PRECISION AND RECALL FOR RANGE-BASED ANOMALY DETECTION

Tae Jun Lee (Microsoft), Justin Gottschlich (Intel Labs), Nesime Tatbul (Intel Labs and MIT), Eric Metcalf (Brown University), Stan Zdonik (Brown University)

The Problem

- Anomaly detection (AD) is the process of finding patterns that do not conform to expected behavior.
- Time series anomalies occur over a range of time. Time bias is domain-specific.
- Goal: To design a model for evaluating, ranking, comparing the classification accuracy of time series AD algorithms.

Point-based Anomalies

Range-based Anomalies

partial overlap

Domain-specific Time Bias

The Solution

Range-based Recall

$$\begin{aligned} Recall_{T}(R,P) &= \frac{\sum_{i=1}^{N_{r}} Recall_{T}(R_{i},P)}{N_{r}} \\ Recall_{T}(R_{i},P) &= \alpha * Existence Reward(R_{i},P) + \beta * Overlap Reward(R_{i},P) \\ & \bullet \\ Existence Reward(R_{i},P) &= \begin{cases} 1 & , \text{if } \sum_{j=1}^{N_{p}} |R_{i} \cap P_{j}| \geq 1 \\ 0 & , \text{ otherwise} \end{cases} \\ Overlap Reward(R_{i},P) &= Cardinality Factor(R_{i},P) * \sum_{j=1}^{N_{p}} \omega(R_{i},R_{i} \cap P_{j},\delta) \end{aligned}$$

Notation	Description
R	set of real anomaly ranges
Ri	the i th real anomaly range
P	set of predicted anomaly ranges
Pj	the j th predicted anomaly range
Nr	number of real anomaly ranges
Np	number of predicted anomaly ranges
α	relative weight of existence reward

ω () Example:

]	function ω (AnomalyRange, OverlapSet, δ)
1	MyValue $\leftarrow 0$
	MaxValue $\leftarrow 0$
	AnomalyLength <pre></pre>
	<pre>for i ← 1, AnomalyLength do</pre>
	Bias $\leftarrow \delta(i, AnomalyLength)$
1	MaxValue
	<pre>if AnomalyRange[i] in OverlapSet then</pre>
	MyValue ← MyValue + Bias
	return MyValue /MaxValue

Range-based Precision

relative weight of overlap reward β overlap cardinality function **Y**() overlap size function $\omega()$ δ() positional bias function Customizable weights & functions

cuin ny varue/narvarue

δ () Examples:

function $\delta(i, AnomalyLength)$ (flat) return 1 function $\delta(i, AnomalyLength)$ return AnomalyLength - i + 1 (front-end)

Our model subsumes the classical point-based model, when: all R_i and P_j are represented as unit-size ranges, and • $\alpha = 0, \beta = 1, \gamma() = 1, \omega()$ is as defined above, and $\delta()$ is flat.

Experimental Results

Our Model vs. the Classical Point-based Model Our Model vs. the Numenta Scoring Model Datasets with labels: ■ Recall_Classical □ Recall_T_Classical ■ Recall_T_Flat □ Recall_T_Front 図 Recall_T_Back 図 Recall_T_Middle 1.0000 Real: NAB Data Corpus¹ ■ Numenta_Standard ■ F1_T 1.0000 0.8000 – Synthetic: Paranom Tool² 0.9000 0.6000 0.8000 0.4000 Time series AD system: 5 0.7000 Sco 0.2000 LSTM on TensorFlow 0.6000

Our range-based metrics can be computed efficiently (see paper for cost analysis).

¹ Numenta Anomaly Benchmark (NAB): https://github.com/numenta/NAB/ ² Paranom: https://arxiv.org/abs/1801.03164/

Conclusion

- Our new accuracy model for time series AD is expressive, flexible, and extensible.
- Ongoing work includes:
 - developing new ML training strategies optimized for our model (see Greenhouse [SysML'18])
 - applying our model on real-world use cases (e.g., **autonomous driving**)
 - creating an open-source **benchmarking suite** for time series AD

