Clusters and features from combinatorial stochastic processes

Tamara Broderick
UC Berkeley

September 13, 2012
Nonparametric Bayesian statistics

Bayesian
• Specify a generative model
• Calculate posterior

Nonparametric (Bayesian)
• Number of parameters grows with the size of the data
Nonparametric Bayesian statistics

Continuous/ordinal
• E.g. Gaussian process
• Supervised learning

smooth function
Nonparametric Bayesian statistics

Discrete/combinatorial
• E.g. Dirichlet process
• Latent/unsupervised learning

permutation
\[\sigma : 1 \rightarrow 5 \]
2 → 1
3 → 4
4 → 2
5 → 3
Outline

I. Clusters

 • Overview
 • Distribution
 • Proportions
 • Random probability measure

II. Features

 • Overview
 • Distribution
 • Frequencies
 • Paintbox
 • Random measure
Outline

I. Clusters
 • Overview
Outline

I. Clusters
 • Overview
 • Distribution
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
Outline

I. Clusters
• Overview
• Distribution
• Proportions
• Random probability measure
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
• Overview
• Distribution
• Proportions
• Random probability measure

II. Features
Clustering
Clustering

“clusters”, “classes”, “blocks (of a partition)”
Clustering

“clusters”, “classes”, “blocks (of a partition)”
Clustering
Clustering

...is hard
Clusterining is hard

- Unsupervised
Clustering...is hard

- Unsupervised
- Data dimensions not always easy to visualize
Clustering...is useful

- Exploratory data analysis
- Classes are unspecified (changing too quickly, expensive to label data, unknown, etc.)
Clustering...is useful
• Exploratory data analysis
Clustering

Network Analysis

...is useful
• Exploratory data analysis
Clustering

...is useful

• Exploratory data analysis
• Classes are unspecified (changing too quickly, expensive to label data, unknown, etc)
Clustering

Document clustering

...is useful
- Exploratory data analysis
- Classes are unspecified (changing too quickly, expensive to label data, unknown, etc)

[Carpineto et al 2009]
Clustering

...is useful

- Exploratory data analysis
- Classes are unspecified
 (changing too quickly, expensive to label data, unknown, etc)

Image segmentation
Clustering

...is useful
• Exploratory data analysis
• Classes are unspecified (changing too quickly, expensive to label data, unknown, etc)

Topic Analysis

[Blei et al 2003]
Clustering

Why Bayesian?

Topic Analysis

Why nonparametric?
• Don't know the number of clusters in advance

[Blei et al 2003]
Clustering

Why Bayesian?
• Flexibility to specify model

Why nonparametric?
• Don’t know the number of clusters in advance

[Blei et al 2003]

Topic Analysis

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Philharmonic and Juilliard School. ‘Our board felt that we had a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education. Hearst Foundation President Randolph A. Hearst said Monday in Lincoln Center’s share will be $200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.

[Blei et al 2003]
Clustering

Why Bayesian?
• Flexibility to specify model

Why nonparametric?

Topic Analysis

[Table with terms like NEW, MILLION, CHILDREN, SCHOOL, FILM, TAX, WOMEN, STUDENTS, SHOW, PROGRAM, PEOPLE, SCHOOLS, MUSIC, BUDGET, CHILD, EDUCATION, MOVIE, BILLION, YEARS, TEACHERS, PLAY, FEDERAL, FAMILIES, HIGH, MUSICAL, YEAR, WORK, PUBLIC, BEST, SPENDING, PARENTS, TEACHER, ACTOR, NEW, SAYS, BENNETT, FIRST, STATE, FAMILY, MANIGAT, YORK, PLAN, WELFARE, NAMPHY, OPERA, MONEY, MEN, STATE, THEATER, PROGRAMS, PERCENT, PRESIDENT, ACTRESS, GOVERNMENT, CARE, ELEMENTARY, LOVE, CONGRESS, LIFE, HAITI]

Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera, Philharmonic and Juilliard School. "Our board felt that we had a mark on the future of the performing arts with these grants and an act on our traditional areas of support in health, medical research, education," said Randolph A. Hearst. "Lincoln Center's share will be $200,000 for its new building, which will provide new public facilities. The Metropolitan Opera Co. and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.

[Blei et al 2003]
Clustering

Why Bayesian?
- Flexibility to specify model

Why nonparametric?
- Don’t know the number of clusters in advance

Topic Analysis

- NEW
- MILLION
- CHILDREN
- SCHOOL
- FILM
- TAX
- WOMEN
- STUDENTS
- SHOW
- PROGRAM
- PEOPLE
- SCHOOLS
- MUSIC
- BUDGET
- CHILD
- EDUCATION
- MOVIE
- BILLION
- YEARS
- TEACHERS
- PLAY
- FEDERAL
- FAMILIES
- HIGH
- MUSICAL
- YEAR
- WORK
- PUBLIC
- BEST
- SPENDING
- PARENTS
- TEACHER
- ACTOR
- NEW
- SAYS
- BENNETT
- FIRST
- STATE
- FAMILY
- MANIGAT
- YORK
- PLAN
- WELFARE
- NAMPHY
- OPERA
- MONEY
- MEN
- STATE
- THEATER
- PROGRAMS
- PERCENT
- PRESIDENT
- ACTRESS
- GOVERNMENT
- CARE
- ELEMENTARY
- LOVE
- CONGRESS
- LIFE
- HAITI

Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Philharmonic and Juilliard School. “Our board felt that we had a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education. Hearst Foundation President Randolph A. Hearst said Monday in Lincoln Center’s share will be $200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.

[Blei et al 2003]
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
• Overview
• Distribution
• Proportions
• Random probability measure

II. Features
I. Clusters
 • Overview
 • Distribution
 ◦ Clusters
 ◦ Data given clusters
 ◦ Posterior
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
• Overview
• Distribution
 ◊ Clusters
 ◊ Data given clusters
 ◊ Posterior
• Proportions
• Random probability measure

II. Features
Clustering
Clustering
Clustering
Clustering

Partition of 1, 2, ..., 9
Clustering

Partition of 1, 2, ..., 9

$$\pi_9 = \begin{cases}
\{9, 2, 7, 1\}, \\
\{8, 4, 6\}, \\
\{5, 3\}
\end{cases}$$
Clustering

Partition of 1, 2, ..., 9
(or clustering)

\[\pi_9 = \{ \{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\} \} \]
Partition of $1, 2, ..., 9$
(or clustering)

$$\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$$
Clustering

Partition of 1, 2, ..., 9
(or clustering)

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\(N \): Number of data points
Clustering

Partition of 1, 2, ..., 9 (or clustering)

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

N: Number of data points
K: Number of clusters
Clustering

Partition of 1, 2, ..., 9
(or clustering)

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\(N\): Number of data points
\(K\): Number of clusters

\(N = 9\)
Clustering

Partition of 1, 2, ..., 9 (or clustering)

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\(N: \) Number of data points (\(N = 9 \))

\(K: \) Number of clusters (\(K = 3 \))
Clustering

Random partition
Clustering

Random partition

Partition of 1, 2, ..., 9
Clustering

Random partition \hspace{1cm} \text{Partition of } 1, 2, \ldots, 9

\[P(\Pi_N = \pi_N) \]
Clustering

Random partition

\[P(\Pi_N = \pi_N) \]

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

- Exchangeable

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

- Exchangeable

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

• Exchangeable

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi_9') \]

\[\pi_9' = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]
Exchangeability
Exchangeability
Exchangeability

\(x_1 \)
Exchangeability
Exchangeability

\[x_1 \]

\[x_2 \]

\[x_3 \]
Exchangeability
Exchangeability
Exchangeability
Exchangeability
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

- Exchangeable

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9) \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

