
Statistical Profile Estimation in Database Systems

MICHAEL V. MANNINO

Department of Manugement Science and Information Systems, University of Texas at Austin,
Austin, Texas 78712

PAICHENG CHU

Department of Accounting and Management Inform&ion Systems, Ohio State University, Columbus,
Ohio 43210

THOMAS SAGER

Department of Management Science and Information Systems, University of Texas at Austin,
Austin, Texas 78712

A statistical profile summarizes the instances of a database. It describes aspects such as
the number of tuples, the number of values, the distribution of values, the correlation
between value sets, and the distribution of tuples among secondary storage units.
Estimation of database profiles is critical in the problems of query optimization, physical
database design, and database performance prediction. This paper describes a model of a
database of profile, relates this model to estimating the cost of database operations, and
surveys methods of estimating profiles. The operators and objects in the model include
build profile, estimate profile, and update profile. The estimate operator is classified by
the relational algebra operator (select, project, join), the property to be estimated
(cardinality, distribution of values, and other parameters), and the underlying method
(parametric, nonparametric, and ad-hoc). The accuracy, overhead, and assumptions of
methods are discussed in detail. Relevant research in both the database and the statistics
disciplines is incorporated in the detailed discussion.

Categories and Subject Descriptors: H.0 [Information Systems]: General; H.2.2
[Database Management]: Physical Design--access methods; H.2.3 [Database
Management]: Languages-query languages; H.2.4 [Database Management]:
Systems-query processing; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-query formulution; retrieval models; search process; selection
process

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Access plan, Boolean expressions, database profile,
relational model

INTRODUCTION an integral element of the optimizing com-
ponent in query optimization and, in some

The quantitative properties that summa- cases, physical database design.
rize the instances of a database are its The objective of query optimization is to
statistical profile. Estimation of profiles is derive an efficient plan for obtaining the

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0360-03OO/SS/O900-0191$01.50

ACM Computing Surveys, Vol. 20, No. 3 September 1988

192 l M. V. Mannino et al.

CONTENTS

INTRODUCTION
1. DATABASE PROFILE AS A COMPLEX

OBJECT
2. RELATIONSHIP BETWEEN PROFILE AND

COST ESTIMATION
2.1 Basics of Cost Estimation
2.2 Example Cost Extimatas
2.3 Sensitivity Analysis

3. PRIMER ON STATISTICAL METHODS
3.1 Common Parametric Distributions
3.2 Nonparametric Estimation

4. ESTIMATION OF SINGLE OPERATIONS
4.1 Select
4.2 Project
4.3 Join
4.4 Set Operators
4.5 Summary

5. ESTIMATION OF MULTIPLE OPERATIONS
5.1 Projections after Selections and Joins
5.2 Joins after Selections

6. FUTURE DIRECTIONS
7. CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

information requested by the user. A plan
is a high-level description of a program.
It describes the algorithms, file structures,
order of operations, and outer/inner
loop variables. To find an efficient plan,
an optimizer generates and evaluates a
number of alternatives. The evaluation of
alternatives is based on cost formulas
that estimate the number of secondary
storage accesses, the central processing
effort, and in the case of distributed data-
bases, the communication costs and de-
lays. Since these formulas depend directly
or indirectly on the estimated size of the
operands, statistical profile estimation
assumes importance in the process of query
optimization.

Statistical profile estimation can also
play an important role in physical database
design problems such as index selection.
For example, DBDSGN [Finkelstein et al.
19881, a tool for index selection, utilizes the
query optimizer developed for the System
R database manager [Chamberlin et al.
19811. The choice of indexes is based largely
on their screening ability, which is heavily

influenced by the database profiles and the
Boolean expressions in a standard set of
queries.

There is no doubt that profile estimation
plays an important role in query optimiza-
tion and other problems. The question that
faces designers of such systems is, How
important? How sensitive to accurate size
estimates are the cost models? In which
circumstances are the cost models sensi-
tive? How much effort in terms of time and
space should be devoted to accurate esti-
mation of size and other profile properties?
These questions are difficult to answer.

This paper provides insights into these
questions and presents both a tutorial and
a survey on the subject of statistical profile
estimation with a focus on its application
in query optimization. It presents a simple
model of a database profile, relates this
model to cost estimation, describes the un-
derlying statistical methods for estimating
profiles, and demonstrates the application
of the statistical methods for estimating
the results of individual relational algebra
operations, as well as trees of relational
algebra operations. Unresolved issues and
potential research opportunities are also
explored. It is assumed that the reader
possesses knowledge of the relational data
model and elementary statistics.

The remainder of this paper is organized
as follows: Section 1 describes a database
profile as a complex object; the properties
and operations on profiles are described.
Section 2 discusses the relationship be-
tween cost and profile estimation, with em-
phasis on how certain assumptions affect
cost estimation. Section 3 reviews basic
statistical techniques, and Section 4 shows
how these techniques have been applied to
estimating the cardinality of select, project,
and join operations. Section 5 discusses
techniques for estimating the cardinality
and other parameters of trees of rela-
tional algebra operations. Section 6 ex-
plores open research questions. Section 7
concludes the work.

