PRECISION AND RECALL FOR TIME SERIES

Tatbul

Mejbah Justin Alam Gottschlich

intel

Lee

Tae Jun Stan Zdonik

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canada

Motivation: Time Series Anomaly Detection

- Anomaly: Patterns that do not conform to expected behavior.
- Anomalies can have critical impact: loss of life, property damage, monetary loss, ...
- Applications of anomaly detection (AD) are numerous and diverse.

Autonomous Driving

L3+ autonomy

requires robust

AD systems.

Six levels of autonomy:

- LO: No automation
- L1: Driver assistance
- L2: Partial automation
- L3: Conditional automation
- L4: High automation
- L5: Full automation

<u>Source:</u> Society of Automotive Engineers (SAE), National Highway and Traffic Safety Administration (NHTSA)

Source:

http://www.vaccinogeninc.com/oncovax/science-due-diligence/overview-part-1

Cancer Detection

Motivation: Range-based Anomalies

- Time series anomalies are **range based**, i.e., they occur over a period of time.
- There are domain-specific application preferences.
 - Cancer detection, Real-time systems:
 - Early response; Avoid false negatives!
 - Robotic defense systems:
 - Delayed response; Avoid false positives!
 - Emergency braking in self-driving cars:
 - Neither too early nor too late; Avoid false negatives!

Atrial Premature Contraction

<u>Source:</u> Chandola et al., "Anomaly Detection: A Survey", ACM Computing Surveys, 41(3), 2009.

Problem: How to Measure Accuracy?

State of the Art

- Classical Precision and Recall
 - Point-based anomalies
 - Precision penalizes FP, Recall penalizes FN
 - F_{β} -Score to combine and weight them
- Numenta Anomaly Benchmark (NAB) ^[2]
 - Point-based anomalies
 - Focuses specifically on early detection use cases
 - Difficult to use in practice (irregularities, ambiguities, magic numbers)^[3]
- Activity recognition metrics
 - No support for flexible time bias

[2] Lavin and Ahmad, "Evaluating Real-Time Anomaly Detection Algorithms – The Numenta Anomaly Benchmark", IEEE ICMLA, 2015.
 [3] Singh and Olinsky, "Demistifying Numenta Anomaly Benchmark", IEEE IJCNN, 2017.

 $F_{\beta} = (1 + \beta^2) \times \frac{Precision \times Recall}{(\beta^2 \times Precision) + Recall}$

 β : relative importance of Recall to Precision $\beta = 1$: evenly weighted (harmonic mean) $\beta = 2$: weights Recall higher (i.e., no FN!) $\beta = 0.5$: weights Precision higher (i.e., no FP!)

Precision and Recall for Time Series

Customizable parameters

Range-based Recall

 $Recall_T(R, P) = \frac{\sum_{i=1}^{N_r} Recall_T(R_i, P)}{N_r}$ $Recall_T(R_i, P) = \alpha \times ExistenceReward(R_i, P) + (1 - \alpha) \times OverlapReward(R_i, P)$ Existence Reward(R_i, P) = $\begin{cases}
1, \text{ if } \sum_{j=1}^{N_p} |R_i \cap P_j| \ge 1 \\
0, \text{ otherwise}
\end{cases}$ $OverlapReward(R_i, P) = CardinalityFactor(R_i, P) \times \sum_{i=1}^{N_p} \omega(R_i, R_i \cap P_j, \delta)$ $CardinalityFactor(R_i, P) = \begin{cases} 1 & \text{, if } R_i \text{ overlaps with at most one } P_j \in P \\ \gamma(R_i, P), \text{ otherwise} \end{cases}$ $Precision_T(R, P) = \frac{\sum_{i=1}^{N_P} Precision_T(R, P_i)}{N_T}$ $Precision_{T}(R, P_{i}) = CardinalityFactor(P_{i}, R) * \sum_{i}^{N_{r}} \omega(P_{i}, P_{i} \cap R_{j}, \delta)$

set of real anomaly ranges, the i^{th} real anomaly range

relative weight of existence reward

set of predicted anomaly ranges, the j^{th} predicted anomaly range

overlap cardinality function, overlap size function, positional bias function

number of all points, number of real anomaly ranges, number of predicted anomaly ranges

Description

Notation

 R, R_i P, P_i

 N, N_r, N_r

 α

 $\gamma(0, \omega(0, \delta(0)))$

- We extend classical Precision and Recall to measure ranges.
- Our model is:
 - expressive
 - flexible
 - extensible

Range-based Precision

Customization Examples

Overlap Size ω *(*)

Positional Bias δ ()

function ω (AnomalyRange, OverlapSet, δ)	
MyValue $\leftarrow 0$	
MaxValue $\leftarrow 0$	
AnomalyLength ← length (AnomalyRange)	
for $i \leftarrow 1$, AnomalyLength do	
Bias $\leftarrow \delta(i, AnomalyLength)$	
MaxValue	
<pre>if AnomalyRange[i] in OverlapSet then</pre>	
MyValue ← MyValue + Bias	
return MyValue/MaxValue	

function $\delta(i, AnomalyLength)$ return 1	⊳ Flat bias
function $\delta(i, AnomalyLength)$ return AnomalyLength - i + 1	▷ Front-end bias
function $\delta(i, AnomalyLength)$ return i	▷ Back-end bias
function $\delta(i, AnomalyLength)$ if $i \leq AnomalyLength/2$ then	▷ Middle bias
else	
return AnomalyLength - i + 1	

Cancer Detection:

• Set $\delta()$ = Front-end, $\beta = 2$

Robotic Defense: • Set $\delta()$ = Back-end, β = 0.5 **Emergency Braking:** • Set δ () = Middle, β = 1.5

Our model subsumes the classical point-based model, when:

- all ranges are represented as unit-size ranges, and
- $\alpha = 0$, γ ()=1, ω () is as above, and δ () = Flat

Selected Experimental Results

Comparison to Classical model

Recall Classical □ Recall T Classical ■ Recall T Flat ■ Recall T Front ☑ Recall T Back ⊠ Recall T Middle 1.00 0.90 0.80 **Becall Value** 0.70 0.60 0.50 0.40 0.30 0.20 8 0.10 0.00 ECG Space-Shuttle Sine NYC-Taxi Twitter-AAPL Machine-Temp Time-Guided (LSTM-AD) Dataset

subsumes the classical model

is sensitive to positional bias

Our model

Comparison to Numenta model

mimic the Numenta model

catch additional intricacies

Multiple Anomaly Detectors

- evaluating multiple detectors
- capturing subtleties in data

Please see our paper for details of this experimental study and additional results.

Our model can

Key Takeaways

- This work extends the classical Precision and Recall model to time series data.
- We provide tunable parameters to capture domain-specific application preferences.
- Experiments with diverse datasets and anomaly detectors prove the benefits of our approach.
- Future work includes:
 - designing new training strategies for range-based anomaly detection
 - exploring use in other time series classification tasks and applications

More Information

Watch our short video:

https://www.youtube.com/watch?v=K5f-dUBiQP4

Read our paper:

https://arxiv.org/abs/1803.03639/

Download our tool:

https://github.com/IntelLabs/TSAD-Evaluator/

Visit our poster session at NeurIPS'18:

<u>Today</u> at 5:00 - 7:00 PM in Room 210 & 230 AB #116

Thanks to Intel and NSF for funding this research.

