
Plan-based Complex Event Detection
across Distributed Sources ∗

Mert Akdere
Brown University

makdere@cs.brown.edu

Uǧur Çetintemel
Brown University

ugur@cs.brown.edu

Nesime Tatbul
ETH Zurich

tatbul@inf.ethz.ch

ABSTRACT
Complex Event Detection (CED) is emerging as a key capability for
many monitoring applications such as intrusion detection, sensor-
based activity & phenomena tracking, and network monitoring. Ex-
isting CED solutions commonly assume centralized availability and
processing of all relevant events, and thus incur significant overhead
in distributed settings. In this paper, we present and evaluate commu-
nication efficient techniques that can efficiently perform CED across
distributed event sources.

Our techniques areplan-based: we generate multi-step event ac-
quisition and processing plans that leverage temporal relationships
among events and event occurrence statistics to minimize event trans-
mission costs, while meeting application-specific latency expecta-
tions. We present an optimal but exponential-time dynamic pro-
gramming algorithm and two polynomial-time heuristic algorithms,
as well as their extensions for detecting multiple complex events with
common sub-expressions. We characterize the behavior and perfor-
mance of our solutions via extensive experimentation on synthetic
and real-world data sets using our prototype implementation.

1. INTRODUCTION
In this paper, we study the problem of complex event detection

(CED) in a monitoring environment that consists of potentially a large
number of distributed event sources (e.g., hardware sensors or soft-
ware receptors). CED is becoming a fundamental capability in many
domains including network and infrastructure security (e.g., denial
of service attacks and intrusion detection [22]) and phenomenon and
activity tracking (e.g., fire detection, storm detection, tracking sus-
picious behavior [23]). More often than not, such sophisticated (or
“complex”) events ”happen” over a period of time and region. Thus,
CED often requires consolidating over time many ”simple” events
generated by distributed sources.

Existing CED approaches, such as those employed by stream pro-
cessing systems [17, 18], triggers [1], and active databases [8], are
based on a centralized, push-based event acquisition and processing
model. Sources generate simple events, which are continually pushed

∗This work has been supported by the National Science Foundation
under Grant No. IIS-0448284 and CNS-0721703.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

to a processing site where the registered complex events are evaluated
as continuous queries, triggers, or rules. This model is neither effi-
cient, as it requires communicating all base events to the processing
site, nor necessary, as only a small fraction of all base events eventu-
ally make up complex events.

This paper presents a new plan-based approach for communication-
efficient CED across distributed sources. Given a complex event, we
generate a cost-based multi-step detection plan on the basis of the
temporal constraints among constituent events and event frequency
statistics. Each step in the plan involves acquisition and processing
of a subset of the events with the basic goal of postponing the mon-
itoring of high frequency events to later steps in the plan. As such,
processing the higher frequency events conditional upon the occur-
rence of lower frequency ones eliminates the need to communicate
the former in many cases, thus has the potential to reduce the trans-
mission costs in exchange for increased event detection latency.

Our algorithms are parameterized to limit event detection laten-
cies by constraining the number of steps in a CED plan. There are
two uses for this flexibility: First, the local storage available at each
source dictates how long events can be stored locally and would thus
be available for retrospective acquisition. Thus, we can limit the du-
ration of our plans to respectevent life-timesat sources. Second,
while timely detection of events is critical in general, some appli-
cations are more delay-tolerant than others (e.g., human-in-the-loop
applications), allowing us to generate more efficient plans.

To implement this approach, we first present a dynamic program-
ming algorithm that is optimal but runs in exponential time. We then
present two polynomial-time heuristic algorithms. In both cases, we
discuss a practical but effective approximation scheme that limits the
number of candidate plans considered to further trade off plan qual-
ity and cost. An integral part of planning is cost estimation, which
requires effective modeling of event behavior. We show how com-
monly used distributions and histograms can be used to model events
with independent and identical distributions and then discuss how to
extend our models to support temporal dependencies such as bursti-
ness. We also study CED in the presence of multiple complex events
and describe extensions that leverage shared sub-expressions forim-
proved performance. We built a prototype that implements our al-
gorithms; we use our implementation to quantify the behavior and
benefits of our algorithms and extensions on a variety of workloads,
using synthetic and real-world data (obtained from PlanetLab).

The rest of the paper is structured as follows. An overview of our
event detection framework is provided in Section 2. Our plan-based
approach to CED with plan generation and execution algorithms is
described in Section 3. In Section 4, we discuss the details of our cost
and latency models. Section 5 extends plan optimization to shared
subevents and event constraints. We present our experimental results
in Section 6, cover the related work in Section 7, and conclude with
future directions in Section 8.

2. BASIC FRAMEWORK
Events are defined as activities of interest in a system [10]. De-

tection of a person in a room, the firing of a cpu timer, and a Denial
of Service (DoS) attack in a network are example events from vari-
ous application domains. All events signify certain activities, how-
ever their complexities can be significantly different. For instance,
the firing of a timer is instantaneous and simple to detect, whereas
the detection of a DoS attack is an involved process that requires
computation over many simpler events. Correspondingly, events are
categorized asprimitive (base) andcomplex(compound), basically
forming an event hierarchy in which complex events are generated
by composing primitive or other complex events using a set of event
composition operators (Section 2.2).

Each event has an associated time-interval that indicates its occur-
rence period. For primitive events, this interval is a single point (i.e.,
identical start and end points) at which the event occurs. For com-
plex events, the assigned intervals contain the time intervals ofall
subevents. Thisinterval-based semanticsbetter capture the underly-
ing event structure and avoid some well-known correctness problems
that arise with point-based semantics [9].

2.1 Primitive Events
Each event type (primitive and complex) has a schema that extends

the base schema consisting of the following required attributes:

• node id is the identifier of the node that generated the event.
• event id is an identifier assigned to each event instance. It can

be made unique for every event instance or set to a function
of event attributes forsimilar event instances to get the same
id. For example, in an RFID-enabled library application a book
might be detected by multiple RFID receivers at the same time.
Such readings can be discarded if they are assigned the same
event identifier.

• start time andend time represent the time interval of the event
and are assigned by the system based on the event operator se-
mantics explained in the next subsection. These time values
come from an ordered domain.

Primitive event declarations specify the details of the transforma-
tion from raw source data into primitive events. The syntax is:

primitive name
on source list

schemaattribute list

Each primitive event is assigned a unique name usingname. The
set of sources used in a primitive event is listed in thesource list.
The schema component expresses the names and domains of the at-
tributes of the primitive event type and automatically inherits the at-
tributes in the base schema.

An example primitive event, expressing the detection of a person,
is shown below together with the declaration of apersondetector
source (e.g., a face detection module running on a smart camera).

source persondetector
schemaint id, double locx, double locy

primitive persondetected
on persondetector as PD, node
schema eventid ashashf(persondetected, node.id, node.time, PD.id),

loc as[PD.loc x, PD.locy],
personid asPD.id

We use the pseudo-sourcenode that enables access to context in-
formation such as the location of the source and the current value of
node clock. We use a hash function,hash f, to generate unique ids
for event instances. Similar to its use in SQL,as describes how an
attribute is derived from others.

2.2 Event Composition
Complex events are specified on simpler events using the syntax:

complexname
on source list

schemaattribute list
eventevent expression

whereconstraint list

A unique name is given to each complex event type using thename
attribute. Subevents of a complex event type, which can be other
complex or primitive events, are listed insource list. As in
primitive events, the source list may contain thenode pseudo-source
as well. Theattribute list contains the attributes of a complex
event type that together form a super set of the base schema and de-
scribes the way they are assigned values. In other words, the schema
specifies the transformation from subevents to complex events.

We use a standard set of event composition operators for easy spec-
ification of complex event expressions in theevent clause. Our
event operators,and, or andseq, are alln-ary operators extended
with time windowarguments. The time window,w, of an event op-
erator specifies the maximum time duration between the occurrence
of any two subevents of a complex event instance. Hence, all the
subevents are to occur withinw time units. In addition, we allow non-
existence constraints to be expressed on the subevents insideand
andseq operators using the negation operator!. Negation cannot
be used inside anor operator or on its own as negated events only
make sense when used together with non-negated events.

Formal semantics of our operators are provided below. We denote
subevents withe1, e2, . . . , en and the start and end times of the out-
put complex event witht1 andt2.

• and(e1, e2, . . . , en; w) outputs a complex event witht1 = mini

(ei.start time), t2 = maxi(ei.end time) if maxi,j (ei.
end time − ej .end time) <= w. Note that the subevents
can happen in any order.

• seq(e1, e2, . . . , en; w) outputs a complex event witht1 = e1.
start time, t2 = en.end time if (i) ∀i in 1, . . . , n − 1 we
haveei.end time < ei+1. start time and (ii)en.end time−
e1.end time ≤ w. Hence,seq is a restricted form ofand
where events need to occur in order without overlapping.

• or(e1, e2, . . . , en) outputs a complex event when a subevent
occurs.t1 andt2 are set to start and end times of the subevent.
Note that this operator does not require a window argument.

