start as soon as the data arrives
in the cloud, we can show that the constant c in the formula f(n, s) ∝ cs + s

n
introduced in the previous section can be brought to nearly zero, leading to

9

f
′
(n, s) ∝ s

n for the overall data processing time. Since we have shown linear scale

out, we can calculate the CPU cost using p(n, s) ∝ nf
′
(n, s) ∝ n s

n ∝ s. Since
the cost ends up being dependent only on the problem size, one can minimize
the processing time f

′
(n, s) by maximizing n without any significant effect on

the cost. Data transfer and storage costs are relatively small in comparison
to the CPU cost, therefore, we have ignored them in this initial cost analysis.
Nevertheless, it is not difficult to see that these costs will also decrease with our
stream-based approach.

Ease of Use Our client, a command line tool, behaves exactly the same way as
a command line tool for any read alignment software package. Therefore, existing
data processing chains can be sped up by simply replacing the existing aligner
with our client without changing anything else. Even flexible and more complex
bioinformatics data processing engines (e.g., Galaxy [14] or Pegasus [10]) can be
transparently enhanced by simply replacing the original data processing stages
with our solution.

4 Conclusions and Future Work

In this paper, we proposed a stream-based approach to bringing data- and CPU-
intensive applications into the cloud without transferring data in advance. We
applied this idea to a large-scale DNA sequence analysis use case and showed
that overall processing time can be significantly reduced, while providing linear
scalability, reduced monetary costs, and ease of use.

We would like to extend this work along several directions. At the moment,
only SHRiMP [21] and Bowtie [18] have been enabled to run on our system. We
would like to explore other algorithms (e.g., SNP callers [20]) that can benefit
from our solution. As some of these presuppose sorted input, this will be an
additional challenge that we need to handle. Furthermore, we would like to
take a closer look at recent work on turning MapReduce into an incremental
framework and compare those approaches with our stream-based approach. The
last but not the least, we will explore how fault-tolerance techniques in stream
processing can be utilized to make our solution more robust and reliable.

Acknowledgements. This work has been supported in part by an IBM faculty
award.

References

1. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/
2. Apache Hadoop. http://hadoop.apache.org/
3. Functional Genomics Center Zurich. http://www.fgcz.ch/
4. Google MapReduce. http://labs.google.com/papers/mapreduce.html
5. IBM InfoSphere Streams. http://www.ibm.com/software/data/infosphere/

streams

10

6. The SAM Format Specification. samtools.sourceforge.net/SAM1.pdf
7. Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.,

Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.:
The Design of the Borealis Stream Processing Engine. In: Conference on Innovative
Data Systems Research (CIDR’05). Asilomar, CA (January 2005)

8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local Align-
ment Search Tool. Journal of Molecular Biology 215(3) (October 1990)

9. Collins, F.S., Guyer, M., Chakravarti, A.: Variations on a Theme: Cataloging Hu-
man DNA Sequence Variation. Science 278(5343) (November 1997)

10. Deelman, E., Mehta, G., Singh, G., Su, M., Vahi, K.: Pegasus: mapping large-scale
workflows to distributed resources. Workflows for e-Science pp. 376–394 (2007)

11. Dudley, J.T., Butte, A.J.: In Silico Research in the Era of Cloud Computing.
Nature Biotechnology 28(11) (2010)

12. Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B.: Bioin-
formatics Challenges for Personalized Medicine. Bioinformatics 27(13) (July 2011)

13. Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: The System S
Declarative Stream Processing Engine. In: ACM SIGMOD Conference. Vancouver,
BC, Canada (June 2008)

14. Goecks, J., Nekrutenko, A., Taylor, J., Team, G.: Galaxy: A Comprehensive Ap-
proach for Supporting Accessible, Reproducible, and Transparent Computational
Research in the Life Sciences. Genome Biology 11(8) (2010)

15. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing
Surveys 25(2) (June 1993)

16. Keich, U., Ming, L., Ma, B., Tromp, J.: On Spaced Seeds for Similarity Search.
Discrete Applied Mathematics 138(3) (April 2004)

17. Langmead, B., Schatz, M.C., Lin, J., Pop, M., Salzberg, S.L.: Searching for SNPs
with Cloud Computing. Genome Biology 10(11) (2009)

18. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and Memory-
efficient Alignment of Short DNA Sequences to the Human Genome. Genome
Biology 10(3) (2009)

19. Li, H., Homer, N.: A Survey of Sequence Alignment Algorithms for Next-
Generation Sequencing. Briefings in Bioinformatics 11(5) (September 2010)

20. Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., Wang, J.: SNP
Detection for Massively Parallel Whole-Genome Resequencing. Genome Research
19(6) (June 2009)

21. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., Brudno, M.:
SHRiMP: Accurate Mapping of Short Color-space Reads. PLOS Computational
Biology 5(5) (May 2009)

22. Sanger, F., Coulson, A.R.: A Rapid Method for Determining Sequences in DNA by
Primed Synthesis with DNA Polymerase. Journal of Mol. Biol. 94(3) (May 1975)

23. Schatz, M., Delcher, A., Salzberg, S.: Assembly of large genomes using second-
generation sequencing. Genome research 20(9), 1165 (2010)

24. Schatz, M.C.: CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Bioinformatics 25(11) (June 2009)

25. Stein, L.D.: The Case for Cloud Computing in Genome Informatics. Genome Bi-
ology 11(5) (2010)

26. Viedma, G., Olias, A., Parsons, P.: Genomics Processing in the Cloud.
International Science Grid This Week, http://www.isgtw.org/feature/

genomics-processing-cloud (February 2011)
27. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next-Generation Sequencing:

From Basic Research to Diagnostics. Clinical Chemistry 55(4) (February 2009)