- Exchangeable

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9) \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]

- (Almost surely) consistent sequence of partitions
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

- Exchangeable

\[\text{(Almost surely) consistent sequence of partitions} \]

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9) \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]

\[\pi_{10} = \{\{9, 2, 7, 1\}, \{8, 4, 6, 10\}, \{5, 3\}\} \]
Clustering

Random partition
\[\mathbb{P}(\Pi_N = \pi_N) \]

• Exchangeable

• (Almost surely) consistent sequence of partitions

Partition of 1, 2, ..., 9
\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9) \]
\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]

\[\pi_{10} = \{\{9\}, \{2\}, \{7\}, \{1, 10\}, \{8\}, \{4, 5\}, \{6, 3\}\} \]
Clustering

Random partition

\[\mathbb{P}(\Pi_N = \pi_N) \]

• Exchangeable

• (Almost surely) consistent sequence of partitions

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \mathbb{P}(\Pi_9 = \pi'_9) \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]

\[\pi_{10} = \{\{9\}, \{2\}, \{7\}, \{1, 10\}, \{8\}, \{4, 5\}, \{6, 3\}\} \]
Clustering

Random partition

\[P(\Pi_N = \pi_N) \]

- Exchangeable

• (Almost surely) consistent sequence of partitions

Partition of 1, 2, ..., 9

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[P(\Pi_9 = \pi_9) = P(\Pi_9 = \pi'_9) \]

\[\pi'_9 = \{\{1, 3, 8, 2\}, \{9, 5, 7\}, \{6, 4\}\} \]

\[\pi_{10} = \{\{9, 2, 7, 10, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]
Clustering

• What does $P(\Pi_N = \pi_N)$ look like?
Clustering

• What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?

• Take any partition $\pi_N = \{A_1, A_2, \ldots, A_K\}$
Clustering

• What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?

• Take any partition $\pi_N = \{A_1, A_2, \ldots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = \rho(|A_1|, |A_2|, \ldots, |A_K|)$$
• What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?

• Take any partition $\pi_N = \{A_1, A_2, \ldots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \ldots, |A_K|)$$

p: symmetric in its arguments
Clustering

• What does $\mathbb{P}(\Pi_N = \pi_N)$ look like?

• Take any partition $\pi_N = \{A_1, A_2, \ldots, A_K\}$

$$\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \ldots, |A_K|)$$

p: symmetric in its arguments

“Exchangeable partition probability function” (EPPF)

[Pitman 1995]
Outline

I. Clusters
 • Overview
 • Distribution
 ◇ Clusters
 ◇ Data given clusters
 ◇ Posterior
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 ◊ Clusters (Example: Chinese restaurant process)
 ◊ Data given clusters
 ◊ Posterior
 • Proportions
 • Random probability measure

II. Features
EPPF Example
EPPF Example

Chinese restaurant process

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant \leftrightarrow partition

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant ↔ partition

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant \Leftrightarrow partition
 • Table \Leftrightarrow cluster

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant \(\leftrightarrow \) partition
 • Table \(\leftrightarrow \) cluster

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

- Restaurant \Leftrightarrow partition
- Table \Leftrightarrow cluster

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant \Leftrightarrow partition
 • Table \Leftrightarrow cluster

$K = 3$

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant ↔ partition
 • Table ↔ cluster
 • Customer ↔ index

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

- Restaurant \Leftrightarrow partition
 - Table \Leftrightarrow cluster
 - Customer \Leftrightarrow index

$K = 3$ [Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Restaurant \leftrightarrow partition
 • Table \leftrightarrow cluster
 • Customer \leftrightarrow index

$\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\}$

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

- Customers prefer popular tables

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Recursively: \(n \)th person sits

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Recursively: *n*th person sits
 • at table *k* (of *K*) with probability $\propto (\# \text{ people there})$

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability \(\propto \# \text{ people there} \)
 - at new table \(K+1 \) with probability \(\propto \theta \)

[Blackwell, MacQueen 1973; Aldous 1985]
EPPF Example

Chinese restaurant process

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$

[Blackwell, MacQueen 1973; Aldous 1985]
Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto \theta$
 - at new table $K+1$ with probability $\propto \theta$

$K = 0$
Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

$$\theta \quad \frac{\theta}{\theta}$$
EPPF Example

Chinese restaurant process

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$

\[K = 0 \]

\[\frac{\theta}{\bar{\theta}} \]

\[\mathbb{P}(\Pi_1 = \pi_1) = 1 \]
Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

\[
P(\Pi_1 = \pi_1) = 1
\]
EPPF Example

Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

$\mathbb{P}(\Pi_1 = \pi_1) = 1$
EPPF Example

Chinese restaurant process

• Recursively: \(n \)th person sits
 • at table \(k \) (of \(K \)) with probability \(\propto (\text{# people there}) \)
 • at new table \(K+1 \) with probability \(\propto \theta \)

\[
P(\Pi_1 = \pi_1) = 1
\]
EPPF Example

Chinese restaurant process

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability \(\propto (\# \text{ people there}) \)
 - at new table \(K+1 \) with probability \(\propto \theta \)

\[
P(\Pi_2 = \pi_2) = \frac{1}{1 + \theta}
\]
EPPF Example

Chinese restaurant process

• Recursively: \(n \)th person sits
 • at table \(k \) (of \(K \)) with probability \(\propto (\# \text{ people there}) \)
 • at new table \(K+1 \) with probability \(\propto \theta \)

\[
\begin{align*}
P(\Pi_2 = \pi_2) &= \frac{1}{1 + \theta} \\
&= \frac{1}{1 + \theta}
\end{align*}
\]
EPPF Example

Chinese restaurant process

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$

\[
P(\Pi_2 = \pi_2) = \frac{1}{1 + \theta}
\]
EPPF Example

Chinese restaurant process

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability \(\propto \# \text{ people there} \)
 - at new table \(K+1 \) with probability \(\propto \theta \)

\[
\mathbb{P}(\Pi_3 = \pi_3) = \frac{1}{(1 + \theta)(2 + \theta)} \cdot \theta
\]
EPPF Example

Chinese restaurant process

• Recursively: \(n \)th person sits
 • at table \(k \) (of \(K \)) with probability \(\propto (\# \text{ people there}) \)
 • at new table \(K+1 \) with probability \(\propto \theta \)

\[\mathbb{P}(\Pi_3 = \pi_3) = \frac{1}{(1 + \theta)(2 + \theta)} \cdot \theta \]
EPPF Example

Chinese restaurant process

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$

$$\mathbb{P}(\Pi_3 = \pi_3) = \frac{1}{(1 + \theta)(2 + \theta)} \cdot \theta$$
EPPF Example

Chinese restaurant process

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability \(\propto (\# \text{ people there}) \)
 - at new table \(K+1 \) with probability \(\propto \theta \)

\[
\mathbb{P}(\Pi_4 = \pi_4) = \frac{1}{(1+\theta)(2+\theta)(3+\theta)} \cdot \theta^2
\]
EPPF Example

Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

$$P(\Pi_4 = \pi_4) = \frac{1}{\prod_{n=1}^{3}(n + \theta)} \cdot \theta^2$$
EPPF Example

Chinese restaurant process

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$

\[
P(\Pi_4 = \pi_4) = \frac{1}{\prod_{n=1}^{3}(n + \theta)} \cdot \theta^2
\]
EPPF Example

Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$
EPPF Example

Chinese restaurant process

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

\[
\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^{9}(n + \theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!)
\]
EPPF Example

Chinese restaurant process

• Recursively: \(n \)th person sits
 • at table \(k \) (of \(K \)) with probability \(\propto (\# \text{ people there}) \)
 • at new table \(K+1 \) with probability \(\propto \theta \)

\[
\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^{9}(n + \theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!)
\]
EPPF Example