• negation (i) For and(e1, e2, .., !ei, .., en; w), we need∄ ei :
maxj (ej . end time) − w ≤ ei.end time ≤ minj (ej .
end time) + w wherej ranges over the indices of the non-
negated subevents.

(ii) For seq(e1, e2, .., !ei, .., en; w), if i /∈ {1, n}, we need
to have∄ ei : ep.end time ≤ ei.end time ≤ eq.start time
whereep andeq are the previous and next non-negated subevents
for ei. If i = 1 (i.e. negated start [7]), we need to have∄
ei : en.end time − w ≤ ei.end time ≤ e2.start time.
And finally if i = n (i.e. negated end) we need∄ ei : en−1.
end time ≤ ei.end time ≤ e1.end time + w. At least one
of the subevents in a complex event should be left non-negated.

In most applications, users will be interested in complex events that
impose additional constraints on their subevents. For instance, users
may be interested in events occurring in nearby locations. Our system
allows the expression of such spatial constraints in thewhere clause
of the event specifications. Moreover, parameterized attribute-based
constraints between events and value-based comparison constraints
can be specified in the where clause as well. We illustrate the use
of the constraints through the following “running person” complex
event.

complexrunningperson
on persondetectedasPD1,persondetectedasPD2, node

schemaeventid ashashf(running person, node.id,
node.time, personid),

loc asPD2.loc,
personid asPD1.personid

event seq(PD1,PD2;3)
wherePD1.personid = PD2.personid

and distance(PD1.loc, PD2.loc)≥ 12

2.3 Event Detection Graphs
Our event detection model is based onevent detection graphs[8].

For each event expression, we construct an event detection tree. These
trees are then merged to form the event detection graph. Common
events in different event trees, which we refer to as shared events, are
merged to form nodes with multiple parents. Nodes in an event de-
tection graph are either operator nodes or primitive event nodes. The
non-leaf nodes, operator nodes which execute the event language op-
erators on their inputs, are the operator nodes. The inputs to operator
nodes are either complex or primitive events. and their outputs are
complex The leaf nodes in the graph are primitive event nodes. A
primitive event node exists for each primitive event type and stores
references to the instances of that primitive event type.

2.4 System Architecture
The main components in our system are the eventsourcesand the

basenode (Figure 1). Sources generate events; e.g., routers and fire-
walls in a network monitoring application and a temperature sensor
in a disaster monitoring application are examples. Sources have local
storage that allows them to log events of interest temporarily. These
logs can be queried and events be acquired when necessary. In prac-
tice, some event sources may not have any local storage or be au-
tonomous and outside our control (e.g., RSS sources on the web). In
such cases, we rely onproxynodes that provide these capabilities on
their behalf. Thus, we use the termsourcewhen referring to either
the original event source or its proxy.

The base station is responsible for generating and executing CED
plans. Plan execution involves coordination with event sources as
events are transmitted upon demand from the base. Consequently,
our system combines the pull and push paradigms of data collection
to avoid the disadvantages of a purely push-based system. The CED
plans we generate strive to reduce the network traffic towards the
base station by carefully choosing which sources will transmit what
events.

3. PLANNING FOR EFFICIENT CED
3.1 Event Detection Plans: Overview

A common approach to event detection would be to continuously
transmit all the events to the base where they would be processed
as soon as possible. This push-based approach is typical of continu-
ous query processing systems (e.g., [17, 18, 19]). From an efficiency
point of view, this approach leads to a hot-spot at the base and signif-
icant resource consumption at sources for event transmission. From a
semantic point of view, many applications do not require access to all
“raw” events but only a small fraction of the relevant ones.Our goal
is to avoid continuous global acquisition of data without missing any
complex events of interest, as specified by the users.

To achieve this goal, we useevent detection plansto guide the
event acquisition decisions. Event detection plans specify multi-step
event acquisition strategies that reduce network transmission costs.
The simplest plan, which corresponds to the push-based approach,
consists of a single step in which all subevents are simultaneously
monitored (referred to as thenaive planin the sequel). More com-
plex plans have up ton steps, wheren is the number of subevents,

each involving the monitoring of a subset of events. The number of
plans for a complex event defined usingand or seq operators over
n primitive subevents is exponential inn as given by the recursive
relationT (n) =

Pn

i=1

`

n

i

´

T (n − i), where we defineT (0) to be1.
To demonstrate the basic idea behind the event detection plans,

consider a simple complex eventand(e1, e2; w). The transmission
cost when using the naive plan for monitoring this event would be
the total cost for transmitting every instance ofe1 ande2. On the
other hand, a two-step plan, where we continuously monitore1 and
acquire the instances ofe2 (which are withinw of an instance ofe1)
through pull requests when necessary, could cost less. However, ob-
serve that the two-step plan would incur higher detection latency than
the naive plan, which offers the minimum possible latency. Studying
this tradeoff between cost and latency is an important focus of our
work: we aim to find low-cost event detection plans that meet event-
specific latency expectations.

We use acost-latency modelbased on event occurrence probabil-
ities to calculate the expected costs and latencies of candidate event
detection plans. We define theexpected cost of a planas the expected
number of events the plan asks nodes to send to the base per time
unit. We expect transmission costs to be the bottleneck for many
networked systems, especially for sensor networks with thin, wire-
less pipes. Even with Internet-based systems, bandwidth problems
arise, especially around the base, with increasing event generation
rates. Additionally, we define thelatency of a planfor a complex
event as the time between the occurrence of the event and its detec-
tion by the system executing the plan. We assume that there is an
estimated latency to access each event source and that detection la-
tencies are dominated by network latencies, thus ignoring the event
processing costs at the base station. However, since we strive to de-
crease the number of events sent to base, our approach should reduce
both network and processing costs. Note that we abstractly define
both metrics to avoid overspecializing our results to particular sys-
tem configurations and protocol implementations.

As briefly mentioned earlier, event latency constraints may origi-
nate from two different sources. First, we may have user specified,
explicit latency deadlines based on application requirements. Second,
latency deadlines can arise from limited data logging capabilities: an
event source may be able to store events only for a limited time be-
fore it runs out of space and has to delete data. Therefore, a plan that
assumes the availability of events for longer periods is not going to
be useful. In practice, we can consider both cases and use the most
strict latency target for a complex event.

Let’s summarize some key assumptions we make in the rest of
the paper. First, we assume event sources are time-synchronized,
as otherwise there might be false/missed event detections. Second,
we bound the maximum network latency for events and use timeout
mechanisms for event detection. Finally, event delivery is assumed
to be reliable.

We represent our plans with extended finite state machines (FSMs).
Consider the complex eventand(e1, e2, e3; w) wheree1, e2, e3 are
primitive events andw is the window size. There are T(3) = 13 dif-
ferent detection plans for this complex event. State machines of the
plans for this complex event have at mostn = 3 states (except the
final state) representing the monitoring order specified by the plan, in
each of which a subset of primitive events is monitored. One state
machine of each size is given in Figure 2. For instance, the 3-step
monitoring plan: “First, continuously monitore1, then one1 lookup
e2, and finally one1 ande2 lookupe3”, is illustrated in Figure 2(c),
where the notatione1 → e2 → e3 is used to denote this plan.

The FSMs we use for representing plans arenondeterministic, since
they can have multiple active states at a time. Every active state cor-
responds to a partial detection of the complex event. For example,
in stateSe1

of the plan given in Figure 2(c), there can be active in-

Primitive events

Pull Requests

Planner

Event

Statistics

Execution

Base Node Event

Sources

Event

Specifications

Parser

Event Detection

Graph

Parser

Planner

Comm.

Handler
events

Event

Generator event

logger

Software

Receptors

Sensors

Comm.

Handler
events

Event

Generator entenevenenevenevev

ggergglogglo

Software

Receptors

Sensors

Ge

So

Re

Event Source

base

commands

Figure 1: Complex event detection framework: The base node plans and coordinates the event detection using low network cost eventdetection plans
formed by utilizing event statistics. The event detection model is an event detection graph generated from the given event specifications. Information
sources feed the system with primitive events and can operate both in pull and push based modes.

stances ofe1 waiting for instances ofe2. When an instance ofe2 is
detected, in addition to the transition to next state, a self-transition
will also occur so that an instance ofe1 can match multiple instances
of e2 (self-transitions are not shown in the figure). Unlike the initial
state that is always active, intermediate states are active only as long
as the windowing constraints among event instances are met.

start

startstart

(a) The naive plan:

(e1, e2)

(c) Plan e1 → e2 → e3:

(b) Plan e1 → e2, e3:

(e1)

(e1)

(e1, e2, e3)

Se1,e2
Se1

Se1

(e1, e2, e3)

w of e1 w of e1, e2

e3 withine2 withine1

e1, e2, e3 e1

(e1, e2, e3)

e2, e3 within
w of e1

Figure 2: Event detection plans represented as finite state machines

3.2 Plan Generation
We now describe how event detection plans are generated with

the goal of optimizing the overall monitoring cost while respecting
latency constraints. First, we consider the problem of plan genera-
tion for a complex event defined by a single operator. We provide
two algorithms for this problem: a dynamic programming solution
and a heuristic method (in sections 3.2.1 and 3.2.2, respectively).
Then, in section 3.2.3, we generalize our approach to more com-
plicated events by describing a hierarchical plan generation method
that uses as building blocks the candidate plans generated for simpler
events. The dynamic programming algorithm can find optimal plans
and achieve the minimum global cost for a given latency. However, it
has exponential time complexity and is thus only applicable to small
problem instances. The heuristic algorithm, on the other hand, runs
in polynomial time and, while it cannot guarantee optimality, it pro-
duces near optimal results for the cases we studied (Section 6).

