DejaVu: A Complex Event Processing System
for Pattern Matching over Live and Historical Data Streams

Systems @ ETH ziricn]]]]]
Nihal Dindar, Peter M. Fischer, Nesime Tatbul @ ETH Zurich
Motivation DejaVVu Query Processing Engine Optimizing PCQ Processing SQL-based Uniform Query Languagel! z
» Find patterns on both live and archived data streams » Extends relational database engine MySQL by *Cost -model based optimizations, ﬁE;EJT symbolL, initPricel., minPriceL., nitPriceA, ... :
as well as detecting correlations among them * pattern matching (semantic windows) both architectural and algorithmic: StockLive MATCH RECOGNIZE (_gi
 Use cases: financial data analysis, healthcare * continuous query life cycle pattern computation before live- PARTITION BY symbol =:
monitoring, supply chain management, etc. » Pattern expressions composable with SQL archive correlation MEASURES ALng;' AS Syg‘go“_—’ PA-_F’”EG AS InitPriceL, ¥
* Automata-based pattern computation *lazy archive pattern computation ONE ROW PER M ,§T£,L'C€) e 33
Goals » Optimizations to reduce pattern matching cost recent input buffering AFTER MATCH SKIP TO NEXT ROW | ;;
Design and implement a CEP system that * Input sharing *query result caching LNACT:$EE£ANE(I>I\TBA+L) MATER i Ef.'(';em ek i
- detects and correlates patterns e state minimization | | *Join source ordering DEFINE /* A matches any row */) g
- works over both live and historical events * Supports Pattern Correlation Queries (PCQs) B AS (B.price < PREV(B.Price))), iz
« provides a uniform declarative query interface » formal semantics *Throughput improvements up to 2 StockArCh/'ﬁi':ﬂ_A;:a%:'d—ﬁ%?EpNﬁ'czeE (:
» scales to high throughput for high-volume streams * architectural extensions orders of magnitude WHERE symbolA = symbolL Correlation of live &
» cost model and optimizations RECENCY = 7 seconds: and archive patterns
Data feeder: < > Live Pattern FSM a QUEI‘IES
NYSE TAQ Data R DeJ a\VVu client
- <Symbol, Price, Volume, Date><StartTime, EndTime> > I_ Live Stream Storage
<‘ABB’, 10.60, 5000, ‘01/18/2006 9:58:15°>, <...>,... > ,_) _
NYSE L . 5 Results
- . = 7 - o o
—] CCD :I: T I K .. E I | Tick-shaped patterns in iCE‘ of archived streams Fall pattern in price f live streams
L o N e T
Upon detecting a fall in the current Archived Stream Storage | _ 2 = e - N Price
- - © a Archive Pattern FSM PAq
price of stock X on the live stream, — —— S = N N ® Stock Tick
look for a tick-shaped pattern for g % ‘ACAA ——
| / X within recent archive. =1 L ‘ within Region
“ 4 ' O Archive Matc
\X4 \ MYISAN Storage S) . Recency Cgrrelation o e---® out;de Regiﬂ:
\ \/ ol SR > (ignored)
S Query Result Cache
| ive Stream Storage Performance on NYSE TAQ Data
* In-memory storage engine for incoming streams 35000 s o i st o
. . . sy, live first. w result cache
>upport for pull and push modes Push-based Mode & Adaptive Switch Query Result Cache o gk SREE A
A vEe] ST S * Execution can adapt between » Caches archive matches to avoid re- g 2s000f
_ _ _ 9 * push: new data pushed into the Input Holders computation of archive patterns S 20000 1A aa s s
» On-disk storage engine for archived streams . : e Ittt S SOV
ardl pull: query processor requests data on . : 5 o 1 :
» Append-only, order-preserving, indexes demand » Significant performance benefits when £ Mm
recency correlation regions overlap £ 10000 A
Recent Input Buffer » Adaptivity driven by * Size at most linear to the size of the 5000 [| A
» Cache for efficient access to recent stream data query processor load recency region (fits into memory in most 0
 Bulk Inserts into archive stream storage » queue lengths cases) P