Chinese restaurant process

\[P(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^{9}(n + \theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!) \]
EPPF Example

Chinese restaurant process

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[
\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^{9}(n + \theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!)
\]
EPPF Example

Chinese restaurant process

\[\pi_N = \{A_1, A_2, \ldots, A_K\} \]

\[\mathbb{P}(\Pi_9 = \pi_9) = \frac{1}{\prod_{n=1}^{9}(n + \theta)} \cdot \theta^2 \cdot (3! \cdot 1! \cdot 2!) \]
EPPF Example

Chinese restaurant process

\[\pi_N = \{A_1, A_2, \ldots, A_K\} \]

\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]
EPPF Example

Chinese restaurant process

\[\pi_N = \{ A_1, A_2, \ldots, A_K \} \]

\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1}(n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]

\[\begin{align*}
 k = 1 & \quad \text{size of } k\text{th cluster} \\
 k = 2 & \\
 k = 3 & \\
 K = 3 &
\end{align*} \]
EPPF Example

Chinese restaurant process

\[
\pi_N = \{A_1, A_2, \ldots, A_K\}
\]

\[
P(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)!
\]
EPPF Example

Chinese restaurant process

\[\pi_N = \{A_1, A_2, \ldots, A_K\} \]

\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]
EPPF Example

Chinese restaurant process

\[\pi_N = \{ A_1, A_2, \ldots, A_K \} \]
\[\mathbb{P}(\Pi_N = \pi_N) = p(|A_1|, |A_2|, \ldots, |A_K|) \]
\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1}(n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K}(|A_k| - 1)! \quad \text{(EPPF)} \]
EPPF Example

Chinese restaurant process

\[\pi_N = \{ A_1, A_2, \ldots, A_K \} \]

\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]
EPPF Example

Chinese restaurant process

- Exchangeable

\[\pi_N = \{ A_1, A_2, \ldots, A_K \} \]

\[P(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]
EPPF Example

Chinese restaurant process

- Exchangeable
- Consistent

\[\pi_N = \{A_1, A_2, \ldots, A_K\} \]

\[
P(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1}(n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K}(|A_k| - 1)! \]
EPPF Example

Chinese restaurant process

- Exchangeable
- Consistent
- Random number of clusters

\[\pi_N = \{A_1, A_2, \ldots, A_K\} \]

\[\mathbb{P}(\Pi_N = \pi_N) = \frac{1}{\prod_{n=1}^{N-1} (n + \theta)} \cdot \theta^{K-1} \cdot \prod_{k=1}^{K} (|A_k| - 1)! \]
Outline

I. Clusters
 • Overview
 • Distribution
 ◊ Clusters (Example: Chinese restaurant process)
 ◊ Data given clusters
 ◊ Posterior
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 ◇ Clusters (Example: Chinese restaurant process)
 ◇ Data given clusters
 ◇ Posterior
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 ◊ Clusters (Example: Chinese restaurant process)
 ◊ Data given clusters (Example: Gaussian mixture)
 ◊ Posterior
 • Proportions
 • Random probability measure

II. Features
EPPF: Part of full generative model
EPPF: Part of full generative model

\[\Pi_N \]

\[\pi_9 = \{ \{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\} \} \]
EPPF: Part of full generative model

\[\Pi_N \]

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]
EPPF: Part of full generative model

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = \]

\[z_7 = z_3 = \]

\[z_8 = z_4 = z_6 = \]

\[n = 1, \ldots, N \]
EPPF: Part of full generative model

\[\Pi_N \]

\[Z_n \]

\[n = 1, \ldots, N \]

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]

\[z_7 = z_3 = 2 \]

\[z_8 = z_4 = z_6 = 3 \]
EPPF: Part of full generative model

\[\Pi_N \]

\[Z_n \]

\[n = 1, \ldots, N \]

\[\pi_9 = \{ \{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\} \} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]

\[z_7 = z_3 = 2 \]

\[z_8 = z_4 = z_6 = 3 \]

“cluster indicators”
EPPF: Part of full generative model

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]

\[z_7 = z_3 = 2 \]

\[z_8 = z_4 = z_6 = 3 \]

“cluster indicators”
EPPF: Part of full generative model

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]

\[z_7 = z_3 = 2 \]

\[z_8 = z_4 = z_6 = 3 \]

“cluster parameters”

“cluster indicators”
EPPF: Part of full generative model

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]
\[z_7 = z_3 = 2 \]
\[z_8 = z_4 = z_6 = 3 \]

Can think of \(k = 1, 2, \ldots \), but only use finitely many
EPPF: Part of full generative model

\[\pi_9 = \{\{9, 2, 5, 1\}, \{7, 3\}, \{8, 4, 6\}\} \]

\[z_9 = z_2 = z_5 = z_1 = 1 \]
\[z_7 = z_3 = 2 \]
\[z_8 = z_4 = z_6 = 3 \]

“cluster indicators”
EPPF: Part of full generative model

\[\Pi_N \]

\[Z_n \]

\[X_n \]

\[n = 1, \ldots, N \]

\[\mu_k \]

\[k \]
EPPF: Part of full generative model

\[\Pi_N \sim p \]

\[\Pi_N \]

\[Z_n \]

\[X_n \]

\[n = 1, \ldots, N \]

\[\mu_k \]

\[k \]

\[\Pi_N \sim p \]
\(\Pi_N \sim \rho \)

\(\mu_k \overset{iid}{\sim} \mathcal{N}(0, \rho^2 I_D) \)
EPPF: Part of full generative model

$\Pi_N \sim p$

$\Pi_N \sim p$

dimension of a data point

$\mu_k \overset{iid}{\sim} \mathcal{N}(0, \rho^2 I_D)$
EPPF: Part of full generative model

\[\Pi_N \sim p \]

\[\mu_k \overset{iid}{\sim} \mathcal{N}(0, \rho^2 I_D) \]

\[X_n \overset{indep}{\sim} \mathcal{N}(\mu_{Z_n}, \sigma^2 I_D) \]
EPPF: Part of full generative model

\[\Pi_N \sim \rho \]

\[\Pi_N \]

\[\mu_k \overset{iid}{\sim} \mathcal{N}(0, \rho^2 I_D) \]

\[X_n \overset{indep}{\sim} \mathcal{N}(\mu_{Z_n}, \sigma^2 I_D) \]

“Gaussian mixture model”
EPPF: Part of full generative model

\[\Pi_N \sim p \]

\[\phi_k \overset{iid}{\sim} H \]

\[X_n \overset{indep}{\sim} F(\phi Z_n) \]
Outline

I. Clusters
• Overview
• Distribution
 ◊ Clusters (Example: Chinese restaurant process)
 ◊ Data given clusters (Example: Gaussian mixture)
 ◊ Posterior
• Proportions
• Random probability measure

II. Features
Outline

I. Clusters
• Overview
• Distribution
 ◇ Clusters (Example: Chinese restaurant process)
 ◇ Data given clusters (Example: Gaussian mixture)
 ◇ Posterior
• Proportions
• Random probability measure

II. Features
EPPF: Calculating posterior

Calculating posterior: $P(Z, \mu|X)$
Calculating posterior: $P(Z, \mu | X)$
EPPF: Calculating posterior

Calculating posterior: $P(Z, \mu | X)$

- D: data dimension
- N: number data points
- K: (random) number of clusters
EPPF: Calculating posterior

Calculating posterior: $P(Z, \mu | X)$

- All cluster indicators (N integers)
- All data points (N vectors of length D)

D: data dimension
N: number data points
K: (random) number of clusters
Calculating posterior: $P(Z, \mu | X)$