3.2.1 The dynamic programming approach
The input to the dynamic programming (DP) plan generation al-

gorithm is a complex eventC defined over the subeventsS and a set
of plans for monitoring each subevent. For the primitive subevents,
the only possible monitoring plan is the single step plan, whereas for
the complex subevents there can be multiple monitoring plans. Given
these inputs, the DP algorithm produces a set ofpareto optimalplans
for monitoring the complex eventC. These plans will then be used in
the hierarchical plan generation process to produce plans for higher-
level events (Section 3.2.3).

A plan ispareto optimalif and only if no other plan can be used to

reduce cost or latency without increasing the other metric.
Definition 1. A planp1 with costc1 and latencyl1 is pareto opti-

mal if and only if ∄ p2 with costc2 and latencyl2 such that(c1 > c2

andl1 ≥ l2) or (l1 > l2 andc1 ≥ c2).
The DP solution to plan generation is based on the followingpareto
optimal substructure property: Let ti ⊆ S be the set of subevents
monitored in theith step of a pareto optimal planp for monitoring
C. Definepi to be the subplan ofp, consisting of its firsti steps
used for monitoring the subevents∪i

j=1tj . Then the subplanpi+1 is
simply the planpi followed by a single step in which the subevents
ti+1 are monitored. The pareto optimal substructure property can
then be stated as: ifpi+1 is pareto optimal thenpi must be pareto
optimal. We prove the pareto optimal substructure property below
with the assumption that “reasonable” cost and latency models are
being used (that is both cost and latency values are monotonously
increasing with increasing subevents).

PROOF : PARETO OPTIMAL SUBSTRUCTURE. Let the cost ofpi

be ci and its latency beli. Assume thatpi is not pareto optimal.
Then by definition∃p′

i with costc′i and latencyl′i such that(ci > c′i
and li ≥ l′i) or (li > l′i andci ≥ c′i). However, thenp′

i could be
used to form ap′

i+1 such that(ci+1 > c′i+1 and li+1 ≥ l′i+1) or
(li+1 > l′i+1 andci+1 ≥ c′i+1) which would contradict the pareto
optimality ofpi+1.

This property implies that, ifp, the plan used for monitoring the
complex eventC, is a pareto optimal plan, thenpi for all i, must be
pareto optimal as well. Our dynamic programming solution lever-
aging this observation is shown in Algorithm 1 for the special case
where all the subevents are primitive. Generalization of this algo-
rithm to the case with complex subevents (not shown here due to
space constraints) basically requires repeating the lines between6
and15 for all possible plan configurations of monitoring events in set
s in a single step. After execution, all pareto optimal plans for the
complex eventC will be in poplans[S], wherepoplans is the pareto
optimal plans table. This table has exactly2|S| entries, one for each
subset ofS. Every entry stores a list of pareto optimal plans for mon-
itoring the corresponding subset of events. Moreover, the addition of
a plan to an entrypoplans[s] may render another plan inpoplans[s]
non-pareto optimal. Hence, when adding a pareto optimal plan to the
list (line 12), we remove the non-pareto optimal ones.

At iteration i of the plength for loop, we are generating plans of
length (number of steps)i, whose firsti−1 steps consist of the events
in setj ⊆ t and last step consists of the events in sets. Therefore, in
theith iteration of the plength for loop, we only need to consider the
setss andj that satisfy:

|t| + 1 ≥ i ⇒ |t| ≥ i − 1 (1)

⇒ |t| = |S| − |s| ≥ i − 1 ⇒ |s| ≤ |S| − i + 1 (2)

|j| ≥ i − 1 (3)

Algorithm 1 Dynamic programming solution to plan generation

1. Input: S ={e1, e2, . . . , eN}
2. for plength= 1 to |S| do
3. for all s∈ 2S \ ∅ do
4. p = new plan
5. t = S\ s
6. if plength! = 1 then
7. for all j ∈ 2t \∅ do
8. for all planpj in poplans[j] do
9. p.steps =pj .steps

10. p.steps.add(new step(s))
11. if p is pareto optimal for poplans[s ∪ j] then
12. poplans[s ∪ j].add(p)
13. else
14. p.steps.add(new step(s))
15. poplans[s].add(p)

Otherwise, at iterationi, we would redundantly generate the plans
with length less thani. However, for simplicity we do not include
those constraints in the pseudocode shown in Algorithm 1 as they do
not change the correctness of the algorithm.

Finally, the analysis of the algorithm (for the case of primitive
subevents) reveals that its complexity isO(|S|22|S|k), where the
constantk is the maximum number of pareto optimal plans a table
entry can store. When the number of pareto optimal plans is larger
than the value ofk: (i) non-pareto optimal plans may be produced by
the algorithm, which also means we might not achieve global opti-
mum and; (ii) we need to use a strategy to choosek plans from the
set of all pareto optimal plans. To make this selection, we explored
a variety of strategies such as naive random selection, and selection
ranked by cost, latency or their combinations. We discuss these alter-
natives and experimentally compare them in Section 6.

3.2.2 Heuristic techniques
Even for moderately small instances of complex events, enumera-

tion of the plan space for plan generation is not a viable option due to
its exponential size. As discussed earlier, the dynamic programming
solution requires exponential time as well. To address this tractability
issue, we have come up with a strategy that combines the following
two heuristics, which together generate a representative subset of all
plans with distinct cost and latency characteristics:

- Forward Stepwise Plan Generation:This heuristic starts with
the minimum latency plan, a single-step plan with the minimum la-
tency plan selected for each complex subevent, and repeatedly mod-
ifies it to generate lower cost plans until the latency constraint is ex-
ceeded or no more modifications are possible. At each iteration, the
current plan is transformed into a lower cost plan either by moving a
subevent detection to a later state or replacing the plan of a complex
subevent with a cheaper plan.

- Backward Stepwise Plan Generation:This heuristic starts by
finding the minimum cost plan, i.e., ann-step plan with the minimum
cost plan selected for each complex subevent, wheren is the num-
ber of subevents. This plan can be found in a greedy way when all
subevents are primitive, otherwise a nonexact greedy solution which
orders the subevents in increasingcost × occurrence frequency
order can be used. At each iteration, the plan is repeatedly trans-
formed into a lower latency plan either by moving a subevent to an
earlier step or changing the plan of a complex subevent with a lower
latency plan, until no more alterations are possible.

Thus, the first heuristic starts with a single-state FSM and grows
it (i.e., adds new states) in successive iterations, whereas the sec-
ond one shrinks the initiallyn-state FSM (i.e., reduces the number of
states). Moreover, both heuristics are greedy as they choose the move

with the highest cost-latency gain at each iteration and both finish in
a finite number of iterations since the algorithm halts as soon as it
cannot find a move that results in a better plan. Thus, the first heuris-
tic aims to generate low-latency plans with reasonable costs, and the
latter strives to generate low-cost plans meeting latency requirements
complementing the other heuristic.

As a final step, the plans produced by both heuristics are merged
into a feasible plan set, one that meets latency requirements. During
the merge, only the plans which are pareto optimal within the set of
generated plans are kept. As is the case with the dynamic program-
ming algorithm, only a limited number of these plans will be consid-
ered by each operator node for use in the hierarchical plan generation
algorithm. The selection of this limited subset is performed as dis-
cussed in the previous subsection.

3.2.3 Hierarchical plan composition
Plan generation for a multi-level complex event proceeds in a hi-

erarchical manner in which the plans for the higher level events are
built using the plans of the lower level events. The process follows a
depth-first traversal on the event detection graph, running a plan gen-
eration algorithm at each node visited. Observe that using only the
minimum latency or the minimum cost plan of each node does not
guarantee globally optimal solutions, as the global optimum might
include high-cost, low-latency plans for some component events and
low-cost, high-latency plans for the others. Hence, each node creates
a set of plans with a variety of latency and cost characteristics. The
plans produced at a node are propagated to the parent node, which
uses them in creating its own plans.

The DP algorithm produces exclusively pareto optimal plans, which
are essential sincenon-pareto optimal plans lead to suboptimal global
solutions(the proof, which is not shown here, follows a similar ap-
proach with the pareto optimal substructure property proof in sec-
tion 3.2.1). Moreover, if the number of pareto optimal plans submit-
ted to parent nodes is not limited, then using the DP algorithm for
each complex event node we can find the global optimum selection
of plans (i.e., plans with minimum total cost subject to the given la-
tency constraints). Yet, as mentioned before, the size of this pareto
optimal subset is limited by a parameter trading computation with the
explored plan space size. On the other hand, the set of plans produced
by the heuristic solution does not necessarily contain the pareto opti-
mal plans within the plan space. As a result, even when the number
of plans submitted to parent nodes is not limited, the heuristic algo-
rithm still does not guarantee optimal solutions. The plan generation
process continues up to the root of the graph, which then selects the
minimum cost plan meeting its latency requirements. This selection
at the root also fixes the plans to be used at each node in the graph.

