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The Problem

= Anomaly detection (AD) is the process of finding patterns that do not conform to expected behavior.
* Time series anomalies occur over a range of time. Time bias is domain-specific.
* Goal: To design a model for evaluating, ranking, comparing the classification accuracy of time series AD algorithms.
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Experimental Results

Our Model vs. the Classical Point-based Model Our Model vs. the Numenta Scoring Model
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= Datasets with labels:
— Real: NAB Data Corpus’
— Synthetic: Paranom Tool?
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Range-based recall subsumes classical point-based recall Our model can be tuned to mimic Numenta
and is sensitive to positional bias. as well as catching additional intricacies.

Conclusion

= OQur new accuracy model for time series AD is expressive, flexible, and extensible.

» Ongoing work includes:
— developing new ML training strategies optimized for our model (see Greenhouse [SysML'18])
— applying our model on real-world use cases (e.g., autonomous driving)
— creating an open-source benchmarking suite for time series AD