- All cluster indicators (N integers)
- All cluster means (K vectors of length D)
- All data points (N vectors of length D)

D: data dimension
N: number of data points
K: (random) number of clusters
Calculating posterior: $P(Z, \mu | X)$

- Usually can’t do exact calculation
Calculating posterior: \(\mathbb{P}(Z, \mu | X) \)

- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)
EPPF: Calculating posterior

Calculating posterior: $\mathbb{P}(Z, \mu | X)$
- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

[Geman, Geman 1984]
EPPF: Calculating posterior

Calculating posterior: $P(Z, \mu | X)$
- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

Type of MCMC method

[Geman, Geman 1984]
EPPF: Calculating posterior

Calculating posterior: \(\mathbb{P}(Z, \mu | X) \)
- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling
- Sample each variable conditioned on the rest

[Geman, Geman 1984]
Calculating posterior:

$P(Z, \mu|X)$

- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

- Sample each variable conditioned on the rest

\[
P(Z_n|X, \mu, Z_{-n}), \quad n = 1, \ldots, N \\
P(\mu_k|X, Z, \mu_{-k}), \quad k = 1, \ldots, K
\]
Calculating posterior: $\mathbb{P}(Z, \mu | X)$

- Usually can’t do exact calculation
- Approximation (MCMC, variational methods)

Gibbs sampling

- Sample each variable conditioned on the rest

\[
\mathbb{P}(Z_n | X, \mu, Z_{-n}), \quad n = 1, \ldots, N
\]
\[
\mathbb{P}(\mu_k | X, Z, \mu_{-k}), \quad k = 1, \ldots, K
\]
EPPF: Calculating posterior

Gibbs sampling

- Sample each variable conditioned on the rest

\[\mathbb{P}(Z_n | X, \mu, Z_{-n}) \]
EPPF: Calculating posterior

Gibbs sampling

- Sample each variable conditioned on the rest

$$\mathbb{P}(Z_n|X, \mu, Z_{-n}) = \frac{\mathbb{P}(X, Z, \mu)}{\mathbb{P}(X, Z_{-n}, \mu)}$$
EPPF: Calculating posterior

Gibbs sampling
- Sample each variable conditioned on the rest

\[
P(Z_n|X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \propto \frac{P(\Pi_N)P(X_n|Z_n, \mu)}{P(\Pi_{N-1})}
\]
EPPF: Calculating posterior

Gibbs sampling

• Sample each variable conditioned on the rest

\[
P(Z_n|X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \times \frac{P(\Pi_N)P(X_n|Z_n, \mu)}{P(\Pi_{N-1})} \propto \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)}
\]
EPPF: Calculating posterior

Gibbs sampling
 - Sample each variable conditioned on the rest

\[
P(Z_n | X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \propto \frac{P(\Pi_N)P(X_n | Z_n, \mu)}{P(\Pi_{N-1})}
\]

e.g. Chinese restaurant process for clusters;
Gaussian mixture for
data given clusters
EPPF: Calculating posterior

Gibbs sampling

- Sample each variable conditioned on the rest

\[
P(Z_n | X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \propto \frac{P(\Pi_N)P(X_n | Z_n, \mu)}{P(\Pi_{N-1})}
\]

e.g. CRP for clusters; Gaussian mixture for data given clusters
EPPF: Calculating posterior

Gibbs sampling
- Sample each variable conditioned on the rest

\[
P(Z_n | X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \propto \frac{P(\Pi_N)P(X_n | Z_n, \mu)}{P(\Pi_{N-1})}
\]

e.g. CRP for clusters;
Gaussian mixture for data given clusters

\[
= \begin{cases}
\mathcal{N}(X_n | \mu_k, \sigma^2 I_D) \frac{|A_{-n,k}|}{N-1+\theta} & Z_n = k \\
\mathcal{N}(X_n | 0, (\rho^2 + \sigma^2) I_D) \frac{\theta}{N-1+\theta} & Z_n \text{ new}
\end{cases}
\]

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]
EPPF: Calculating posterior

Gibbs sampling
- Sample each variable conditioned on the rest

\[
P(Z_n | X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)} \propto \frac{P(\Pi_N)P(X_n | Z_n, \mu)}{P(\Pi_{N-1})}
\]

e.g. CRP for clusters;
Gaussian mixture for data given clusters

\[
\begin{cases}
 \mathcal{N}(X_n | \mu_k, \sigma^2 I_D) \frac{A_{-n,k}}{N-1+\theta} & Z_n = k \\
 \mathcal{N}(X_n | 0, (\rho^2 + \sigma^2)I_D) \frac{\theta}{N-1+\theta} & Z_n \text{ new}
\end{cases}
\]

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]
EPPF: Calculating posterior

Gibbs sampling
- Sample each variable conditioned on the rest

\[
P(Z_n | X, \mu, Z_{-n}) = \frac{P(X, Z, \mu)}{P(X, Z_{-n}, \mu)}
\]

\[
\propto \frac{P(\Pi_N) P(X_n | Z_n, \mu)}{P(\Pi_{N-1})}
\]

e.g. CRP for clusters; Gaussian mixture for data given clusters

\[
\begin{cases}
\mathcal{N}(X_n | \mu_k, \sigma^2 I_D) \frac{|A_{-n,k}|}{N-1+\theta} & Z_n = k \\
\mathcal{N}(X_n | 0, (\rho^2 + \sigma^2) I_D) \frac{\theta}{N-1+\theta} & Z_n \text{ new}
\end{cases}
\]

[Escobar 1994; West, Muller, Escobar 1994; Escobar, West 1995; Bush, MacEachern 1996]
EPPF: Calculating posterior

- Initialize
- Repeat
 - Sample cluster indicators
 - Sample cluster parameters
EPPF: Calculating posterior

- Initialize
- Repeat
 - Sample cluster indicators
 - Sample cluster parameters
EPPF: Calculating posterior

- Assign all points to one cluster
- Repeat
- Sample cluster indicators
- Sample cluster parameters
EPPF: Calculating posterior

- Assign all points to one cluster
- Repeat
 - Sample cluster indicators
 - Sample cluster parameters
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$

- Sample cluster indicators
- Sample cluster parameters
EPPF: Calculating posterior

• Assign all points to one cluster
• For $t = 1, \ldots, T$
 ◇ Sample cluster indicators
 ◇ Sample cluster parameters
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - Sample cluster indicators
 - Sample cluster parameters
EPPF: Calculating posterior

- For $n = 1, \ldots, N$
 - Assign all points to one cluster
 - For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 $$Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$$
 - Sample cluster parameters
EPPF: Calculating posterior

\[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]

For \(n = 1, \ldots, N \)

- Assign all points to one cluster
- For \(t = 1, \ldots, T \)
 - For \(n = 1, \ldots, N \)
 - Sample cluster parameters
EPPF: Calculating posterior

For $n = 1, \ldots, N$

- Sample cluster parameters $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$

- Assign all points to one cluster

- For $t = 1, \ldots, T$

 - For $n = 1, \ldots, N$

- Sample cluster parameters
EPPF: Calculating posterior

For \(n = 1, \ldots, N \)

For \(k = 1, \ldots, K \)

\[Z_n \sim P(Z_n \mid X, \mu, Z_{-n}) \]

\[\mu_k \sim P(\mu_k \mid X, Z, \mu_{-k}) \]

\(t = 1 \)

- Assign all points to one cluster
- For \(t = 1, \ldots, T \)
 - For \(n = 1, \ldots, N \)
 - For \(k = 1, \ldots, K \)
EPPF: Calculating posterior

For \(n = 1, \ldots, N \)

For \(k = 1, \ldots, K \)

\[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]

\[\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \]