3.3 Plan Execution
Once plan selection is complete, the set of primitive events which

are to be monitored continuously according to the chosen plans are
identified and activated. When a primitive event arrives at the base
station, it is directed to the corresponding primitive event node. The
primitive event node stores the event and then forwards a pointer of
the event to its active parents. An active parent is one which accord-
ing to its plan is interested in the received primitive event (i.e. the
state of the parent node plan which contains the child primitive event
is active). Observe that there will be at least one active parent node
for each received primitive event, namely the one that activated the
monitoring of the primitive event.

Complex event detection proceeds similarly in the higher level
nodes. Each node acts according to its plan upon receiving events
either by activating subevents or by detecting a complex event and
passing it along to its parents. Activating a subevent includes ex-
pressing a time interval in which the activator node is interested in the
detection of the subevent. This time interval could be in the past, in

which case previously detected events are to be requested from event
sources, or in the immediate future in which case the event detectors
should start monitoring for event occurrences.

A related issue that has been discussed mainly in the active database
literature [5, 9] isevent instance consumption. An event consumption
policy specifies the effects of detecting an event on the instances of
that event type’s subevents. Options range from highly-restrictive
consumption policies, such as those that allow each event instance to
be part of only a single complex event instance, to non-restrictive
policies that allow event instances to be shared arbitrarily by any
number of complex events. Because the consumption policy affects
the set of detected events, it affects the monitoring cost as well. Our
results in this paper are based on the non-restrictive policy — using
more restrictive policies will further reduce the monitoring cost.

Observe that, independent of the consumption policy being used,
the events which are guaranteed not to generate any further complex
events due to window constraints can always be consumed to save
space. Hence, both the base and the monitoring nodes need only
store the event instances for a limited amount of time as specified by
the window constraints.

4. COST-LATENCY MODELS
The cost model uses event occurrence probabilities to derive ex-

pected costs for event detection plans. Our cost model is not strictly
tied to any particular probability distribution. In this section, we pro-
vide the general cost model, and also derive the cost estimations for
two commonly-used probability models:PoissonandBernoulli dis-
tributions. Moreover, nonparametric models can be easily plugged-in
as well, e.g., histograms can be used to directly calculate the probabil-
ity values in the general cost model if the event types do not fit well to
common parametric distributions. Model selection techniques, such
as Bayesian model comparison [13], can be utilized to select a prob-
ability model out of a predefined set of models for each event type.
We first assume independent event occurrences and later relax this as-
sumption and discuss how to capture dependencies between events.

For latency estimation, we associate each event type with a latency
value that represents the maximum latency its instances can have.
Here, we consider identical latencies for all primitive event types for
simplicity. However, different latency values can be handled by the
system as well.

Poisson distributions are widely used for modeling discrete occur-
rences of events such as receipt of a web request, and arrival of a
network packet. A Poisson distribution is characterized by a single
parameterλ that expresses the average number of events occurring in
a given time interval. In our case, we defineλ to be the occurrence
rate for an event type in a single time unit. In addition, our initial
assumption that events have independent occurrences means that the
event occurrences follows a Poisson process with rateλ. When mod-
eling an event typee with the Bernoulli distribution,e has indepen-
dent occurrences with probabilitype at every time step, provided that
the occurrence rate is less than 1.

As described before, an event detection plan consists of a set of
states each of which corresponds to the monitoring of a set of events.
The cost of a plan is the sum of the costs of its states weighted by
state reachability probabilities. The cost of a state depends on the
cost of the events monitored in that state. The reachability probabil-
ity of a state is defined to be the probability of detecting the partial
complex event that activates that state. For instance, in Figure 2c, the
event that activates stateSe1

is e1. State reachability probabilities
are derived using interarrival distributions of events. When using a
Poisson process with parameterλ to model event occurrences, the in-
terarrival time of the event is exponentially distributed with the same
parameter. Hence, the probability of waiting time for the first oc-
currence of an event to be greater thant is given bye−λt. On the

other hand, the interarrival times have geometric distribution for the
Bernoulli case. The reachability probability for initial state is 1 since
it is always active and the probability for final state is not required for
cost estimation. Below, we consider the monitoring cost and latency
of a simple complex event as an example.
Example: We define the eventand(e1, e2, e3; w) wheree1, e2 ande3

are primitive events with∆t latency and use Poisson processes with
ratesλe1

, λe2
andλe3

to model their occurrences. First, we con-
sider the naive plan in which all subevents are monitored at all times.
Its cost is simply the sum of the rates of the subevents:

P

3

i=1
λei

,
whereas its latency is the maximum latency among the subevents:
∆t. The cost derivation for the three step plane1 → e2 → e3 (Fig-
ure 2c) is more complex. Using the interarrival distributions for the
reachability probabilities the cost of the three step plan is given by:
cost fore1 → e2 → e3 = λe1

+ (1 − e−λe1)2wλe2
+

((1 − e−λe1)(1 − e−wλe2) + (1 − e−λe2)(1 − e−wλe1))2wλe3

The plan has3∆t latency since this is the maximum latency it
exhibits (for instance, when the events occur in the ordere3, e2, e1

or e2, e3, e1). For simplicity, we do not include the latencies for the
pull requests in this paper. However, observe that the pull requests
do not necessarily increase the latency of event detection as they may
be requests for monitoring future events or their latencies may be
suppressed by other events. In the cost equation above and the rest of
the paper, we omit the cost terms originating from events occurring in
the same time step, assuming that we have a sufficiently fine-grained
time model. We do not model the cost reduction due to possible
overlaps in monitoring intervals of multiple pull requests, although
in practice each event is pulled at most once.

4.1 Operator-specific Models
Below we discuss cost-latency estimation for each operator first

for the case where all subevents are primitive and are represented by
the same distribution, and then for the more general case with com-
plex subevents. Allowing different probability models for subevents
requires using the corresponding model for each subevent in calcu-
lating the probability terms, complicating primarily the treatment of
the sequence operator, as sums of random variables can no longer be
calculated in closed forms.

And Operator. Given the complex eventand(e1, e2, . . . , en; w),
a detection plan withm + 1 statesS1 throughSm, and the final state
Sm+1, we show the cost derivation both for Poisson and Bernoulli
distributions below. For eventej we represent the Poisson process
parameter withλej

and the Bernoulli parameter withpej
.

The general cost term forandwith n operands is given by
Pm

i=1
PSi

× costSi
wherePSi

is the state reachability probability for stateSi

and costSi
represents the cost of monitoring subevents of stateSi

for a period of length2W . In the case that all subevents are primi-
tive costSi

=
P

ej∈Si
2Wλej

when Poisson processes are used and

costSi
=

P

ej∈Si
2Wpej

for Bernoulli distributions.
PSi

, the reachability probability forSi, is equal to the occurrence
probability of the partial complex event that causes the transition to
stateSi. For this partial complex event to occur in the “current” time
step, all its constituent events need to occur within the lastW time
units with the last one occurring in the current time step (otherwise
the event would have occurred before). Then,PSi

is 1 when i is 1
and form ≥ i > 1 is given for Poisson processes (i) and Bernoulli
distributions (ii) by:

(i)
X

ej∈
Si−1

k=1
Sk

(1 − e
−λej)

Y

et 6=ej

et∈
Si−1

k=1
Sk

(1 − e−λet
W)

(ii)
X

ej∈
Si−1

k=1
Sk

pej

Y

et 6=ej

et∈
Si−1

k=1
Sk

(1 − (1 − pet)
W)

Under the identical latency assumption, the latency of a plan for
andoperator is defined by the number of the states in the plan (except
the final state). Hence, the latency of a plan for the eventand(e1, e2, . . . ,
en) can range from∆t to n∆t.

Sequence Operator.We can consider the same set of plans for
seq as well. However, sequence has the additional constraint that
events have to occur in a specific order and must not overlap. There-
fore, the time interval to monitor a subevent depends on the occur-
rence times of other subevents.

Xep1
Xepj

. . .ep1
ep2

ept
. . .epj+1

epj

Figure 3: subevents forseq(ep1
, ep2

, . . . , ept ; w)

The expected cost of monitoring the complex eventseq(e1, e2, . . . ,
en; w) using a plan withm + 1 states has the same form

Pm

i=1
PSi

×costSi
. Let seq(ep1

, ep2
, . . . , ept ; w) with t ≤ n andp1 < p2 <

. . . < pt be the partial complex event consisting of the events before
stateSi, i.e.∪i−1

k=1
Sk = {ep1

, ep2
, . . . , ept}. Then

1. PSi
is equal to the occurrence probability ofseq(ep1

, ep2
, . . . ,

ept ; w) at a time point. For this complex event to occur subevents
has to be detected in sequence as in Figure 3 within W time
units. We define the random variableXepj

to be the time be-
tweenepj+1

and the occurrence ofepj
beforeepj+1

(see Fig-
ure 3). Then,Xepj

is exponentially distributed withλepj
if we

are using Poisson processes, or has geometric distribution with
pepj

when using Bernoulli distributions.

