
DejaVu: A Complex Event Processing System
for Pattern Matching over Live and Historical Data Streams

Nihal Dindar, Peter M. Fischer, Nesime Tatbul @ ETH Zurich

MYISAM Storage

…

P
lu

g
g
ab

le
 S

to
ra

g
e

E
n

g
in

e
A

P
I

Archived Stream Storage

Data flow

<Symbol, Price, Volume, Date><StartTime, EndTime>

<„ABB‟, 10.60, 5000, „01/18/2006 9:58:15‟ >, <…>,…

Motivation
• Find patterns on both live and archived data streams

as well as detecting correlations among them

• Use cases: financial data analysis, healthcare

monitoring, supply chain management, etc.

Goals
Design and implement a CEP system that

• detects and correlates patterns

• works over both live and historical events

• provides a uniform declarative query interface

• scales to high throughput for high-volume streams

Push-based Mode & Adaptive Switch
• Execution can adapt between

• push: new data pushed into the Input Holders

• pull: query processor requests data on

demand

• Adaptivity driven by

• query processor load

• queue lengths

Live Stream Storage
• In-memory storage engine for incoming streams

• Support for pull and push modes

Archived Stream Storage
• On-disk storage engine for archived streams

• Append-only, order-preserving, indexes

Recent Input Buffer
• Cache for efficient access to recent stream data

• Bulk inserts into archive stream storage

Live Stream Storage

DejaVu Query Processing Engine
• Extends relational database engine MySQL by

• pattern matching (semantic windows)

• continuous query life cycle

• Pattern expressions composable with SQL

• Automata-based pattern computation

• Optimizations to reduce pattern matching cost

• input sharing

• state minimization

• Supports Pattern Correlation Queries (PCQs)

• formal semantics

• architectural extensions

• cost model and optimizations

Data feeder:

NYSE TAQ Data

SQL-based Uniform Query Language[1]

[1
] A

n
o
n
y

m
o
u

s, “P
attern

 M
atch

in
g
 in

 S
eq

u
en

ces o
f R

o
w

s”,

h
ttp

://ask
to

m
.o

ra
cle.co

m
/tk

y
te/ro

w
-p

a
ttern

-reco
g

n
ito

n
-1

1
-p

u
b

lic.p
d

f , M
arch

 2
0

0
7

.

SELECT symbolL, initPriceL, minPriceL, initPriceA, …

FROM

StockLive MATCH_RECOGNIZE (

PARTITION BY symbol

MEASURES A.symbol AS symbolL, A.price AS initPriceL,

LAST(B.price) AS minPriceL

ONE ROW PER MATCH

AFTER MATCH SKIP TO NEXT ROW

INCREMENTAL MATCH

PATTERN(A B+)

DEFINE /* A matches any row */

B AS (B.price < PREV(B.Price))),

StockArchive MATCH_RECOGNIZE (

…. // Tick-shaped in stock price

WHERE symbolA = symbolL

RECENCY = 7 seconds;

Fall in stock

price

Correlation of live

and archive patterns

Upon detecting a fall in the current

price of stock X on the live stream,

look for a tick-shaped pattern for

X within recent archive.

R
ec

en
t
In

p
u

t
B

u
ff

er

Query Result Cache

• Caches archive matches to avoid re-

computation of archive patterns

• Significant performance benefits when

recency correlation regions overlap

• Size at most linear to the size of the

recency region (fits into memory in most

cases)

Optimizing PCQ Processing
•Cost -model based optimizations,

both architectural and algorithmic:

•pattern computation before live-

archive correlation

•lazy archive pattern computation

•recent input buffering

•query result caching

•join source ordering

•Throughput improvements up to 2

orders of magnitude

Performance on NYSE TAQ Data

DejaVu client
Queries

Results