• Assign all points to one cluster
• For \(t = 1, \ldots, T \)
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$
 - For $n = 1, ..., N$
 \[Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n}) \]
 - For $k = 1, ..., K$
 \[\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

For $n = 1, ..., N$
For $k = 1, ..., K$

$Z_n \sim P(Z_n | X, \mu, Z_{-n})$

$\mu_k \sim P(\mu_k | X, Z, \mu_{-k})$

• Assign all points to one cluster
• For $t = 1, ..., T$

$Z_n \sim P(Z_n | X, \mu, Z_{-n})$

$\mu_k \sim P(\mu_k | X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$

 - For $n = 1, ..., N$
 \[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]

 - For $k = 1, ..., K$
 \[\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 $$Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$$
 - For $k = 1, \ldots, K$
 $$\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$

 - For $n = 1, \ldots, N$
 \[Z_n \sim P(Z_n | X, \mu, Z_{-n}) \]

 - For $k = 1, \ldots, K$
 \[\mu_k \sim P(\mu_k | X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$

 - For $n = 1, \ldots, N$

 $Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n})$

 - For $k = 1, \ldots, K$

 $\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 - $Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n})$
 - For $k = 1, \ldots, K$
 - $\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 - $Z_n \sim P(Z_n | X, \mu, Z_{-n})$
 - For $k = 1, \ldots, K$
 - $\mu_k \sim P(\mu_k | X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For \(t = 1, \ldots, T \)
 - For \(n = 1, \ldots, N \)
 \[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]
 - For \(k = 1, \ldots, K \)
 \[\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$
 - For $n = 1, ..., N$
 - $Z_n \sim P(Z_n|X, \mu, Z_{n-1})$
 - For $k = 1, ..., K$
 - $\mu_k \sim P(\mu_k|X, Z, \mu_{-k})$
EPPF: Calculating posterior

For \(t = 1, \ldots, T \)

- Assign all points to one cluster
- For \(n = 1, \ldots, N \)

\[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]

- For \(k = 1, \ldots, K \)

\[\mu_k \sim \mathbb{P}(\mu_k | X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$
 - For $n = 1, ..., N$
 - For $k = 1, ..., K$
 - $Z_n \sim P(Z_n | X, \mu, Z_{-n})$
 - $\mu_k \sim P(\mu_k | X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 - $Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n})$
 - For $k = 1, \ldots, K$
 - $\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, \ldots, T$
 - For $n = 1, \ldots, N$
 - For $k = 1, \ldots, K$
 \[Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n}) \]
 \[\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k}) \]
EPPF: Calculating posterior

For $k = 1, \ldots, K$

- Assign all points to one cluster
- For $t = 1, \ldots, T$

 $Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n})$

 - For $n = 1, \ldots, N$

 - For $k = 1, \ldots, K$

 $\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k})$
EPPF: Calculating posterior

- Assign all points to one cluster
- For $t = 1, ..., T$
 - For $n = 1, ..., N$
 - $Z_n \sim \mathbb{P}(Z_n|X, \mu, Z_{-n})$
 - For $k = 1, ..., K$
 - $\mu_k \sim \mathbb{P}(\mu_k|X, Z, \mu_{-k})$
EPPF: Calculating posterior

Gibbs sampling: potential issues
EPPF: Calculating posterior

Gibbs sampling: potential issues
 • Bad mixing from dependence on cluster parameter
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter

Instead try:
collapsed sampler

[Neal 1992; MacEachern 1994; Neal 2000]
Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter

Instead try:

collapsed sampler

• Instead of $\mathbb{P}(Z, \mu|X)$

learn $\mathbb{P}(Z|X)$

[Neal 1992; MacEachern 1994; Neal 2000]
EPPF: Calculating posterior

Gibbs sampling: potential issues
• Bad mixing from dependence on cluster parameter
• Bad mixing since each indicator depends on rest
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

\[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

\[Z_n \sim \mathbb{P}(Z_n | X, \mu, Z_{-n}) \]
EPPF: Calculating posterior

Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest

\[Z_n \sim P(Z_n | X, \mu, Z_{-n}) \]

Instead try:
split-merge sampler

[Jain, Neal 2000]
EPPF: Calculating posterior

Gibbs sampling: potential issues

• Bad mixing from dependence on cluster parameter
• Bad mixing since each indicator depends on rest
• Non-conjugate prior
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest
- Non-conjugate prior

EPPF: Calculating posterior
Gibbs sampling: potential issues

- Bad mixing from dependence on cluster parameter
- Bad mixing since each indicator depends on rest
- Non-conjugate prior

Instead try:
Metropolis Hastings, auxiliary variables, etc

[Neal 2000]
Cluster labels

• For previous Gibbs sampler, choose by computational convenience
Cluster labels

Order of appearance

$k = 1$

$k = 2$

$k = 3$

$K = 3$
Cluster labels

Order of appearance

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$
Cluster labels

Order of appearance

• Recursively: nth person sits
 • at table k (of K) with probability
 $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability
 $\propto \theta$

$Z_1=1$
Cluster labels

Order of appearance

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
- at new table $K+1$ with probability $\propto \theta$
Cluster labels

Order of appearance

- Recursively: nth person sits
- at table k (of K) with probability $\propto (\# \text{ people there})$
- at new table $K+1$ with probability $\propto \theta$

$\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & Z_1=1 & & \\
2 & Z_2=1 & & \\
3 & & Z_3=2 & \\
4 & & & \\
5 & & & \\
6 & & & \\
7 & & & \\
8 & & & \\
9 & & & \\
\end{array}$

Cluster labels

Order of appearance

- Recursively: nth person sits
 - at table k (of K) with probability
 $\propto (# \text{ people there})$
 - at new table $K+1$ with probability
 $\propto \theta$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>$Z_1=1$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$Z_2=1$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$Z_3=2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$Z_4=3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cluster labels

Order of appearance

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability \(\propto (\text{# people there}) \)
 - at new table \(K+1 \) with probability \(\propto \theta \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Z_1 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(Z_2 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(Z_3 = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(Z_4 = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(Z_5 = 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cluster labels

Order of appearance

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$
Cluster labels

Order of appearance

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Recursively: nth person sits
- at table k (of K) with probability $\propto \left(\# \text{ people there}\right)$
- at new table $K+1$ with probability $\propto \theta$
Cluster labels

Order of appearance

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

- The clustering is exchangeable
Cluster labels

Order of appearance

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

- The clustering is exchangeable
- Z_n here NOT exchangeable
Cluster labels

Order of appearance

- Recursively: \(n \)th person sits
 - at table \(k \) (of \(K \)) with probability
 \[\propto (\# \text{ people there}) \]
 - at new table \(K+1 \) with probability
 \[\propto \theta \]

- The clustering is exchangeable
- \(Z_n \) here NOT exchangeable
- A matrix is a clustering and an integer labeling
Outline

I. Clusters
 • Overview
 • Distribution
 ◇ Clusters (Example: Chinese restaurant process)
 ◇ Data given clusters (Example: Gaussian mixture)
 ◇ Posterior
 • Proportions
 • Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 ◊ Generative model
 ◊ Posterior
 • Random probability measure

II. Features
Outline

I. Clusters
- Overview
- Distribution
- Proportions
 - Generative model
 - Posterior
- Random probability measure

II. Features
I. Clusters

• Overview
• Distribution
• Proportions
 ◊ Generative model (Example: CRP stick-breaking)
 ◊ Posterior
• Random probability measure

II. Features
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_0 = 1$, $W_0 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_0 = 1$, $W_0 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$

- Draw a ball uniformly from the urn
- Put it back with another ball of the same color

- Example: $G_0 = 1, W_0 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_0 = 1$, $W_0 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_1 = 2, W_1 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$

