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Distributed Stream Processing
The Aurora/Borealis System

End-point Applications
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Bursty Workload

m Data can arrive fast, in unpredictable bursts

m HExample: Network traffic data

Bursts may create resource bottlenecks:
Query processing slows down
and results get delayed !

1200 1800 2400 3000 3600
time (seconds)

Source: Internet Traffic Archive, http://ita.ee.lbl.gov/
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Models and Assumptions

m We focus on CPU as the limited resource.

m [.oad shedding 1s achieved by inserting probabilistic
drop operators into query plans.

® Random Drop [VLDB’03]

B Approximate resultis a su

, Window Drop [VLDB06]

bset of the original result.

m The goal 1s to maximize tl

ne total weighted query

throughput (e.g., [Ayad et al, SIGMOD’04, Amin1

et al, ICDCS’06]).

m Servers are arranged in a tree-like topology.
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Distributed Load Shedding
Key Observation: Load Dependency
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Distributed L.oad Shedding

as a Linear Optimization Problem

Problem formulation for non-linear query plans
(i.e., with operator splits and merges) is in the paper.

0<x <1

D
ZFjXXjXSjij IS maximized.
=
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Architectural Overview
Centralized vs. Distributed
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Architectural Overview
Centralized Approach

local plan

local plan
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Architectural Overview
Distributed Approach

FIT
//

Feasible Input Table : (ry, .., r,, [local plan], quality)
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Advance Planning with an LP Solver
Approximate Load Shedding Plans

Input rate space

g=(100, 100)

feasible points
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Given an infeasible point, the
Solver generates an optimal plan.

We don’t want to call the Solver for
each infeasible point.

Key observation:
= Quality, = Quality,

Assume an error threshold “g” in
quality. Given any infeasible point s
such thatr <s < q:

= If (Quality, — Quality,)/Quality, <,

then s can use the load shedding plan
for r, with a2 minor modification.
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Advance Planning with an LP Solver
QuadTree-based Plan Index

m Use a Region QuadTree to divide and index the input rate space.

E g=(100, 100)

feasible points
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Advance Planning with an LP Solver
Exploiting Non-uniform Input Workload

m [nfeasible points may be observed with different
probabilities, i.e., some regions may have higher
expected probability.

m Given a region with expected probability p,

the expected maximum error for this region is:
- E[ErrormaﬁJ: p ¥ (QuahtYmaX _ QuahtYmitJ/ QuahtYmaX

m Por all regions, we must make sure that:
m Total(E[Error_ ]) S e
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Advance Planning with FI'T
FIT Basics

m We store feasible points in FIT:

m (1, 1, [local plan], quality)

_._. m [IT-based load shedding:

» Given an infeasible point p, p must be mapped
to the highest quality feasible point q in FIT,
such that q = p.

m We store a reduced number of FIT points by:

cc 9
£

exploiting the “e” error tolerance threshold, and

only including the FIT points that are “close” to
the feasibility boundary.

feasible points
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Advance Planning with FI'T

Complementary Local Plans
m Complementary local load shedding plans may be needed for
nodes with operator splits.

= FExample:

Shed here firstl!

m [ocal plans are not propagated upstream.
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Advance Planning with FI'T
QuadTree-based Plan Index

m Use a Point QuadTree to divide and index the input rate space.

r2 A
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Experimental Setup

B Implemented on Borealis
B Query networks with Delay(cost, selectivity) operators

B Two input workloads:
= Synthetic: Exponential distribution
= Network traffic traces from the Internet Traffic Archive
m Goals:
= Analyze plan generation efficiency for
m Solver, Solver-W, C-FIT
® Analyze communication overhead for

m D-FIT
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Plan Generation Performance
Solver vs. C-FIT
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Plan Generation Performance
Solver vs. Solver-W
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D-FIT Communication Overhead
Effect of Query Cost and Error Tolerance
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D-FIT Communication Overhead
Sensitivity to Selectivity Change
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Related Work

LLoad shedding for the single server case. Examples:
Tatbul et al, VILDB’03/VI.DB’06], [Babcock et al, I[CDE’04]
Ayad et al, SIGMOD’04], [Reiss et al, [CDE’05], ...

m Control-based load management in System S
[Amint et al, I[CDCS06)]

B Agoregate congestion control against DoS attacks
[Mahajan et al, SIGCOMM CCR’02]

m Parametric query optimization

[loannidies et al, VLLDB’92], [Ganguly, VLDB98], [Hulgeri
et al, VLDB’02]
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Conclusions

m Distributed load shedding requires coordination
among the servers.

m We provide centralized and distributed alternatives.

m We propose efficient techniques for advance

generation of load shedding plans:

® Approximate load shedding plans
® QuadTree-based plan indexing

= Exploiting input workload distribution

m Distributed FIT is better for dynamic environments.
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Future Work

m Performance on larger scale networks
m Bandwidth bottlenecks

m Non-tree server topologies

m Hybrid approaches
m Centralized + Distributed

® [ocal plan refinement

m Other quality metrics
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More information:

http:/ /www.cs.brown.edu/research /borealis/

http:/ /www.inf.ethz.ch/~tatbul

Questions?
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Advance Planning with FI'T
Upstream FIT Propagation

m Hach leaf node generates its FIT from scratch, and

propagates it to 1ts upstream parent.

m Hach non-leat node, upon receiving FITs from its

children:

1. Maps the FIT rates from its outputs to its own inputs
(Note: Mapping across splits may result in local plans).

Merges multiple FITs into a single FIT.
Removes the FIT entries that are infeasible for itself.

Propagates the resulting FIT further upstream.
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Plan Generation Performance
Effect of Input Dimensionality (C-FIT)
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