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* Dirichlet process (DP) stick-breaking

o Griffiths-Engen-McCloskey (GEM) distribution:
P = (/017/027 . ) ™~ GEM(&)

k—1
Vi s Beta(1, o) Pk = H(1 = Vi) | Vi
j=1

e Part of: DP mixture model

1 [McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001 ]
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+ GEM: _

 Compare to
e Finite (small K) mixture model

e Finite (large K) mixture model

S -
e Time series ! l
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e | asttime:

» Understand what it means to have an infinite/growing
number of parameters

* Finite representation allows use of infinite model

® www.tamarabroderick.com/tutorials.html

e [his time:
* Avoid the Infinity of parameters for inference

* e.g. Chinese restaurant process
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 Hoppe urn / Blackwell-MacQueen urn

Step O

* Choose ball with prob proportional to its mass
* |f black, replace and add ball of new color
* Else, replace and add ball of same color

Step 1

Step 2
) 4
o0

Step 3
v
o0

Step 4
v
o0
O
O

(#orange, #other) = PolyaUrn(1
* not orange: (#green, #other) = PolyaUrn(1

Vi 1 Beta(l,! )
1=V
= (1 V1)V2
3 =] (1 L Vi)]Vs

1) X

* not orange, green: (#red ,#other) = PolyaUrn(1 ,!)
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e Same thing we just did

 Each customer walks into the restaurant

e Sits at existing table with prob proportional to # people
there
 Forms new table with prob proportional to !

* Marginal for the Categorical likelihood with GEM prior
Z1= 20 =27=23=1,23=25 =26 =2,24 =3
I 1 g={1,278},{3,5,6},{4}}

* Partition of [8]. set of mutually exclusive & exhaustive sets
of [8]={1,...,8}

8




Chinese restaurant process

1.7 ‘ .
2 4
4 5

* Probability of this seating:



Chinese restaurant process

1.7 6 )

5 . 4.
4 5

. Firobability of this seating:



Chinese restaurant process

1.7 ‘ .
2 4
4 5

. Firobablility of this seating:
Y




Chinese restaurant process

2 4
4 5
. Probablhty of thls seating:

1,
A1 Ao




Chinese restaurant process

2 4
4 5
. Probablhty of thls seatlng

17
!al+1 I +2 °1 +3




Chinese restaurant process

2 4
4 5
. Probablhty of thls seatlng

.1 | 1
T ST 24 13 % 42




Chinese restaurant process

2 4
4 5
. Probablhty of thls seatmg

al | 1é2
I+ I+2 '+3 I+4 l +5




Chinese restaurant process

2 4
4 5
. Probablhty of thls seatmg

al | 1é2é2
I+ I+2 '+3 I+4 ' +5 | +6




Chinese restaurant process

2 4
A o

. Probablhty Of thls Seatmg
4 1 . 1 ., 2 , 2 , 3

T T 2 3 52 8 v e A a7



Chinese restaurant process
1 / o 3

2 5

38
. Probablhty of thls Seatmg

4 1 | 1 4 2 4 2 4 3
T T 2 3 52 8 v e A a7
* Probability of N customers (Kn tables, 1k at table k):



Chinese restaurant process
1 / o 3

2 5

38
. Probablhty of thls Seatmg

4 1 | 1 4 2 4 2 4 3
T T 2 3 52 8 v e A a7
* Probability of N customers (Kn tables, 1k at table k):

laa@d + N ! 1)



Chinese restaurant process
1 / o 3

2 5

38
. Probablhty of thls Seatmg

4 1 | 1 4 2 4 2 4 3
T T 2 3 52 8 v e A a7
* Probability of N customers (Kn tables, 1k at table k):
| K

laa@d + N ! 1)




Chinese restaurant process
1 / o 3

2 5

38
. Probablhty of thls Seatmg

4 1 | 1 4 2 4 2 4 3

T T 2 3 52 8 v e A a7

* Probability of N customers (Kn tables, 1k at table k):
K BN (ng T 1)
laa@d + N ! 1)




10

References (Part 1)

DJ Aldous. Exchangeability and related topics. Springer, 1983.
D Blackwell and JB MacQueen. Ferguson distributions via Pblya urn schemes. The Annals of Statistics, 1973.
S Engen. A note on the geometric series as a species frequency model. Biometrika, 1975.

W Ewens. Population genetics theory -- the past and the future. Mathematical and Statistical Developments of
Evolutionary Theory, 1987 .

FM Hoppe. Pdélya-like urns and the Ewens' sampling formula. Journal of Mathematical Biology, 1984.

H Ishwaran and LF James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical
Association, 2001.

JW McCloskey. A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State
University, 1965.

GP Patil and C Taillie. Diversity as a concept and its implications for random communities. Bulletin of the International
Statistical Institute, 1977.

J Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1994.



