Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing

Nesime Tatbul

Uğur Çetintemel Stan Zdonik

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Distributed Stream Processing The Aurora/Borealis System

End-point Applications

Bursty Workload

Data can arrive fast, in unpredictable burstsExample: Network traffic data

Зг

Bursts may create resource bottlenecks: Query processing slows down and results get delayed !

Source: Internet Traffic Archive, http://ita.ee.lbl.gov/

Models and Assumptions

- We focus on CPU as the limited resource.
- Load shedding is achieved by inserting probabilistic drop operators into query plans.
 - Random Drop [VLDB'03], Window Drop [VLDB'06]
 - Approximate result is a **subset** of the original result.
- The goal is to maximize the total weighted query throughput (e.g., [Ayad et al, SIGMOD'04, Amini et al, ICDCS'06]).
- Servers are arranged in a tree-like topology.

Problem formulation for non-linear query plans (i.e., with operator splits and merges) is in the paper.

$0 \le x_j \le 1$

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Architectural Overview Centralized vs. Distributed

Load Shedding Phases	Distributed	Centralized
Advance Planning	A III	Coordinator
Lacad Maniitaning		Coordinator
PP lan Seel leacttion	AIII	Coordinator
API barn IImpol kermeent taatti ioon		All

Architectural Overview Centralized Approach

VLDB 2007, Vienna

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Advance Planning with an LP Solver Approximate Load Shedding Plans

Given an infeasible point, the Solver generates an optimal plan.

 We don't want to call the Solver for each infeasible point.

Key observation:
 ■ Quality_r ≤ Quality_q

Assume an error threshold "e" in quality. Given any infeasible point s such that r < s < q :</p>

• If $(\text{Quality}_q - \text{Quality}_r)/\text{Quality}_q \le \varepsilon$, then s can use the load shedding plan for r, with a minor modification.

Advance Planning with an LP Solver QuadTree-based Plan Index

Use a Region QuadTree to divide and index the input rate space.

Advance Planning with an LP Solver Exploiting Non-uniform Input Workload

- Infeasible points may be observed with different probabilities, i.e., some regions may have higher expected probability.
- Given a region with expected probability p, the expected maximum error for this region is:
 E[Error_{max}] = p * (Quality_{max} – Quality_{min})/Quality_{max}
- For all regions, we must make sure that:
 Total(E[Error_{max}]) ≤ ε

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Advance Planning with FIT FIT Basics

- We store feasible points in FIT:
 - (r₁, r₂, [local plan], quality)
- FIT-based load shedding:
 - Given an infeasible point p, p must be mapped to the highest quality feasible point q in FIT, such that q ≤ p.
 - We store a reduced number of FIT points by:
 - exploiting the "ε" error tolerance threshold, and
 - only including the FIT points that are "close" to the feasibility boundary.

feasible points infeasible points

VLDB 2007, Vienna

Advance Planning with FIT Complementary Local Plans

- Complementary local load shedding plans may be needed for nodes with operator splits.
- Example:

Local plans are not propagated upstream.

Advance Planning with FIT QuadTree-based Plan Index

Use a Point QuadTree to divide and index the input rate space.

VLDB 2007, Vienna

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Experimental Setup

- Implemented on Borealis
- Query networks with Delay(cost, selectivity) operators
- Two input workloads:
 - Synthetic: Exponential distribution
 - Network traffic traces from the Internet Traffic Archive
- Goals:
 - Analyze plan generation efficiency for
 - Solver, Solver-W, C-FIT
 - Analyze communication overhead for
 D-FIT

Plan Generation Performance Solver vs. C-FIT

2 x 2 query networks with different cost distributions (Maximum Error ε = 0.05)

VLDB 2007, Vienna

Plan Generation Performance Solver vs. Solver-W

2 x 2 query networks with different cost distributions (Expected Maximum Error $E[\epsilon] \sim 0.015$)

VLDB 2007, Vienna

D-FIT Communication Overhead Effect of Query Cost and Error Tolerance

 2×2 query networks with different query costs

D-FIT Communication Overhead Sensitivity to Selectivity Change

2 x 2 query networks with different operator selectivity (Initial selectivity = 1.0)

VLDB 2007, Vienna

Talk Outline

Problem Introduction Approach Overview Advance Planning with an LP Solver Advance Planning with FIT Performance Results Related Work Conclusions and Future Work

Related Work

- Load shedding for the single server case. Examples: [Tatbul et al, VLDB'03/VLDB'06], [Babcock et al, ICDE'04]
 [Ayad et al, SIGMOD'04], [Reiss et al, ICDE'05], ...
- Control-based load management in System S
 [Amini et al, ICDCS'06]
- Aggregate congestion control against DoS attacks [Mahajan et al, SIGCOMM CCR'02]
- Parametric query optimization
 [Ioannidies et al, VLDB'92], [Ganguly, VLDB'98], [Hulgeri et al, VLDB'02]

Conclusions

- Distributed load shedding requires coordination among the servers.
- We provide centralized and distributed alternatives.
- We propose efficient techniques for advance generation of load shedding plans:
 - Approximate load shedding plans
 - QuadTree-based plan indexing
 - Exploiting input workload distribution
- Distributed FIT is better for dynamic environments.

Future Work

Performance on larger scale networks Bandwidth bottlenecks Non-tree server topologies Hybrid approaches Centralized + Distributed Local plan refinement Other quality metrics

More information:

<u>http://www.cs.brown.edu/research/borealis/</u> <u>http://www.inf.ethz.ch/~tatbul</u>

Advance Planning with FIT Upstream FIT Propagation

- Each leaf node generates its FIT from scratch, and propagates it to its upstream parent.
- Each non-leaf node, upon receiving FITs from its children:
 - Maps the FIT rates from its outputs to its own inputs (<u>Note:</u> Mapping across splits may result in local plans).
 - 2. Merges multiple FITs into a single FIT.
 - 3. Removes the FIT entries that are infeasible for itself.
 - 4. Propagates the resulting FIT further upstream.

Plan Generation Performance Effect of Input Dimensionality (C-FIT)

 $2 \times 2, 4 \times 2, 8 \times 2$ query networks with the same total cost