For the Poisson case, we havePSi
= (1-e−λept) (1-R(W))

where R(W) = P(
Pt−1

j=1
Xepj

≥ W). Closed form expressions
for R(W) are available [15]. For the Bernoulli case,PSi

=
pept

(1 − R(W)) whereR(W) is defined on a sum of geo-
metric random variables. In this case, there is no parametric
distribution forR(W) unless the geometric random variables
are identical. Hence, it has to be numerically calculated.

2. Any eventeik
of stateSi should either occur (i) betweenepj

andepj+1
for some j or (ii) beforeep1

or afterept depending
on the sequence order. In casei, we need to monitoreik

be-
tweenepj

andepj+1
for Xepj

time units (see Figure 3). For

caseii we need to monitor the event forW −
Pt−1

j=1
Xepj

time units. In the cost estimation, we use the expectation val-
ues E[Xepj

|
Pt−1

k=1
Xepk

≤ W] and W − E[
Pt−1

k=1
Xepk

|
Pt−1

k=1
Xepk

≤ W] for estimatingLeik
, the monitoring inter-

val. ThencostSi
is

P

eik
∈Si

Leik
λeik

with Poisson processes

and
P

eik
∈Si

Leik
peik

with Bernoulli distributions.

The latency for sequence depends only on the latency of the events
which are in the same state with the last event (en) or are in later
states if we ignore the unlikely cases where the latency of the events
in earlier states are so high that the last event might occur before
they are received. If the sequence event is being monitored with
an m-step plan where thejth step containsen, then its latency is
(m− j +1)∆t. This latency difference betweenand andseq exists
because unlikeseq, with and any of the subevents can be the last
event that causes the occurrence. This discontinuity in latency intro-
duced by the last event in sequence seems to create an exception for
the DP algorithm as the pareto optimal substructure property depends
on non-decreasing latency values for the plans formed from smaller
subplans. However, in such cases, the pareto optimal plans will in-
clude only the minimum cost subplans for monitoring the events in
earlier states thanen, and because one of the minimum cost subplans
will always be pareto optimal, DP will still find the optimal.

Negation Operator. In our system, negation can be used on the
subevents ofand andseqoperators. The plans we consider for such
complex events (in addition to the naive plan) resemble a filtering
approach. First, we detect the partial complex event consisting of
non-negated subevents only. When that complex event is detected,
we monitor the negated subevents. The detection plans for the com-
plex event defined by non-negated events is then the same with the
plans forand andseqoperators. The same set of plans can be con-
sidered for negated events as well. However, we now have to look
for the absence of an event instead of its presence. The cost estima-
tions forand andseqoperators can be applied here by changing the
occurrence probabilities with nonoccurrence probabilities. Finally, to
generate plans for events involving the negation operator, both plan
generation algorithms (Section 3.2) have been modified such that at
any point during their execution the set of generated plans is restricted
to the subset of plans that match the described criteria.

Or Operator. As discussed before,or generates a complex event
for every event instance it receives. Hence, the only detection plan
for or operator is thenaiveplan. The cost of the naive plan is the
sum of the costs of the subevents and its latency is the highest latency
among the subevents.

Generalization to Complex Subevents:Given a plan for a com-
plex eventE, we are given a specific plan to use in monitoring each
subevent and an order for monitoring them. For the complex subevents
of E, which generally provide multiple monitoring plans, this means
that a particular plan among the available plans is being considered.
Also as the occurrence probability of a subevent is independent of the
plan it is being monitored with, the only difference between distinct
plans is the latency and cost values.

Forseq, the presented cost model is still valid in the presence of
complex subevents. Forand, minor changes are required for deal-
ing with complex subevents. Theandoperator requires only the end
points of complex subevents to be in the window interval. Therefore,
the complex subevents could have start times before the window in-
terval and, as such, some of their subevents could originate outside
the window interval. As a result, the monitoring of the subevents of
the complex subevents extend beyond the window interval. In such
cases, we calculate an estimated monitoring interval based on the
window values of eventE and its corresponding complex subevent.
As negation operator has a single operand and is directly applied
on andandseqoperators, no changes are required for it. Finally, the
or operator requires the same modifications withandoperator.
4.2 Addressing Event Dependencies

The cost model presented in Section 4.1 makes the independent
and identical distribution (i.i.d.) assumption for the instances of an
event type. This assumption simplifies the cost model and reduces the
required computation for the plan costs. However, for certain types
of events the i.i.d. assumption may be restrictive. A very general
subclass of such event types is the event types involving sequential
patterns across time. As an example, consider thebursty behaviorof
the corrupted bits in network transmissions. While a general solution
that models event dependencies is outside the scope of this paper, we
take the first step towards a practical solution.

To illustrate the effects of this sequential behavior on the cost model
and plan selection we provide the following example scenario, which
we verified experimentally. Consider the complex eventand(e1, e2; w)
wheree1 ande2 are primitive events withe1 exhibiting bursty behav-
ior. Also assume thate1 has a lower occurrence rate thane2. When
the cost model makes the i.i.d. assumption and the occurrence rates
of e1 ande2 are high enough, it decides to use the naive plan as no
multi-step plan seems to provide lower cost. However, when we use a
Markov model (as described below) for modeling the bursty behavior
of e1, the cost model finds out that the 2-step plane1 → e2 has much
less cost since most of the instances ofe1 occur in close proximity

and therefore require monitoring ofe2 at overlapping time intervals.
One of the most commonly used and simplest approaches to mod-

eling dependencies between events is the Markov models. We dis-
cuss anmth order discrete-time Markov chain in which occurrence
of an event in a time step depends only on the lastm steps. This
is generally a nonrestrictive assumption as recent event instances are
likely to be more revealing and not all the previous event instances
are relevant. We build this model on the Bernoulli cost model.

Denoting the occurrence of the event typee1 at time t as a binary
random variableet

1, we haveP (et
1|e

1
1, e

2
1, .., et−1

1) = P (et
1|e

t−m
1 , ..,

et−1

1). Such anmth order Markov chain can be represented as a first
order Markov chain by defining a new variabley as the lastm val-
ues ofe1 so that the chain follows the well-known Markov property.
Then, we can define the Markov chain by its transition matrix,P ,
mapping all possible values of the last m time steps to possible next
states. The stationary distribution of the chain,π̄, can be found by
solving π̄P = π̄. In this case, modifying the cost model to use the
Markov chain requires one to usēπ as the occurrence probability of
the event at a time step and utilize the transition matrix for calculating
the state reachability probabilities.

5. OPTIMIZATION EXTENSIONS
5.1 Leveraging Shared Subevents

The hierarchical nature of complex event specification may intro-
duce common subevents across complex events. For example, in a
network monitoring application we could have thesynevent indicat-
ing the arrival of a TCPsynpacket. Various complex events could
then be specified using thesynevent, such as syn-flood (sending syn
packets without matching acks to create half-open connections for
overwhelming the receiver), a successfull TCP session, and another
event detecting port scans where the attacker looks for open ports.

The overall goal of plan generation is to find the set of plans for
which the total cost of monitoring all the complex events in the sys-
tem is minimized. The plan generation algorithms presented in Sec-
tion 3.2 do not take the common subevents into account as they are
executed independently for each event operator in a bottom-up man-
ner. As such, while the resulting plans minimize the monitoring cost
of each complex event separately, they do not necessarily minimize
the total monitoring cost when shared events exist. Here, we modify
our algorithm to account for the reduction in cost due to sharing and
to exploit common subevents to further reduce cost when possible.

To estimate the cost reduction due to sharing, we need to find out
the expected amount of sharing on a common subevent. However,
the degree of sharing depends on the plans selected by the parents of
the shared node, as the monitoring of the shared event is regulated by
those plans. Since the hierarchical plan generation algorithm (Sec-
tion 3.2.3) proceeds in a bottom-up fashion, we cannot identify the
amount of sharing unless the algorithm completes and the plans for
all nodes are selected. To address these issues, we modify the plan
generation algorithm such that it starts with the independently se-
lected plans and then iteratively generates new plans with increased
sharing and reduced cost. The modified algorithm is given in Algo-
rithm 2 for the case of a single shared event.