1. DATABASE PROFILE AS A COMPLEX
OBJECT

In this section we first describe a statistical
profile as a complex object and then discuss

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 193

I

Relation Profile: 1
Cardinality: 1000
Pages: 1200
Number of Attributes: 7
Attribute Profiles 0,

Attribute Profile: 1
Values: 100
Size: 12
Minimum Value: 10
Maximum Value: 60
Distribution: Uniform
Index Profiles p

Index Profile: 1
Leaf Pages: 100
Key Size: 12
Height: 4
Values: 100

Figure 1. Example profiles.

the operations on profiles. For illustrative
purposes, the relational data model is cho-
sen as the basis of discussion. The ideas
and techniques presented herein, however,
can be extended to other data models and
applications. When referring to relational
databases, we use the formal terms relation,
tuple, and attribute instead of the more
familiar terms table, row, and column.

A statistical profile can be viewed as a
complex object composed of quantitative
descriptors. Statisticians have long used
quantitative descriptors to summarize data
and make inferences. The most commonly
used quantitative descriptors fall into four
main categories: (1) descriptors of central
tendency such as mode, mean, and median,
(2) descriptors of dispersion such as range
(maximum and minimum), variance, and
standard deviation, (3) descriptors of size
such as the number of instances (cardinal-
ity) and the number of distinct values, and
(4) descriptors of frequency distribution

such as normality, uniformity, and value
intervals and counts.

A statistical profile is built from these
descriptors. A profile can be regarded as a
complex object because it can be described
by other profiles. In Figure 1, a relation
profile contains a list of attribute profiles,
which in turn are described by index pro-
files. The relation profiles include proper-
ties such as the tuple cardinality and the
number of secondary storage units (pages).
The attribute profiles contain properties
such as the number of distinct values,
the parameters of the distribution, and the
range. The index profiles characterize the
properties of tree-structured indexes such
as the number of levels, the number of leaf
pages, and the percentage of free space.

The choice of descriptors depends on the
usual time and space trade-offs plus the
requirements of the query optimizer. If
the database system has an optimizer that
does not estimate the cost of alternative

ACM Computing Surveys, Vol. 20, No. 3 September 1988

194 l M. V. Mannino et al.

Target Target
Profile Profile r A

JOIN

Intermediate Intermediate
Profile :1’

Figure 2. Example access plan.

plans, only a few descriptors are main-
tained, such as the number of tuples and
pages for each relation. If the optimizer
computes the cost of alternative plans, then
descriptors about dispersion, distribution,
and index properties are also maintained.

Profiles describe base and intermediate
objects. A base object physically exists; for
instance, a relation in the database is a
base object. Applying operators to base ob-
jects results in intermediate objects; for
instance, performing a selection on a base
relation results in an intermediate relation.

In query optimization, profiles rather
than actual objects are manipulated. Pro-
files and operations are encapsulated in
hierarchically structured access plans (Fig-
ure 2). The leaf nodes of a plan are base
profiles. Internal nodes are operations or
intermediate profiles. The operations in-
clude counterparts of the relational algebra
operators such as select, project and join

and restructuring operations such as SORT
and BUILDINDEX. A profile above an
operation describes the output relation.

A base profile is built from its associated
base object occurrences. Some of the de-
scriptors are routinely maintained by the
database management system such as the
tuple and page cardinality. Others are spec-
ified by the database designer such as an
attribute’s value range. The remainder are
collected on demand or perhaps according
to a periodic schedule by statistical pro-
grams that either sample the database or
exhaustively scan all tuples.

Intermediate profiles, on the other hand,
have to be estimated, since query optimiz-
ers do not generally work with intermediate
objects. Optimizers are designed in this
manner because global optimization cannot
be done if the results of an operation must
be materialized before the next step is de-
cided and optimizing on the fly forces the

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems

Database -+ii+ Base Profile

(4

l 195

Base Profile 47

Database
Operation

4 UPDATE t----@ ;,e;;s;;ofi,e

(b)

Profile(s)

Descr,it,onJTb Operation i!I;neecliate

(c)

Figure 3. Data flow of profile operators.
(a) BUILD operator. (b) UPDATE operator. (c) ESTIMATE operator.

execution of the query and its optimization
to be performed simultaneously. As a con-
sequence of this policy, there is a degree of
uncertainty associated with an interme-
diate profile reflecting its accuracy and
reliability. As an intermediate profile
moves farther away from base profiles,
its accuracy diminishes.

Base and intermediate profiles can also
be distinguished by their applicable opera-
tors. Base profiles are created by the
BUILD operator (Figure 3a) and updated
by the UPDATE operator (Figure 3b). The
BUILD operator employs statistical func-
tions to compute each profile property used
by the query optimizer. The BUILD oper-
ator can compute the profile properties
either by scanning the database exhaus-
tively or by sampling. It is triggered by a
command given by the database adminis-
trator. The UPDATE operator changes the
value of selected profile properties to reflect
database changes. It is internally triggered
by the database system. For example, the
tuple cardinality is sometimes changed
every time a tuple is added. Usually only
the simplest profile properties are dynami-
cally updated. For the others, the BUILD
operator must be executed again to revise

their values. The ESTIMATE operator
(Figure 3c) constructs intermediate profiles
from base profiles or other intermediate
profiles and an operation description. It is
performed by the query optimizer during
the evaluation of an access plan. Section 3
describes the underlying statistical meth-
ods for estimating database profiles. Sec-
tions 4 and 5 describe the estimation of
tuple cardinality and conditional profile
properties, respectively.

