

Nesime Tatbul (Intel Labs and MIT), Tae Jun Lee (Microsoft), Stan Zdonik (Brown University), Mejbah Alam (Intel Labs), Justin Gottschlich (Intel Labs)

PROBLEM

Time Series Anomaly Detection

- •Anomalies are patterns that do not conform to expected behavior.
- Time series anomalies are range based, i.e., they occur over a period of time.
- Detecting and mitigating anomalies can be safety critical.

Application Diversity

• Applications of anomaly detection are numerous and diverse.

Autonomous Driving

ghwav and Traffic Safety Administration (NHTSA)

There are domain-specific preferences.

- Cancer detection, Real-time systems: Early response, Avoid FN!
- Robotic defense systems: Delayed response, Avoid FP!
- Emergency braking: Neither too early nor too late, Avoid FN!

Point-based vs. Range-based Anomalies

- Prior work: Classical model, Numenta model, Activity recognition metrics
- Lack of support for partial detection and flexible time bias

How to Measure Accuracy?

PRECISION AND RECALL FOR TIME SERIES

SOLUTION

Range-based Precision and Recall

Notation	Description
R, R_i	set of real anomaly ranges, the i^{th} real anomaly
P, P_j	set of predicted anomaly ranges, the j^{th} pred
N, N_r, N_p	number of all points, number of real anomaly
α	relative weight of existence reward
$\gamma(), \omega(), \delta()$	overlap cardinality function, overlap size fun

 $Recall_T(R,P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i,P)}{\sum_{i=1}^{N_r} Recall_T(R_i,P)}$

 $Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P)$ $ExistenceReward(R_i, P) = \begin{cases} 1, \text{ if } \sum_{j=1}^{N_p} |R_i \cap P_j| \\ 0, \text{ otherwise} \end{cases}$

 $OverlapReward(R_i, P) = CardinalityFactor(R_i)$

 $CardinalityFactor(R_i, P) = \langle$ $\gamma(R_i, P)$, otherwise

 $Precision_T(R, P) = \frac{\sum_{i=1}^{N_p} Precision_T(R, P_i)}{\cdots}$

 $Precision_T(R, P_i) = CardinalityFactor(P_i, R) * \sum \omega(P_i, P_i \cap R_j, \delta)$

Our model subsumes the classical point-based model, when: - all ranges are represented as unit-size ranges, and $-\alpha = 0, \gamma() = 1, \omega()$ is as below, and $\delta() =$ Flat.

Customization Examples

Overlap Size Function

function ω (AnomalyRange, OverlapSet, δ)	
MyValue $\leftarrow 0$	
MaxValue $\leftarrow 0$	
AnomalyLength ← length (AnomalyRange)	
for $i \leftarrow 1$, AnomalyLength do	
Bias $\leftarrow \delta(i, AnomalyLength)$	
MaxValue	
if AnomalyRange[i] in OverlapSet then	
MyValue ← MyValue + Bias	
return MyValue/MaxValue	

Cancer Detection: • Set $\delta()$ = Front-end, $\beta = 2$

Robotic Defense: • Set δ () = Back-end, β = 0.5

Customizable Precision and Recall

aly range icted anomaly range ranges, number of predicted anomaly ranges ction, positional bias function

$$+(1-\alpha) \times OverlapReward(R_i, P)$$
 ≥ 1

$$_{i},P) \times \sum_{j=1}^{N_{p}} \omega(R_{i},R_{i} \cap P_{j},\delta)$$

, if R_i overlaps with at most one $P_j \in P$

Positional Bias Function function $\delta(i, AnomalyLength)$ ▷ Flat bias return function $\delta(i, AnomalyLength)$ Front-end bias return AnomalyLength - i + 1 function $\delta(i, AnomalyLength)$ Back-end bias ▷ Middle bias

function $\delta(i, AnomalyLength)$ if $i \leq AnomalyLength/2$ then return i return AnomalyLength - i + 1

> **Emergency Braking:** • Set $\delta()$ = Middle, β = 1.5

Comparison to Numenta Model

- Our model can:
- mimic Numenta by setting δ () = Front-end.
- catch additional intricacies.
- Results are similar for all Numenta app profiles.

RESULTS

☑ Recall_T_Middle

• Our model:

- subsumes the classical model.
- is sensitive to positional bias.
- Results are similar for Precision and F-Score.

Multiple Anomaly Detectors

- Our model is more effective in:
 - evaluating multiple anomaly detectors.
 - capturing subtleties in data.
- Results are similar for other datasets.

Future Directions

Exploring use in other time series classification tasks and applications

More Information

Watch: https://www.youtube.com/watch?v=K5f-dUBiQP4 Read: https://arxiv.org/abs/1803.03639/ **Use:** https://github.com/IntelLabs/TSAD-Evaluator/

Expressive, Flexible, Extensible