After the independent plan generation is complete (line 3), each
node will have selected its plan, but the computed plan costs will
be incorrect as sharing has not yet been considered. To fix the plan
costs, first for each parent of the shared node, we calculate the prob-
ability that it monitors the shared event in a given time unit (lines
5-7). We have already computed this information during the initial
plan generation as the plan costs involve the terms:probability of
monitoring the shared node× occurrence rate of the shared event.
We can obtain these values with little additional bookkeeping during
plan generation. Next, using the probability values, we adjust the cost
of each plan to only include the estimated shared cost for the com-

Algorithm 2 Plan generation with a shared event
1. s= shared event, A= s.parents
2. P= 0|A| // zero vector of length|A|
3. plans= generatePlans() // execute hierarchical plan generation
4. // from Section 3.2.3
5. for all a∈ A do
6. q = plan fora in plans
7. P[a] = cost of s in q / occurrence rate of s
8. for all ancestorsa of sdo
9. q = plan fora in plans

10. q.cost -= cost of s in q− shared cost of s under P with q
11. isLocalMinimum =false, P′ = 0|A|

12. while !isLocalMinimumdo
13. newplans = generatePlans(A,P)
14. for all a∈ A do
15. q = plan fora in newplans
16. P′[a] = cost of s in q / occurrence rate of s
17. for all ancestorsa of sdo
18. q = plan fora in newplans
19. q.cost -= cost of s in q - shared cost of s under P′ with q
20. if newplans.cost> plans.cost|| newplans== plansthen
21. isLocalMinimum =true
22. else
23. plans = newplans, P = P′

mon subevent (lines 8-10). We assume the parents of the shared node
function independently and fix the cost for the cases where the shared
event is monitored by multiple parents simultaneously.

Then, we proceed to the plan generation loop during which at each
iteration new plans are generated for the nodes starting from the par-
ents of the shared node. However, in this execution of the plan gener-
ation algorithm (line 13), for each operator node, the algorithm com-
putes the reduction in plan costs due to sharing by using the previous
shared node monitoring probabilities, P, and updating the shared node
monitoring probability with each plan it considers. Hence, the ances-
tors of the shared node may now change their plans to reduce cost.
Moreover, the new plans generated in each iteration are guaranteed to
increase the amount of sharing if they have lower cost than the pre-
vious plans. This is because the plan costs can only be reduced by
monitoring the shared node in earlier states. The algorithm iterates
till a plan set with a local minimum total cost is reached. We con-
sider it future work to study techniques such as simulated annealing
and tabu search [14] for convergence to global minimum cost plans.
The algorithm can be extended to multiple shared nodes (excluding
the cases where cycles exist in the event detection graph), by keeping
a separate monitoring probability vector for each shared node s, and
at each iteration updating the plans of each node in the system using
the shared node probabilities from all its shared descendant nodes.

5.2 Leveraging Constraints
We now briefly describe how spatial and attribute-based constraints

affect the occurrence probabilities of events and discuss additional
optimizations in the presence of these constraints. A comprehensive
evaluation of these techniques is outside the scope of this paper.

First, we considerspatial constraints that we define in terms of
regional units. The space is divided into regions such that events in
a given region are assumed to occur independently from the events
in other regions. The division of space into such independent re-
gions is typical for some applications. For instance, in a security
application we could consider the rooms (or floors) of a building as
independent regions. In addition, it is also easy for users to specify
spatial constraints (by combining smaller regions) once regional units
are provided. An alternative would be to treat the spatial domain as

a continuous ordered domain of real-world (or virtual) coordinates
and then perform region-coordinate mappings. This latter approach
would allow us to use math expressions and perform optimizations
using spatial-windowing constraints, similar to what we described
for temporal constraints.

The effects of region-based spatial constraints on event occurrence
probabilities can then be incorporated in our framework with minor
changes. First, we modify our model to maintain event occurrence
statistics per each independent region and event type. Then, when
a spatial constraint on a complex event is given, we only need to
combine the information from the corresponding regions to derive
the associated event occurrence probability. For example, if we have
Poisson processes with parametersλ1 andλ2 for two regions, then
the Poisson process associated with the combined region has the pa-
rameterλ1 +λ2. Hence, by combining the Poisson processes we can
easily construct the Poisson process for any arbitrary combination of
independent regions. If the regions are not independent, we need to
derive the corresponding joint distributions. An interesting optimiza-
tion would be to use different plans for monitoring different spatial
regions if doing so reduces the overall cost.

Attribute-based constraintson the subevents of a complex event
can be used to reduce the transmission costs as well. Value-based at-
tribute constraints can be pushed down to event sources avoiding the
transmission of unqualified events. Similarly, parameterized attribute
constraints between events can also be pushed down whenever one of
the events is monitored earlier than the other. Constraint selectivities,
which are essential to make decisions in this case, can be obtained
from histograms for deriving the event occurrence probabilities.

6. EXPERIMENTAL EVALUATION

6.1 Methodology
We implemented a prototype complex event detection system to-

gether with all our algorithms in Java. In our experiments, we used
both synthetic and real-world data sets. For synthetic data sets, we
used theZipfiandistribution (with default skew = 0.255) to generate
event occurrence frequencies, which are then plugged into the expo-
nential distribution to generate event arrival times. Correspondingly,
we used the Poisson-based cost model in the experiments. The real
data set we used is a collection of Planetlab network traffic logs ob-
tained from Planetflow [20]. Specific hardware configurations used
in the experimentation are not relevant as our evaluation metrics do
not depend on the run-time environment (except in one study, which
we describe later).

The actual number of messages or “bytes” sent in a distributed
system is highly dependent on the underlying network topology and
communication protocols. To cleanly separate the impact of our al-
gorithms from those of the underlying configuration choices, we use
high-level, abstract performance metrics. We do, however, also pro-
vide a mapping from the abstract to the actual metrics for a represen-
tative real-world experiment.

As such, our primary evaluation metric is the ”transmission fac-
tor”, which represents the ratio of the number of primitive events
received at the base to the total number of primitive events generated
by the sources. This metric quantifies the extent of event suppres-
sion our plan-based techniques can achieve over the standard push-
based approach used by existing event detection systems. We also
present the ”minimum transmission factor”, the ratio of the number
of primitive events that participate in the complex events that actually
occurred to the total number generated. This metric represents the
theoretical bestthat can be achieved and thus serves as a tight lower
bound on transmission costs. All the experiments involving synthetic
data sets are repeated till results statistically converged with approx-
imately 1.2% average and 5% maximum variance.

6.2 Single-Operator Analysis
We first analyze in-depth the base case where our complex events

consist of individual operators.
Window size and detection latency: We defined the complex

eventsand(e1, e2, e3; w) andseq(e1, e2, e3; w), wheree1, e2 and
e3 are primitive events. We ran both the dynamic programming (DP)
and heuristic-based algorithms for different window sizes(w) and
plan lengths (as an indication of execution plan latency). The results
are shown in Figures 4(a) and 4(b).

Our results reveal that, as the number of steps in the plan increases,
the event detection cost generally decreases. In the case of theand
operator, both the heuristic method and the DP algorithm find the op-
timal solution, as we are considering a trivial complex event. How-
ever, in the case of theseq operator, there is some difference between
the two algorithms for the 1-step case (i.e. the minimum latency
case). Recall that due to the ordering constraint, theseq operator
does not need to monitor the later events of the sequence unless the
earlier events occur. Therefore, it can reduce the cost using multi-step
plans even under hard latency requirements. However, this asymme-
try introduced by theseq operator is also the reason why our heuris-
tic algorithm fails to produce the optimal solution. Finally, the event
detection costs tend to increase with increasing window sizes since
larger windows increase the probability of event occurrence. If the
window is sufficiently large, the system would expect the complex
event to occur roughly for each instance of a primitive event type in
which case the system will monitor all the events continuously and
relaxing the latency target will not reduce the cost.

Effects of negation: We performed an experiment with the event
and(e1, e2, e3; w = 1) in which we varied the number of negated
subevents. We observe that the cost increases with more negated
subevents, although fewer complex events are detected (Figure 4(c)).
This is mainly because (1) all the transmitted non-negated subevents
have to be discarded when a negated subevent that prevents them
from forming a complex event is detected, and (2) as described in
Section 4, the monitoring of the negated and non-negated events are
not interleaved: the negated sub-events are monitored only after the
non-negated subevents. Results are similar for uniformly distributed
event frequencies (yet the cost seems to be more independent of the
number of negated subevents in the uniform case). For highly-skewed
event frequencies, the results depend on the particular frequency dis-
tribution. For instance, if the frequency of the negated event (or one
of the negated events) is very high, then the complex event almost
never occurs, but the monitoring cost is also low since other events
have low frequencies. Finally,seq operator also performs similarly.

Increasing the operator fanout: We now analyze the relation be-
tween the cost and the fanout (number of subevents) using anand
operator with a fixed window size of 1. To eliminate the effects of
frequency skew, we used uniform distribution for event frequencies.
Results from running the heuristic algorithm (DP results are similar)
are shown in Figure 4(d), in which the lowest dark portion of each
bar shows the minimal transmission factor and the cost values for in-
creasingly strict deadlines are stacked on top of each other. We see
that (i) increasing the fanout tends to decrease the number of detected
complex events and (ii) larger fanout implies we have a wider latency
spectrum, thus a larger plan space and more flexibility to reduce cost.