 ◊ Draw a ball uniformly from the urn
 ◊ Put it back with another ball of the same color

- Example: $G_1 = 2$, $W_1 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_1 = 2$, $W_1 = 1$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_2 = 2$, $W_2 = 2$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

- Example: $G_5 = 4$, $W_5 = 3$
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

Then $\exists V \sim \text{Beta}(G_0, W_0)$

[Polya 1930; Freedman 1965]
Aside: Polya Urn

- G_0 initial gray balls
- W_0 initial white balls
- $n = 1, 2, ...$
 - Draw a ball uniformly from the urn
 - Put it back with another ball of the same color

Then $\exists V \sim \text{Beta}(G_0, W_0)$

s.t. $G_{n+1} - G_n \overset{iid}{\sim} \text{Bernoulli}(V)$

[Polya 1930; Freedman 1965]
CRP as Polya urns
CRP as Polya urns

• Recursively: \(n \)th person sits
 • at table \(k \) (of \(K \)) with probability
 \(\propto (\# \text{ people there}) \)
 • at new table \(K+1 \) with probability
 \(\propto \theta \)
CRP as Polya urns

• Recursively: nth person sits
 • at table k (of K) with probability
 $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability
 $\propto \theta$
CRP as Polya urns

• Recursively: nth person sits
 • at table k (of K) with probability $\propto (# \text{ people there})$
 • at new table $K+1$ with probability $\propto \theta$
CRP as Polya urns

• Recursively: nth person sits
 • at table k (of K) with probability
 $\propto (\# \text{ people there})$
 • at new table $K+1$ with probability
 $\propto \theta$

• First cluster: Polya urn with
 $$G_{1,0} = 1, W_{1,0} = \theta$$
CRP as Polya urns

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

- First cluster: Polya urn with
 \[G_{1,0} = 1, W_{1,0} = \theta \]
 \[V_1 \sim \text{Beta}(1, \theta) \]
CRP as Polya urns

- First cluster: Polya urn with
- Second cluster if not in first: Polya urn

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$

- First cluster: Polya urn with
 \[G_{1,0} = 1, W_{1,0} = \theta \]
 \[V_1 \sim \text{Beta}(1, \theta) \]

- Second cluster if not in first: Polya urn
 \[G_{2,0} = 1, W_{2,0} = \theta \]
CRP as Polya urns

- First cluster: Polya urn with $G_{1,0} = 1, W_{1,0} = \theta$
 $V_1 \sim \text{Beta}(1, \theta)$

- Second cluster if not in first: Polya urn
 $G_{2,0} = 1, W_{2,0} = \theta$
 $V_2 \sim \text{Beta}(1, \theta)$

- Recursively: nth person sits
 - at table k (of K) with probability $\propto (\# \text{ people there})$
 - at new table $K+1$ with probability $\propto \theta$
CRP as Polya urns

- Recursively: nth person sits
 - at table k (of K) with probability
 \[\propto (\# \text{ people there}) \]
 - at new table $K+1$ with probability
 \[\propto \theta \]

- First cluster: Polya urn with
 \[G_{1,0} = 1, W_{1,0} = \theta \]
 \[V_1 \sim \text{Beta}(1, \theta) \]

- Second cluster if not in first: Polya urn
 \[G_{2,0} = 1, W_{2,0} = \theta \]
 \[V_2 \sim \text{Beta}(1, \theta) \]
CRP as Polya urns
Another way to generate the CRP:

- Draw random beta variables
- Bernoulli coin flips until success
CRP as Polya urns

Another way to generate the CRP:

- Draw random beta variables
CRP as Polya urns

Another way to generate the CRP:

• Draw random beta variables
CRP as Polya urns

Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
CRP as Polya urns

Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
CRP as Polya urns

Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
CRP as Polya urns

Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
Another way to generate the CRP:

- Draw random beta variables
- For each n, Bernoulli coin flips until success
CRP as Polya urns

Yet another way to generate the CRP:
CRP as Polya urns

Yet another way to generate the CRP:

\[V_k \sim \text{Beta}(1, \theta), \quad k = 1, 2, \ldots \]
CRP as Polya urns

Yet another way to generate the CRP:

$$V_k \sim iid \text{ Beta}(1, \theta), \quad k = 1, 2, \ldots$$

$$q_k = V_k \prod_{j=1}^{k-1} (1 - V_j), \quad k = 1, 2, \ldots$$
CRP as Polya urns

Yet another way to generate the CRP:

\[V_k \overset{iid}{\sim} \text{Beta}(1, \theta), \quad k = 1, 2, \ldots \]

\[q_k = V_k \prod_{j=1}^{k-1} (1 - V_j), \quad k = 1, 2, \ldots \]

\[Z_n \overset{iid}{\sim} q, \quad n = 1, 2, \ldots \]
CRP as Polya urns

Yet another way to generate the CRP:

\[V_k \overset{iid}{\sim} \text{Beta}(1, \theta), \quad k = 1, 2, \ldots \]

\[q_k = V_k \prod_{j=1}^{k-1} (1 - V_j), \quad k = 1, 2, \ldots \]

\[Z_n \overset{iid}{\sim} q, \quad n = 1, 2, \ldots \]
CRP as Polya urns

Yet another way to generate the CRP:

\[V_k \overset{iid}{\sim} \text{Beta}(1, \theta), \quad k = 1, 2, \ldots \]

\[q_k = V_k \prod_{j=1}^{k-1} (1 - V_j), \quad k = 1, 2, \ldots \]

\[Z_n \overset{iid}{\sim} q, \quad n = 1, 2, \ldots \]
CRP as Polya urns

Yet another way to generate the CRP:

\[V_k \overset{iid}{\sim} \text{Beta}(1, \theta), \quad k = 1, 2, \ldots \]

\[q_k = V_k \prod_{j=1}^{k-1} (1 - V_j), \quad k = 1, 2, \ldots \]

\[Z_n \overset{iid}{\sim} q, \quad n = 1, 2, \ldots \]
Stick-breaking

[McCloskey 1965; Patil and Taillie 1977; Sethuraman 1984; Ishwaran, James 2001]
Stick-breaking
Stick-breaking
Stick-breaking

\[V_1 = \frac{1}{1-V_1} \]

\[k = 1, 2, 3, 4, 5 \]
Stick-breaking

\[V_2(1 - V_1) \]

\[(1 - V_1)(1 - V_2) \]
Stick-breaking

\[
V_1 \quad V_2(1-V_1)
\]

\[
(1-V_1)(1-V_2)
\]
Stick-breaking

\[V_1, V_2(1-V_1), V_3(1-V_2)(1-V_1), \ldots \]
Stick-breaking: part of full gen model

\[\phi_k \sim H \]

\[X_n \overset{\text{iid}}{\sim} F(\phi_{Z_n}) \]

\[n = 1, \ldots, N \]

\[\phi_k \overset{\text{iid}}{\sim} H \]
Stick-breaking: part of full gen model

\[Z_n \overset{iid}{\sim} q \]

\[V_k \overset{iid}{\sim} \text{Beta}(1, \theta) \]

\[q_k = V_k \prod_{j=1}^{k-1} (1 - V_j) \]

\[Z_n \overset{iid}{\sim} q \]

\[\phi_k \overset{iid}{\sim} H \]

\[X_n \overset{\text{indep}}{\sim} F(\phi_{Z_n}) \]
I. Clusters
- Overview
- Distribution
- Proportions
 - Generative model (Example: CRP stick-breaking)
 - Posterior
- Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 ◇ Generative model (Example: CRP stick-breaking)
 ◇ Posterior
 • Random probability measure

