
DejaVu: Declarative Pattern Matching over Live and Archived Streams of Events

Nihal Dindar, Barıṣ Güç, Patrick Lau, Aslı Özal, Merve Soner, Nesime Tatbul @ ETH Zurich

Query Processing Engine

Motivation
• The need for finding contiguous patterns on both live and stored data sequences in

Complex Event Processing (CEP) applications such as financial data analysis, supply

chain management, and system monitoring.

• Current solution proposals: Pattern matching over live data streams (e.g., SASE,

Cayuga) OR Pattern matching over sequences of rows in relational tables (e.g., SQL-

TS).

Goal
• To design and implement a scalable complex event processing system that can

seamlessly perform pattern detection over both live AND historical streams of events,

behind a uniform declarative query interface.

SQL-based Query Language*

SELECT notify_theft(tstamp, book_tag)

FROM Books MATCH_RECOGNIZE(

PARTITION BY TagId

MEASURES B.Timestamp AS tstamp,

B.TagId AS book_tag

ONE ROW PER MATCH

AFTER MATCH SKIP PAST LAST ROW

INCREMENTAL MATCH

PATTERN(A B)

DEFINE A AS (A.ReaderId = ‘Shelf’)

B AS (B.ReaderId = ‘Exit’)

);

* Anonymous, “Pattern Matching in Sequences of Rows”, http://asktom.oracle.com/tkyte/row-pattern-recogniton-11-public.pdf, March 2007.

Traditional Table Store

(e.g., MySQL’s MyISAM)

P
lu

g
g

a
b

le S
to

ra
g

e
 E

n
g

in
e A

P
I

Archived Stream Store

Data flow

Control flow

Live Stream Store

DejaVu Query Processing Engine

• DejaVu has been built on the MySQL relational database engine; as such, it

extends MySQL with a number of key capabilities including:

 the ability to process continuous queries over streaming data,

 the ability to process pattern matching queries.

• DejaVu represents each pattern with a Finite State Machine (FSM), which runs

as an integral part of the MySQL query plan.

• Each FSM instance can be at multiple active states at a given time, due to the

inherent non-determinism and/or overlapping semantic windows. In this case,

multiple FSM instances can share input tuples through Input Holders.

• A Router component forwards the relevant tuples to each of the Input Holders in

an efficient manner.

Push or Pull?
• The Query Processing Engine can access the live streams in two alternative

modes:

 Push: By default, each new input event is pushed directly into the

corresponding Input Holders via the Router, in order to feed the Query

Processing Engine.

 Pull: The Query Processing Engine asks for new input events whenever it

is ready to process them via the Router.

• DejaVu adaptively switches from Push to Pull when:

QPE input consumption rate

Store input push rate


Hybrid Queries: Live Streams Archived Streams
Example: Day Trader

SELECT min_tstamp_l, symbol_l, min_price_l,

init_price_a, min_price_a, max_price_a

FROM LiveStock MATCH_RECOGNIZE(

PARTITION BY Symbol

MEASURES A.Symbol AS symbol_l

MIN(B.Timestamp) AS min_tstamp_l,

MIN(B.Price) AS min_price_l

ONE ROW PER MATCH

AFTER MATCH SKIP PAST LAST ROW

INCREMENTAL MATCH

PATTERN (A B+)

DEFINE /* A matches any row */

B AS (B.Price < A.Price AND

B.Price <= PREV(B.Price))

), ArchivedStock MATCH_RECOGNIZE(

PARTITION BY Symbol

MEASURES A.Symbol AS symbol_a,

A.Price AS init_price_a,

MIN(B.Price) AS min_price_a,

LAST(D.Price) AS max_price_a

ONE ROW PER MATCH

AFTER MATCH SKIP PAST LAST ROW

MAXIMAL MATCH

PATTERN (A B+ C* D+)

DEFINE /* A matches any row */

B AS (B.Price < A.Price AND

B.Price <= PREV(B.Price))

C AS (C.Price >= PREV(C.Price) AND

C.Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND

D.Price > A.Price)

)

WHERE symbol_l = symbol_a;

Implementation

• When a pattern is detected on the Live Stream ending at time

t, look for patterns in the Archived Stream which end before

time t.

Optimization

• Patterns previously found on the Archived Stream are stored.

• Next time a new pattern is found on the Live Stream, we only

need to process the Archived Stream starting from the last

processed position.

Live Stream Archived Stream

Live Stream Store
• An in-memory storage engine that accepts push-based inputs.

• Acts like a tuple queue, providing live events into the query processing engine as

they arrive from their sources.

• Used to answer continuous pattern matching queries.

• Can be accessed either in “push mode” or “pull mode”.

Archived Stream Store
• A persistent storage engine where live events can be fully or selectively

materialized for historical access.

• Only allows updates in the form of appends and preserves the data order.

• Used to answer one-time and hybrid pattern matching queries.

• Can also support the live stream store in dealing with bursts and failures.

<TagId, ReaderId, Timestamp>

..., <‘E200 3411 B802 0111 1019 3493’, ‘Exit’, ‘19:4:2’>

<Symbol, Timestamp, Price, Volume>

..., <‘UBS’, ‘01/18/2006 9:58:15’, 10.60, 5000>

Q
u

ery
 P

ro
c
essin

g
 E

n
g

in
e

R
o
u
ter

Symbol Timestamp Price Volume
UBS 11:13:23 34.70 800
UBS 11:13:24 34.80 800
…
UBS 11:13:25 34.82 400
…
UBS 11:13:27 34.79 800
…
UBS 11:23:25 34.83 800
UBS 11:24:19 34.84 2000
UBS 11:24:21 34.82 200
UBS 11:24:47 34.78 100
UBS 11:24:49 34.84 200
UBS 11:24:49 34.85 400
UBS 11:24:54 34.80 500
UBS 11:25:24 34.82 700
UBS 11:26:02 34.83 200
UBS 11:26:04 34.92 100
UBS 11:26:05 34.96 100
UBS 11:26:08 34.95 100
UBS 11:27:27 34.92 200
UBS 11:28:03 34.97 500
UBS 11:28:17 34.97 2300
UBS 11:28:19 34.97 400
...

Symbol Timestamp Price Volume
…
UBS 11:06:19 34.85 2200
UBS 11:06:21 34.83 200
UBS 11:06:47 34.78 100
UBS 11:06:49 34.81 300
UBS 11:06:49 34.87 400
…
UBS 11:23:25 34.83 800
UBS 11:24:19 34.84 2000
UBS 11:24:21 34.82 200
UBS 11:24:47 34.78 100
UBS 11:24:49 34.84 200
UBS 11:24:49 34.85 400
UBS 11:24:54 34.80 500
UBS 11:25:24 34.82 700
UBS 11:26:02 34.83 200
UBS 11:26:04 34.92 100
UBS 11:26:05 34.96 100
UBS 11:26:08 34.95 100
UBS 11:27:27 34.92 200
UBS 11:28:03 34.97 500
UBS 11:28:17 34.97 2300
...

Financial Events (e.g., “tick” shape, …)

Library Events (e.g., Check-in, Check-out, Theft, …)