Effects of frequency skew:In this experiment, we define the com-
plex eventand(e1, e2, e3; w = 1) and vary the parameter of the
Zipfian distribution with which event frequencies are generated. The
total number of primitive events for different event frequency values
are kept constant. Figure 4(e) shows that a higher number of complex
events is detected with low-skew streams and the cost is thus higher.
Furthermore, our algorithms can effectively capitalize on high-skew
cases where there is significant difference between event occurrence
frequencies by postponing the monitoring of high-frequency events

0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W

tr
an

sm
is

si
on

 fa
ct

or

1 step

2 steps

3 steps
heuristic alg.
dynamic prog.
min. transmission
factor

(a) and operator window size & latency

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W

tr
an

sm
is

si
on

 fa
ct

or

1 step
2 steps

3 steps

heuristic alg.
dynamic prog.
min. transmission factor

(b) seq operator window size & latency

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of negated operands

tr
an

sm
is

si
on

 fa
ct

or

1 step

2 steps

3 steps

heuristic alg.
dynamic prog.
min. transmission
factor

(c) Increasing negated subevents

3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of operands

tr
an

sm
is

si
on

 fa
ct

or

(d) Increasing operands (fanout)

0.001 0.255 0.555 0.755 0.999
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

skew

tr
an

sm
is

si
on

 fa
ct

or

1 step

2 steps

3 steps

heuristic alg.
min. transmission
factor

(e) Increasing frequency skew

0.0 0.05 0.1 0.2 0.4 0.5 0.75 0.90 1.00
0

0.1

0.2

0.3

0.4

0.5

0.6

beta

tr
an

sm
is

si
on

 fa
ct

or

skew 0.001

skew 0.555

skew 0.999

(f) Tolerance to estimation errors

Figure 4: Operator wise experiments

as much as the latency constraints allow.
Tolerance to statistical estimation errors: We now analyze the

effects of parameter estimation accuracy on system performance us-
ing and(e1, e2, . . . , e5; w = 1), wheree1, e2, . . . , e5 are primitive
events. We use the Zipfian distribution to create the “true” occur-
rence ratesλT = [λT

e1
, λT

e2
, . . . , λT

e5
] of events. We then defineλβ

with λβ
ei

= λT
ei
±βλT

ei
for 1 ≤ i ≤ 5 as an estimator ofλT with error

β (the± indicates that the error is either added or subtracted based
on a random decision for each event). The results are in figure 4(f).

For highly skewed occurrence rates, the estimation error has a
larger impact on the cost as the occurrence rates are far apart in such
cases. For very low skew values, error does not affect the cost much
since most of the events are “exchangeable”, i.e., selected plans are
independent of the monitoring order of the events as switching an
event with another does not change the cost much. We did a similar
experiment using events with many operators instead of a single one.
The relative results and averages were similar, however, the variance
was higher (approximately 10%), meaning for some complex event
instances the cost could be highly affected by the estimation error.

6.3 Effects of Event Complexity
Increasing event complexity:For this experiment, we generated

complex event specifications using all the operator types and varied
the number of operators in an expression from 1 to 7. Each operator
was given 2 or 3 subevents with equal probability and a window of
size 2.5. In figure 5(a), we provide the average event detection costs
for the complex events that have approximately the same number of
occurrences (as shown by the minimum transmission factor curve)
for low, medium and high latency values (latencies depend on the
number of operators in a complex event, and represent the variety of
the latency spectrum). We can see that the cost does not depend on
the number of operators in the expression but instead depends on the
occurrence frequency of the complex event.

Dynamic programming vs. heuristic plan generation: Using
the same settings with the previous experiment, we compare the av-
erage event detection costs of heuristic and DP plan generation algo-
rithms (figure 5(b)). The results show that the heuristic method per-
forms, on average, very close to the dynamic programming method.
The error bars indicate the standard deviation of the difference be-

tween the two cost values.
Selective hierarchical plan propagation:In this experiment, we

analyze the effects of the parameterk, which limits the number of
plans propagated by operator nodes to their parents during hierarchi-
cal plan generation (see section 3.2.1). We defined complex events
using exclusivelyand operators, each with a fixed window size of
2.5, and together forming a complete binary tree of height 4. We
consider the following strategies for pickingk plans from the set of
all plans produced by an operator:

• random selection: randomly selectk plans from all plans.
• minimum latency: pick thek plans with minimum latency.
• minimum cost: pick thek plans with minimum cost.
• balance cost and latency: represent each plan in theℜ2 (cost,

latency) space, then pick thek plans with minimum length pro-
jections to thecost = latency line.

• mixture : pick k/3 plans using the minimum latency strategy,
k/3 using the minimum cost strategy and the otherk/3 plans
using the balanced strategy.

The average cost of event detection for each strategy with different
k values are given in figure 5(c) in which DP is used. Greater val-
ues ofk generally means reduced cost since increasing the value ofk
helps us get closer to the optimal solution. The mixture and the mini-
mum cost strategies perform similarly and approach the optimal plan
even for low values ofk. However, the minimum cost strategy does
not guarantee finding a feasible plan for each complex event since it
does not take the plan latency into account during plan generation.
On the other hand, the mixture strategy will find the feasible plans if
they exist since it always considers the minimum latency plans.

We repeated the same experiment with the heuristic plan gener-
ation method using the mixture strategy (figure 5(d)). Results are
similar to the DP case; however, the heuristic algorithm, unlike the
DP algorithm, does not produce the set of all pareto optimal plans.
Moreover, the size of the plan space explored by the heuristic algo-
rithm depends on the number of moves it can make without reaching
a point where no more moves are available. Therefore, even when
the value ofk is unlimited, the heuristic method does not guarantee
optimal solutions, which is not the case with the DP approach.

1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of operators

tr
an

sm
is

si
on

 fa
ct

or
low latency

medium latency

high latency

heuristic alg.
min. transmission
factor

(a) Increasing the #operators

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of operators

tr
an

sm
is

si
on

 fa
ct

or

low latency

medium latency

high latency

heuristic alg.
dynamic prog.
min. transmission
factor

(b) DP vs. heuristic planning

2 3 4 5 6 7 10 15 30 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

k

tr
an

sm
is

si
on

 fa
ct

or

min. latency
min. cost
balanced
mixture
random

(c) Plan selection methods

1 2 3 4 5 6 7 10 15 30 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

k

tr
an

sm
is

si
on

 fa
ct

or

mean cost
mean − std. dev
mean + std. dev
sample costs

(d) Selective plan propagation

lower same higher very high
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shared event frequency

tr
an

sm
is

si
on

 fa
ct

or

w/o sharing optimization
with sharing optimization
push−based system

(e) Leveraging sharing

250 500 1250
0

0.05

0.1

0.15

0.2

0.25

minimum node speed (KBps)

tr
an

sm
is

si
on

 fa
ct

or

plan based monitoring

(f) Load spike event

500 1000 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

minimum cluster speed (KBps)

tr
an

sm
is

si
on

 fa
ct

or

plan based monitoring

(g) Suspicious activity event

total
traffic
(MB)

1000

2000

500 58.8%

44.2%

36.2% 53.3

65.1

86.6

speed (KBps)
cluster transmission

factor

minimum message

(h) Network traffic mapping

Figure 5: Event complexity, shared optimization, plan generation and PlanetLab experiments

6.4 Effects of Event Sharing
To quantify the potential benefits of leveraging shared subevents

across multiple complex events, we generated two complex events
with a common subevent tree and compared the performance with
and without shared optimization. Each complex event has3 and op-
erators, one of which is shared. There is a total of6 primitive events,
2 of which are common to both complex events. In the experiment,
we varied the frequency of the complex event that corresponds to the
shared subtree. In Figure 5(e), we see that when the frequency of the
shared part is low, leveraging sharing does not lead to a noteworthy
improvement since the shared part is chosen to be monitored earlier
in both cases anyway. When the frequency of the shared part is the
same with or slightly higher than the non-shared parts, the latter are
monitored earlier without sharing optimization. In this case, shared
optimization reduces the cost by monitoring the shared part first. Fi-
nally, when the shared part has very high frequency, non-shared parts
are monitored first in both cases.

6.5 Experiments with the PlanetLab Data Set
The PlanetLab data set we used consists of 5 hours of network logs

(1pm-6pm on 6/10/2007) for 49 PlanetLab nodes [20]. The logs pro-
vide aggregated information on network connections between Plan-
etLab nodes and other nodes on the Internet. For each connection,
indicated by source and destination IP/port pairs, the information in-
cludes the start and end times, the amount of generated traffic and the
network protocol used. We experimented with a variety of complex
events commonly used in network monitoring applications. Here, we
present the results for two representative complex events.

Capturing load spikes: We define a PlanetLab node as (i)idle if
its average network bandwidth consumption (incoming and outgoing)
within the last minute is less than125KBps and as (ii)active if the
average speed is greater than a thresholdT . Thespikeevent monitors
for the following overall network load change: the event that more
than half of all nodes are idle, followed by the event that more than
half is active within a specified time interval. Thus, the complex event
is defined asseq(count(idle)> %50 of all nodes, count(active)>
%50 of all nodes; w=30min). Note here that thecountoperator is
evaluated in an entirely push-based manner and thus does not affect
plan generation or execution. The results are provided in Figure 5(f)
for T = 250, 500, and 1250 KBps. We see substantial savings that
range from 75% to 97%. For this complex event, our system chooses
to monitor the active nodes first, and upon detection of the event that

more than half of the nodes are active it queries the event sources for
the event that most nodes were idle in the past 30 minutes.