II. Features
Why use stick-breaking?

- More general models
- May want to infer the stick lengths
Stick-breaking: calculating posterior

MCMC
MCMC
- Finite approximation

Stick-breaking: calculating posterior
Stick-breaking: calculating posterior

MCMC
• Finite approximation

[1, 2, 3, 4, 5]...

\[k \]

[Ishwaran, Zarepour 2000]
Stick-breaking: calculating posterior

MCMC
- Finite approximation
- Retrospective sampling
Stick-breaking: calculating posterior

MCMC
- Finite approximation
- Retrospective sampling

\[
q_1 \quad q_2 \quad q_3 \quad q_4
\]

[Papaspiliopoulos, Roberts 2008]
Stick-breaking: calculating posterior

MCMC
- Finite approximation
- Retrospective sampling
- Slice sampling
Stick-breaking: calculating posterior

MCMC

- Finite approximation
- Retrospective sampling
- Slice sampling

![Bar chart showing stick-breaking](chart.png)

[Walker 2007]
Stick-breaking: calculating posterior

MCMC
• Finite approximation
• Retrospective sampling
• Slice sampling

Variational methods
• Mean field
MCMC
- Finite approximation
- Retrospective sampling
- Slice sampling

Variational methods
- Mean field

Stick-breaking: calculating posterior

Z_n, ϕ_k, V_k

$V_k \rightarrow q_k \rightarrow Z_n \rightarrow X_n$

[Blei, Jordan 2004]
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 ◇ Generative model (Example: CRP stick-breaking)
 ◇ Posterior
 • Random probability measure

II. Features
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 ◊ Generative model
 ◊ Posterior
 • Random probability measure

II. Features
Stick-breaking: extensions

The diagram illustrates the stick-breaking process with indices k and n. Each row represents a different n value, and the columns represent k values. The shaded areas indicate the remaining length of the stick after breaking.

- For $n=1$, there is 1 column, indicating a single break.
- For $n=2$, there are 2 columns, with the second column having a shaded bar.
- For $n=3$, there are 3 columns, with the second and third columns having shaded bars.
- For $n=4$, there are 4 columns, with the second, third, and fourth columns having shaded bars.
- For $n=5$, there are 5 columns, with the second, third, fourth, and fifth columns having shaded bars.

The bar graph below the grid shows the distribution of sticks remaining at each k value, illustrating the cumulative effect of breaking the stick.
Connections

Exchangeable clustering

EPPF

?

Chinese restaurant

CRP

CRP

stick-breaking
Kingman paintbox
Kingman paintbox
Kingman paintbox

[Kingman 1978]
Kingman paintbox
Kingman paintbox

[Kingman 1978]
Connections

Exchangeable clustering

- EPPF
- Kingman paintbox

Chinese restaurant

- CRP
- CRP stick-breaking
Outline

I. Clusters
 • Overview
 • Distribution
 • Proportions
 ◇ Generative model
 ◇ Posterior
 • Random probability measure

II. Features
Outline

I. Clusters
• Overview
• Distribution
• Proportions
• Random probability measure

II. Features
Kingman paintbox

Cat cluster

Dog cluster

[Kingman 1978]
Kingman paintbox

\[\phi_2 \quad \phi_1 \quad \phi_4 \quad \ldots\]

[Kingman 1978]
Cluster labels

Cluster labels are shown in the diagram. The order of appearance labels for each cluster is also indicated. For example, $Z_1 = 1$, $Z_2 = 1$, $Z_3 = 2$, $Z_4 = 3$, $Z_5 = 2$, $Z_6 = 4$, and $Z_7 = 1$.
Cluster labels

Order of appearance labels

Random labels

\[
\begin{align*}
Z_1 &= 1 \\
Z_2 &= 1 \\
Z_3 &= 2 \\
Z_4 &= 3 \\
Z_5 &= 2 \\
Z_6 &= 4 \\
Z_7 &= 1 \\
\end{align*}
\]
Cluster labels

Cluster labels

Order of appearance labels

Random labels

\(Z_1 = 1 \)
\(Z_2 = 1 \)
\(Z_3 = 2 \)
\(Z_4 = 3 \)
\(Z_5 = 2 \)
\(Z_6 = 4 \)
\(Z_7 = 1 \)

\(n \)

\(k \)

\(\phi_1 \)
\(\phi_2 \)
\(\phi_4 \)

\(Z'_1 = \phi_1 \)
Cluster labels

Order of appearance labels

- $Z_1 = 1$
- $Z_2 = 1$
- $Z_3 = 2$
- $Z_4 = 3$
- $Z_5 = 2$
- $Z_6 = 4$
- $Z_7 = 1$

Random labels

- $Z'_1 = \phi_1$
- $Z'_2 = \phi_1$
Cluster labels

\[\phi_1, \phi_2, \phi_4, \ldots \]

<table>
<thead>
<tr>
<th>n</th>
<th>(k)</th>
<th>Order of appearance labels</th>
<th>Random labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(Z_1 = 1)</td>
<td>(Z'_1 = \phi_1)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(Z_2 = 1)</td>
<td>(Z'_2 = \phi_1)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(Z_3 = 2)</td>
<td>(Z'_3 = \phi_2)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>(Z_4 = 3)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>(Z_5 = 2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>(Z_6 = 4)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>(Z_7 = 1)</td>
<td></td>
</tr>
</tbody>
</table>
Cluster labels

\[\begin{align*}
\phi_1 & = 1 \\
\phi_2 & = 7 \\
\phi_3 & = 2 \\
\phi_4 & = 6 \\
\phi_5 & = 4 \\
\phi_6 & = 1 \\
\phi_7 & = 3
\end{align*} \]

Order of appearance labels

- \(Z_1 = 1 \)
- \(Z_2 = 1 \)
- \(Z_3 = 2 \)
- \(Z_4 = 3 \)
- \(Z_5 = 2 \)
- \(Z_6 = 4 \)
- \(Z_7 = 1 \)

Random labels

- \(Z'_1 = \phi_1 \)
- \(Z'_2 = \phi_1 \)
- \(Z'_3 = \phi_2 \)
- \(Z'_4 = \phi_3 \)
Cluster labels

\[Z_1 = 1 \]
\[Z_2 = 1 \]
\[Z_3 = 2 \]
\[Z_4 = 3 \]
\[Z_5 = 2 \]
\[Z_6 = 4 \]
\[Z_7 = 1 \]

Random labels

\[Z'_1 = \phi_1 \]
\[Z'_2 = \phi_1 \]
\[Z'_3 = \phi_2 \]
\[Z'_4 = \phi_3 \]
\[Z'_5 = \phi_2 \]
Cluster labels

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order of appearance labels

\[
\begin{align*}
Z_1 &= 1 \\
Z_2 &= 1 \\
Z_3 &= 2 \\
Z_4 &= 3 \\
Z_5 &= 2 \\
Z_6 &= 4 \\
Z_7 &= 1
\end{align*}
\]

Random labels

\[
\begin{align*}
Z'_1 &= \phi_1 \\
Z'_2 &= \phi_1 \\
Z'_3 &= \phi_2 \\
Z'_4 &= \phi_3 \\
Z'_5 &= \phi_2 \\
Z'_6 &= \phi_4
\end{align*}
\]
Cluster labels

Order of appearance labels

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Random labels

<table>
<thead>
<tr>
<th></th>
<th>Z_1 = 1</th>
<th>Z_2 = 1</th>
<th>Z_3 = 2</th>
<th>Z_4 = 3</th>
<th>Z_5 = 2</th>
<th>Z_6 = 4</th>
<th>Z_7 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z'</td>
<td>Z'_1 = \phi_1</td>
<td>Z'_2 = \phi_1</td>
<td>Z'_3 = \phi_2</td>
<td>Z'_4 = \phi_3</td>
<td>Z'_5 = \phi_2</td>
<td>Z'_6 = \phi_4</td>
<td>Z'_7 = \phi_1</td>
</tr>
</tbody>
</table>
Cluster labels

