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The	IoT	Era	



Tradi*onal	Data	Inges*on	(ETL)	

DATA	
WAREHOUSE	

FLAT	
FILES	

STAGING	 OLAP/STORAGE	

D
AT

A
 S

O
U

RC
ES

EXTRACT	 LOAD	

INTERMEDIATE	
RESULTS	

DATA	CLEANING	

TRANSFORM	

DATA	
NORMALIZATION	

INTERMEDIATE	
RESULTS	

3	



An	Example:	TPC-DI	
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hWp://www.tpc.org/tpcdi/	
Poess	et	al,	VLDB	2014	

•  Brokerage	firm	
•  6	heterogeneous	sources	
•  3	key	parts:	
1.  Ingest	raw	data	
2.  ETL	transform	
3.  Update	warehouse	



An	Example:	TPC-DI	
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hWp://www.tpc.org/tpcdi/	
Poess	et	al,	VLDB	2014.	

•  Brokerage	firm	
•  6	heterogeneous	sources	
•  3	key	parts:	
1.  Ingest	raw	data	
2.  ETL	transform	
3.  Update	warehouse	
ü  Data	collected	into	flat	files	
ü  Heterogeneous	data	types	
ü  Incremental	update	from	an	

OLTP	source,	once	a	day	



An	Example:	TPC-DI	
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hWp://www.tpc.org/tpcdi/	
Poess	et	al,	VLDB	2014.	

•  Brokerage	firm	
•  6	heterogeneous	sources	
•  3	key	parts:	
1.  Ingest	raw	data	
2.  ETL	transform	
3.  Update	warehouse	
ü  Storage	for	intermediate	results	
ü  Transac*onal	state	management	



An	Example:	TPC-DI	
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hWp://www.tpc.org/tpcdi/	
Poess	et	al,	VLDB	2014.	

•  Brokerage	firm	
•  6	heterogeneous	sources	
•  3	key	parts:	
1.  Ingest	raw	data	
2.  ETL	transform	
3.  Update	warehouse	

ü  Bulk	loading	



Streaming	Data	Inges*on	
•  In	modern	apps	such	as	IoT:	
–  real-*me	streams	of	data	from	a	large	number	of	sources	
–  majority	of	these	sources	report	in	the	form	of	*me-series	
–  data	currency	&	low	latency	is	key	for	real-*me	decision	
making	&	control	

ü Need	a	stream-based	inges*on	architecture	
ü Must	pay	aWen*on	to	*me-series	data	type	and	
opera*ons	(both	during	inges*on	&	analy*cs)	
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An	Architecture	for	Streaming	Data	Inges*on	
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•  A	hybrid	system	for	transac*on	&	stream	processing	
–  combines	main-memory	OLTP	with	streaming	constructs	
(windowing,	triggers,	dataflow	graphs)	

•  Transac*ons	as	user-defined	stored	procedures	(Java	+	SQL)	
•  Three	complementary	correctness	guarantees	
–  ACID,	for	individual	transac*ons	
–  Ordered	execu8on,	for	streams	and	dataflow	graphs	
–  Exactly-once	processing,	for	streams	(no	loss	or	duplicates	due	
to	failures/recovery)	
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-Store :	Shared	Mutable	State	in	Streaming	



Example:	A	TPC-DI	Dataflow	Graph	in	S-Store	
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Example:	A	TPC-DI	Dataflow	Graph	in	S-Store	
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Example:	A	TPC-DI	Dataflow	Graph	in	S-Store	
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Data	Migrator	
•  Provides	durable	migra*on	into	the	data	warehouse	
using	an	ack	mechanism	that	simulates	2PC	

•  Leverages	the	BigDAWG	polystore	middleware	(see	
Session	4)		
–  can	support	a	variety	of	des*na*on	warehouses	
–  can	par*cipate	in	federated	querying	

•  Supports	both	“push”	and	“pull”	modes	

17	



TPC-DI	Experiment:	Push	vs.	Pull	Tradeoffs	

•  How	omen	to	migrate?	Push	or	pull?	
•  Impacts:	
– Maximum	ingest	latency	in	S-Store	
–  Query	execu*on	*me	in	Postgres	
–  Staleness	of	the	query	results	in	Postgres	

•  Result	summary:	Push	in	small	batches,	every	1-5	
seconds.	Fine-grained	inges*on	performs	well.	
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Ongoing	Work	
•  Time-series	data	management	(inges*on	&	beyond)	
– New	inges*on	challenges	and	opportuni*es	(e.g.,	
synchroniza*on/alignment	of	*me-series,	using	predic*ve	
techniques	for	dealing	with	missing/delayed	values)		

– Append-based	updates,	window-based	reads	
– Need	to	support	complex	analy*cs	opera*ons	(forecas*ng/
predic*on,	paWern	matching,	anomaly	detec*on,	signal	
processing)	

–  Exploit	the	resources	on	edge	devices	
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