ORA: A Data Stream Management System

I, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun, J. Hwang, A. Maskey, A. Rasin, J. Salz,
N. Tatbul, R. Tibbets, Y. Xing, R.Yan, S. Zdonik

A. Singer, M. Stonebraker,

A Brandeis, Brown, MIT Production (http://www.cs.brown.edu/research/aurora)

Stream-based Monitoring Applications

* Monitoring applications:
- A new class of apps that require timely processing of large volumes of
continuous data streams
- E.g., tracking/monitoring services, financial analysis, sensor networks
- Traditional DB models are inherently ill suited for these apps
 Pull- vs. push-based architecture
* Real-time response requirements
+ Time-series data
+ Approximate answers

* Aurora is a data-stream processing system that is being
designed and implemented to support stream-based
monitoring applications

Aurora from 30,000 Eeet
“_D s
“ = Tlg_;,s

-1

* Applications provide:
- Queries over input data streams
- Quality-of-Service (QoS) specifications
(specifies the utility of partial or late results)

Aurora from 100 Keet

""’ _¢—'Wumm*r*** App QoS
- g

"r:u L-rf......J—» A;Jp 008

R i

> App QoS

S

*Boxes —> operators

*Arcs — tuple queues
- can be made persistent via connection points (i)
° queries can access historical data through connection points

. .
Quality-of=Service
Il cooee N - 1 ===
N S~ P
\ N ! \
© \ (7] Sy (7] 0
| 1
8’ \\ C°7 N 8‘ 1 0
\ \ ==d Loc
\ \
\
® . 0 0
delay Ytuples delivered Output tuple value

* Per-app QoS specs describe the utility of “imperfect” query
results:
- Delay-based (specify utility of “late” results)
- Delivery-based (specify utility of “partial” results)
* QoS drives all resource/data management decisions
- CPU scheduling, storage management, and load shedding, ...

Run-1ime Architecture

inputs i foutputs

Storage Manager Router ...
I amman) :
=
: Scheduler @
g 1T 1] -
Buffer o
/_%\ i \
1
(Featonbe) Thread pool
Gy 111 T]
q.
2 —vE\:I:\:D QoS
. Monitor
L"—‘—‘—‘—U"/ Load Shedder

Graphical User Interface

Operator Scheduling

= Goal: “Minimize per-tuple processing overhead”

E !\B<A(z)>HB<A(v)>HB<A<x»\

Default Operation: |:| = Context Switch

* Overhead reduction via “batching’ (aka trains):

Tuple [EXEYE | EXN EXE)!
Batching:

Operator I [AGy.] [B(A@.AW.AM)]
Batching: 2

ICoad Shedding

= Drop access load (i.e., tuples) when the system gets overloaded

- Insert drop operators (§l) such that excess load is shed with
minimum drop in the perceived QoS

—fs o6 - bggs
- d
wle

W

S

Randomized Drop Semantic Drop
» Two types of drop

operators:

Drop ilter —
||- random(k %) |t II‘ Precicate(value)

Data Stream

Monitoring Sirfle node
urora

Apps