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order of appearance labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_1 = 1$</td>
</tr>
<tr>
<td>$Z_2 = 1$</td>
</tr>
<tr>
<td>$Z_3 = 2$</td>
</tr>
<tr>
<td>$Z_4 = 3$</td>
</tr>
<tr>
<td>$Z_5 = 2$</td>
</tr>
<tr>
<td>$Z_6 = 4$</td>
</tr>
<tr>
<td>$Z_7 = 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z'_1 = \phi_1$</td>
</tr>
<tr>
<td>$Z'_2 = \phi_1$</td>
</tr>
<tr>
<td>$Z'_3 = \phi_2$</td>
</tr>
<tr>
<td>$Z'_4 = \phi_3$</td>
</tr>
<tr>
<td>$Z'_5 = \phi_2$</td>
</tr>
<tr>
<td>$Z'_6 = \phi_4$</td>
</tr>
<tr>
<td>$Z'_7 = \phi_1$</td>
</tr>
</tbody>
</table>

$\phi_k \sim^{iid} H$

H continuous
Cluster labels

Order of appearance labels

$Z_1 = 1$
$Z_2 = 1$
$Z_3 = 2$
$Z_4 = 3$
$Z_5 = 2$

Random labels

$Z'_1 = \phi_1$
$Z'_2 = \phi_1$
$Z'_3 = \phi_2$
$Z'_4 = \phi_3$
$Z'_5 = \phi_2$

?
Cluster labels

Order of appearance labels

\[Z_1 = 1 \]
\[Z_2 = 1 \]
\[Z_3 = 2 \]
\[Z_4 = 3 \]
\[Z_5 = 2 \]

Random labels

\[Z'_1 = \phi_1 \]
\[Z'_2 = \phi_1 \]
\[Z'_3 = \phi_2 \]
\[Z'_4 = \phi_3 \]
\[Z'_5 = \phi_2 \]
Cluster labels

Order of appearance labels

\[Z_1 = 1 \]
\[Z_2 = 1 \]
\[Z_3 = 2 \]
\[Z_4 = 3 \]
\[Z_5 = 2 \]

Random labels

\[Z'_1 = \phi_1 \]
\[Z'_2 = \phi_1 \]
\[Z'_3 = \phi_2 \]
\[Z'_4 = \phi_3 \]
\[Z'_5 = \phi_2 \]
Random probability measure

\[\Phi \]

\[\phi_3 \phi_2 \phi_4 \phi_5 \phi_1 \]
Random probability measure

- Def: Random measure with total mass one
Random probability measure

• Def: Random measure with total mass one

• Here, we also have point process
Random probability measure

- Def: Random measure with total mass one

Here, we also have point process

\[\Phi \]

atom
Random probability measure

- Def: Random measure with total mass one

Example: Dirichlet process
- The random probability measure with CRP stick-breaking atom sizes

Here, we also have point process
Clusters: augmentation
Clusters: augmentation

random partition & EPPF
Clusters: augmentation

random partition
& EPPF
CRP
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

random partition
& EPPF
CRP
Clusters: augmentation

$$\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$$

random partition & EPPF
CRP
(continuous-valued)
random cluster labels
Clusters: augmentation

\[\pi_9 = \{ \{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\} \} \]

random partition & EPPF
CRP (continuous-valued)
random cluster labels
CRP with cluster means
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, \ldots, Z'_9 = \phi_1 \]

random partition & EPPF
CRP (continuous-valued)
random cluster labels
CRP with cluster means
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \]
\[\{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, \ldots, Z'_9 = \phi_1 \]

random partition & EPPF
CRP
(continuous-valued)
random cluster labels
CRP with cluster means
cluster proportions/
Kingman paintbox
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1 \]
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, \ldots, Z'_9 = \phi_1 \]

random partition & EPPF

CRP

(continuous-valued)

random cluster labels

CRP with cluster means

cluster proportions/

Kingman paintbox

CRP stick-breaking
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, \ldots, Z'_9 = \phi_1 \]

random partition & EPPF
CRP
(continuous-valued)
random cluster labels
CRP with cluster means
cluster proportions/
Kingman paintbox
CRP stick-breaking

random, discrete probability measure
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1 \]

random partition & EPPF

CRP
(continuous-valued)

random cluster labels

CRP with cluster means

cluster proportions/

Kingman paintbox

CRP stick-breaking

random, discrete probability measure

Dirichlet process
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1 \]
Clusters: augmentation

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, ..., Z'_9 = \phi_1 \]

random partition & EPPF
CRP
(continuous-valued)
random cluster labels
CRP with cluster means
cluster proportions/
Kingman paintbox
CRP stick-breaking
random, discrete
probability measure
Dirichlet process
Clusters: integrating out

$$\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\}$$

$$Z'_1 = \phi_1, Z'_2 = \phi_1, Z'_3 = \phi_2, \ldots, Z'_9 = \phi_1$$

random partition & EPPF
CRP
(continuous-valued)
random cluster labels
CRP with cluster means
cluster proportions/
Kingman paintbox
CRP stick-breaking

random, discrete probability measure
Dirichlet process
Why the CRP?

Finite, fixed number of clusters
Why the CRP?

Finite, fixed number of clusters
Why the CRP?

Finite, fixed number of clusters

$$(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta)$$
Why the CRP? Finite, fixed number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta) \]
Why the CRP? Finite, fixed number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z_n \overset{iid}{\sim} q \]

\[k = 1, \ldots, K \]

\[(q_k)_{k=1}^K \overset{}{\sim} \text{Dirichlet}(K, \theta) \]
Why the CRP?

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

Finite, fixed number of clusters

\[Z_n \overset{iid}{\sim} q \]
\[k = 1, \ldots, K \]

\[(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta) \]

\[\phi_k \overset{iid}{\sim} H \]
\[k = 1, \ldots, K \]
Why the CRP? Finite, fixed number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z_n \overset{iid}{\sim} q \]
\[k = 1, \ldots, K \]

\[(q_k)_{k=1}^{K} \overset{iid}{\sim} \text{Dirichlet}(K, \theta) \]

\[\phi_k \overset{iid}{\sim} H \]
\[k = 1, \ldots, K \]
Why the CRP?

Unbounded number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z_n \overset{iid}{\sim} q \]

\[k = 1, \ldots, K \]

\[(q_k)_{k=1}^K \sim \text{Dirichlet}(K, \theta) \]

\[\phi_k \overset{iid}{\sim} H \]

\[k = 1, \ldots, K \]
Why the CRP?

Unbounded number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\}, \{8, 4, 6\}, \{5, 3\}\} \]

\[Z_n \overset{iid}{\sim} q \]

\[k = 1, 2, \ldots \]

\[(q_k)_{k=1}^{\infty} \sim \text{atom weights of Dirichlet Process}(\theta) \]

\[\phi_k \overset{iid}{\sim} H \]

\[k = 1, 2, \ldots \]
Why the CRP? Unbounded number of clusters

\[\pi_9 = \{\{9, 2, 7, 1\} , \{8, 4, 6\} , \{5, 3\}\} \]

\[Z_n \overset{iid}{\sim} \theta \]

\[k = 1, \ldots , K \]

CRP is the marginal distribution on partitions of the data indices

\[(q_k)^{\infty}_{k=1} \sim \text{atom weights of Dirichlet Process}(\theta) \]

\[\phi_k \overset{iid}{\sim} H \]

\[k = 1, \ldots , K \]