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Motivation: Time Series Anomaly Detection

= Anomaly: Patterns that do not conform to expected behavior.
= Anomalies can have critical impact: loss of life, property damage, monetary loss, ...

= Applications of anomaly detection (AD) are numerous and diverse.
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Motivation: Range-based Anomalies

= Time series anomalies are range based, i.e., they occur over a period of time.

Atrial Premature Contraction
anomaly in human ECG

* There are domain-specific application preferences.

— Cancer detection, Real-time systems:

— Early response; Avoid false negatives!

— Robotic defense systems:

— Delayed response; Avoid false positives! NI __________ _____ __________ __________

— Emergency braking in self-driving cars: S e e ee e
Source: Chandola et al., “Anomaly Detection: A Survey”,
| ACM Computing Surveys, 41(3), 2009.

— Neither too early nor too late; Avoid false negatives




Problem: How to Measure Accuracy?
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Point-based Anomalies
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Recall =TP <+ (TP + FN)

Range-based Anomalies
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= Must express partial detection
= Must support flexible time bias



State of the Art

= Classical Precision and Recall Fo= (14 §7) x Trecision X Recall
5 =

(B? X Precision) + Recall

— Point-based anomalies o N
[ relative importance of Recall to Precision

— Precision penalizes FP, Recall penalizes FN | # = 1:evenly weighted (harmonic mean)
[ = 2:weights Recall higher (i.e., no FN!)

— FB-SCO re to combine and Weight them [ = 0.5: weights Precision higher (i.e., no FP!)

= Numenta Anomaly Benchmark (NAB) 2]
— Point-based anomalies
— Focuses specifically on early detection use cases &‘ Numenta
— Difficult to use in practice (irregularities, ambiguities, magic numbers) [3]

= Activity recognition metrics

— No support for flexible time bias

[2] Lavin and Ahmad, “Evaluating Real-Time Anomaly Detection Algorithms — The Numenta Anomaly Benchmark”, IEEE ICMLA, 2015.

[3] Singh and Olinsky, “Demistifying Numenta Anomaly Benchmark”, IEEE IJCNN, 2017.



Precision and Recall for Time Series

[ Notation | Description |

R, R; set of real anomaly ranges, the i real anomaly range
P, P; set of predicted anomaly ranges, the ;' predicted anomaly range

1 N. Ny, IV number of all points. number of real anomaly ranges. number of predicted anomaly ranges
CUStOm IZable c: £ relative weight of existence reward
- (). w(), 8() | overlap cardinality function, overlap size function, positional bias function
parameters

- = We extend classical
> ;. Recallr (R;, P) . .
N, Precision and Recall
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Customization Examples

Overlap Size w() Positional Bias &()
function w(AnomalyRange, OverlapSet, 9) function 4(i, AnomalyLength) > Flat bias
MyValue < 0 return |
MaxValue « 0 function 6(i, AnomalyLength) > Front-end bias
AnomalyLength <« length (AnomalyRange) return AnomalyLength-1i +1
for i < 1,AnomalyLength do function §(i, AnomalyLength) > Back-end bias
Bias « d(i,AnomalyLength) return i
if AnomalyRange[i] in OverlapSet then if i StAnor_“alyLength/z then
MyValue < MyValue + Bias elsere NN
return MyValue /MaxValue return AnomalyLength - i + 1
Cancer Detection: Robotic Defense: Emergency Braking:
= Set () = Front-end, 3 = 2 = Set () = Back-end, = 0.5 = Set ()= Middle, § = 1.5

Our model subsumes the classical point-based model, when:
= all ranges are represented as unit-size ranges, and
» a=0, y()=1, w()is as above, and §() = Flat




Selected Experimental Results

Comparison to Classical model Comparison to Numenta model | Multiple Anomaly Detectors
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Our model Our model can Our model is more effective in
» subsumes the classical model = mimic the Numenta model = evaluating multiple detectors
" js sensitive to positional bias = catch additional intricacies = capturing subtleties in data

Please see our paper for details of this experimental study and additional results.
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Key Takeaways

= This work extends the classical Precision and Recall model to time series data.

= We provide tunable parameters to capture domain-specific application
preferences.

= Experiments with diverse datasets and anomaly detectors prove the benefits
of our approach.

= Future work includes:

— designing new training strategies for range-based anomaly detection

— exploring use in other time series classification tasks and applications




More Information

Watch our short video:

https://www.youtube.com/watch?v=K5f-dUBiQP4

Read our paper:

https://arxiv.org/abs/1803.03639/

Download our tool:

https://github.com/IntelLabs/TSAD-Evaluator/

Visit our poster session at NeurlPS'18:

Today at 5:00 - 7:00 PM in Room 210 & 230 AB#116

Thanks to Intel and NSF for funding this research.
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