Active-diverse clusters:Here, we use a complex event (Figure 6)
inspired by Snort rules [22]. The basic idea is to identify a cluster
of machines that exhibit high traffic activity (active) through a large
number of connections (diverse) within a time window.

We define a cluster to be a set of machines from the same/8 IP
class. Adiverse clusteris defined as a cluster with more than C=500
connections to PlanetLab nodes within the last minute (multiple con-
nections from the same IP address are counted distinctly). To spec-
ify this complex event we first define alocally diverse clusterevent
which monitors the event that a PlanetLab node has more thanC

N=49

connections with a cluster. The diverse cluster complex event is spec-
ified assum(conns)> C group by cluster. Then, it isand’ed with the
locally diverse cluster event which acts as a prerequisite for the di-
verse cluster event and helps reduce monitoring cost. Next, using the
diverse cluster event, we define theunexpected diverse clusterevent
as the diverse cluster event preceded by no occurrences of the event
that the same cluster has more than C/2 connections within the last 5
minutes. Moreover, we define the active cluster event, similar to the
diverse cluster event, but thresholding on the network traffic instead
of the connections. Finally, we define the top level complex event as
theand of the active cluster and unexpected diverse cluster events.

Figure 5(g) shows the event transmission factors for three cluster
speed threshold values. In all cases, we observe significant savings
that increase with increasing thresholds. The primary reason for this
behavior is that the active cluster complex event and its subevents
become less likely to happen as we increase the threshold, thereby
yielding increasingly more savings for our plan-based approach. In
figure 5(h), we provide the actual network costs by assuming a fully-
connected TCP mesh with a fixed packet size of 1500 bytes, the max-
imum possible for a TCP packet. The cost for our system is still much
lower than the cost of a push-based system despite the existence of
the pull requests. Moreover, the results overestimate the cost of our
system as event messages and pull requests are much smaller than the
fixed packet size. Finally, we note that a more sophisticated imple-
mentation can use more efficient pull-request distribution techniques
(e.g., an overlay tree) to significantly reduce these extra pull costs.

7. RELATED WORK
In continuous query processing systems such as TinyDB [2] for

wireless sensor networks, and Borealis [17] for stream processing

AND

AND

SEQ

Unexpected
Diverse Cluster

AND

Base
Node

Planetlab
Nodes

sum(conns) group
by cluster

sum(conns) group
by cluster

sum(speed) > T
group by cluster

sum(conns) > C/2
group by cluster

Cluster
Locally Active Locally Diverse

Cluster

by cluster
sum(speed) group

sum(conns) > C
group by cluster

Active/Diverse Cluster

Active Cluster Diverse Cluster

!

Figure 6: Active/Diverse cluster event specification

applications queries are expected to constantly produce results. Push
based data transfer, either to a fixed node or to an arbitrary location in
a decentralized structure, is characteristic of such continuous query
processing systems. On the other hand, event detection systems are
expected to be silent as long as no events of interest occur. The aim
in event systems is not continuous processing of the data, but is the
detection of events of interest.

In the active database community, ECA (event-condition-action)
rules have been studied for building triggers [8]. Triggers offer the
event detection functionality through which database applications can
subscribe to in-database events, e.g. the insertion of a tuple. How-
ever, most in-database events are simple whereas more complex events
could be defined in the environments we consider. Many active database
systems such as Samos [4], Ode Active Database [5], and Sentinel [6]
have been produced as the results of the studies in the active database
area. Most systems provide their own event languages. These lan-
guages form the base of the event operators in our system.

In the join ordering problem, query optimizers try to find order-
ing of relations for which intermediate result sizes are minimized
[21]. Most query optimizers only consider the orders corresponding
to left-deep binary trees mainly for two reasons: (1) Available join
algorithms such as nested-loop joins tend to work well with left-deep
trees, and (2) Number of possible left-deep trees is large but not as
large as number of all trees. Our problem of constructing minimum
cost monitoring plans is different from the join ordering problem for
the following reasons. First, we are not limited to binary trees since
multiple event types can be monitored in parallel. Second, our cost
metric is the expected number of events sent to base. Finally, we have
an additional latency constraint further limiting the solution space.

In high performance complex event processing [7], optimization
methods for efficient event processing are described. There the aim
is to reduce processing cost at the base station where all the data
is assumed to be available. While our system also helps reduce the
processing cost, our main goal is to minimize the network traffic. As
such, our work can be considered orthogonal to that work and the
integration of both approaches is possible.

Event processing has also been considered in event middleware
systems which are extensions to the publish/subscribe systems. In
Hermes [3], a complex event detection module has been implemented
and an event language based on regular expressions is described. De-
centralized event detection is also discussed. However, plan-based
event detection is not considered. In [16], authors describe model
based approximate querying techniques for sensor networks. Simi-
lar to our work, plan based approaches to data collection has been
considered for network efficiency. Authors also discuss confidence
based results and consider dependencies between sensor readings.

Previous literature on multi-query optimization focuses on efficient
execution of a given set of queries by exploiting common subex-
pressions. Studies include efficient detection of sharing opportunities
across queries [12], and search algorithms for finding efficient query

execution plans that materialize the common intermediate results for
reuse [11]. Our shared optimization extensions build on similar tech-
niques while the goal is to improve communication efficiency.

8. CONCLUSIONS AND FUTURE WORK
CED is a critical capability for emerging monitoring applications.

While earlier work mainly focused on optimizing processing require-
ments, our effort is towards optimizing communication needs using
a plan-based approach when distributed sources are involved. To our
knowledge, we are the first to explore cost-based planning for CED.

Our results, based on both artificial and real-world data, show that
communication requirements can be substantially reduced by using
plans that exploit temporal constraints among events and statistical
event models. Specifically, the big benefits came from a novel multi-
step planning technique that enabled “just-enough” monitoring of
events. We believe some of the techniques we introduced can be
applied to CED on even centralized disk-based systems (i.e., to avoid
pulling all primitive events from the disk)

CED is a rich research area with many open problems. Our imme-
diate work will explore probabilistic plans for sensor-based applica-
tions and augmenting manual event specifications with learning.

9. REFERENCES
[1] Eric N. Hanson, et al. Scalable Trigger Processing. ICDE 1999.
[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

Tinydb. TODS 2005.
[3] Peter R. Pietzuch. ”Hermes: A Scalable Event-Based

Middleware”. Ph.D. Thesis, University of Cambridge, 2004.
[4] S. Gatziu and K. R. Dittrich. Detecting composite events in

active database systems using petri nets. In Proc. 4. Intl.
Workshop on Research Issues in Data Engineering, 1994.

[5] S. Chakravarthy, et al. Composite Events for Active Databases:
Semantics, Contexts and Detection, VLDB 1994.

[6] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event
Specification Language for Active Databases. Data and
Knowledge Engineering, 14(10):1–26, 1994.

[7] Eugene Wu, et al. High-Performance Complex Event
Processing over Streams. SIGMOD 2006

[8] N. Paton and O. Diaz, ’Active Database Systems’, ACM
Comp. Surveys, Vol. 31, No. 1, 1999.

[9] Zimmer, D. and Unland, R. On the Semantics of Complex
Events in Active Database Management Systems. ICDE’99.

[10] The Power of Events. David Luckham, May 2002.
[11] Sellis, T. K. Multiple-query optimization. TODS Mar. 1988.
[12] Zhou, J., et al. Efficient exploitation of similar subexpressions

for query processing. SIGMOD’07.
[13] Pattern Recognition and Machine Learning. Bishop,

Christopher M. 2006, ISBN: 978-0-387-31073-2.
[14] Combinatorial optimization: algorithms and complexity.

Christos H. Papadimitriou, Kenneth Steiglitz. 1998.
[15] S. V. Amaria and R. B. Misra, Closed-form expressions for

distribution of sum of exponential random variables, IEEE
Trans. Reliability, vol. 46, no. 4, pp. 519-522, Dec. 1997.

[16] Amol Deshpande, et al. Model-based approximate querying in
sensor networks. VLDB J. 14(4): 417-443 (2005)

[17] Daniel Abadi, et al. The Design of the Borealis Stream
Processing Engine. CIDR’05.

[18] S. Chandrasekaran, et al. TelegraphCQ: Continuous Dataflow
Processing. In ACM SIGMOD Conference, June 2003.

[19] R. Motwani, et al. Query Processing, Approximation, and
Resource Management in a Data Stream Management System.
In CIDR Conference, January 2003.

[20] http://planetflow.planet-lab.org
[21] Selinger, P. G., et al. 1979. Access path selection in a relational

database management system. SIGMOD ’79.
[22] SNORT Network Intrusion Detection. http://www.snort.org
[23] S. Li, et al. Event Detection Services Using Data Service

Middleware in Distributed Sensor Networks. IPSN 2003.

