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Stream-based Monitoring Applications

* Monitoring applications:
- A new class of apps that require timely processing of large volumes of
continuous data streams
- E.g., tracking/monitoring services, financial analysis, sensor networks
- Traditional DB models are inherently ill suited for these apps
 Pull- vs. push-based architecture
* Real-time response requirements
+ Time-series data
+ Approximate answers

* Aurora is a data-stream processing system that is being
designed and implemented to support stream-based
monitoring applications
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* Applications provide:
- Queries over input data streams
- Quality-of-Service (QoS) specifications
(specifies the utility of partial or late results)
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*Boxes —> operators

*Arcs — tuple queues
- can be made persistent via connection points (i)
° queries can access historical data through connection points
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* Per-app QoS specs describe the utility of “imperfect” query
results:
- Delay-based (specify utility of “late” results)
- Delivery-based (specify utility of “partial” results)
* QoS drives all resource/data management decisions
- CPU scheduling, storage management, and load shedding, ...
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Graphical User Interface

Operator Scheduling

= Goal: “Minimize per-tuple processing overhead”
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Default Operation: |:| = Context Switch

* Overhead reduction via “batching’ (aka trains):
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ICoad Shedding

= Drop access load (i.e., tuples) when the system gets overloaded

- Insert drop operators (§l) such that excess load is shed with
minimum drop in the perceived QoS
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