.2. RELATIONSHIP BETWEEN PROFILE AND
COST ESTIMATION

Profiles are maintained primarily because
of their effect on cost estimation and ulti-
mately on plan selection. Although no one
doubts that there is a strong relationship,
a precise characterization is still an open
question. This is partly due to the large
number of cases to consider, which is influ-
enced by the access plan operators, envi-
ronment (centralized versus distributed),
storage structures, algorithms, and relation
sizes. Moreover, the question is not just
their relationship but the sensitivity on the
choice of access plans. Inaccuracies can be
tolerated as long as the optimizer can avoid

ACM Computing Surveys, Vol. 20, No. 3 September 1988

196 . M. V. Mannino et al.

bad plans. To complicate matters further,
optimizers often make simplifying assump-
tions, such as ignoring the effects of mul-
tiple users, buffer replacement policies, and
logging and concurrency control activity.
Accuracy in profile estimation cannot com-
pensate for these simplifying assumptions.

This section explores the relationship be-
tween profile and cost estimation. We first
describe the nature of cost estimation with
an emphasis on the typical assumptions
used. We then present a simple example
that demonstrates the sensitivity under
varying assumptions. Finally, we summa-
rize studies of the sensitivity between
profile and cost estimation.

2.1 Basics of Cost Estimation

The economic principle requires that opti-
mization procedures either maximize out-
put for a given collection of resources or
minimize resource usage for a given level of
output. In query optimization, the objective
is to minimize the resources needed to eval-
uate an expression that retrieves or updates
a database. Resources can be considered as
the response time (the user’s time) or the
processing effort of the computer. In cen-
tralized database systems these objectives
coincide, and optimizers attempt to mini-
mize processing effort. In distributed data-
base systems these objectives may not
coincide, and the optimization problem
can be much more difficult. In this paper
we concentrate on centralized database
systems, but we indicate how profile
estimation influences optimization in
distributed systems.

There are a number of contributors to
processing effort of which a query optimizer
can influence only a few. Teorey and Fry
[1982] identify effort factors such as CPU
service time, CPU queue waiting time, I/O
service time, I/O queue waiting time, lock-
out delay, and communications delay. The
CPU and I/O waiting times and the lockout
delays are heavily influenced by the mix of
jobs. It is very difficult to influence these
by the selection of specific access plans.
The I/O and CPU service times and, in the
case of distributed databases, the commu-
nication delays can be directly influenced
by the access plan chosen.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Therefore, most query optimizers mea-
sure cost as a weighted sum of I/O, CPU,
and communication costs and delays. The
weights can be assigned at database gener-
ation time to reflect a specific environment.
The I/O cost is frequently measured by the
estimated number of logical page reads and
writes. A reference to a database page is a
logical reference. If the database page is not
in the buffer, a logical reference becomes a
physical reference. To estimate the physical
references, one must consider the effects of
buffer sizes, replacement policies, and con-
tention for buffer space among the different
operations of a plan. For details of a model
that estimates the physical references, con-
sult Mackert and Lohman [1986b].

CPU cost has been measured in various
ways, primarily because researchers do not
agree on the contribution of CPU effort to
total cost. Some researchers [Mackert and
Lohman 1986a; Dewitt et al. 19841 mea-
sure it on a per operator basis to reflect
relative differences in CPU effort. For ex-
ample, the estimated CPU cost to sort 1000
tuples will be more than the estimated cost
to scan 1000 tuples. Other researchers,
however, do not agree that CPU cost needs
to be measured in such a detailed manner.
Some have ignored CPU costs entirely
[Kooi 19801 or used simple measures such
as the number of storage system calls
[Selinger et al. 19791 or the number of out-
put tuples [Kumar and Stonebraker 19871.

Communication costs are frequently
measured by the number of bytes transmit-
ted [Goodman et al. 1981; Hevner and Yao
1979; Kerschberg et al. 19821. In the dis-
tributed database System RX [Lohman et
al. 19851 the number of messages is also
used, where the message cost represents
the fixed overhead to transmit a number
of bytes.

As discussed, query optimizers often
make assumptions about what resources to
measure. They also often make assump-
tions about the content of database profiles.
Christodoulakis [1984131 identified five sim-
plifying assumptions:

(1) Uniformity of attribute values: There
are an equal number of tuples with each
value.

Statistical Profile Estimation in Database Systems l 197

(2)

(3)

(4)

(5)

Independence of attribute values: The
values of two attributes (say A and B)
are independent if the conditional
probability of an A value given a B
value is equal to the probability of ob-
taining the A value.
Uniformity of queries: Queries refer-
ence all attribute values with the same
frequency.
Constant number of tuples per page:
Each page contains the average number
of tuples; that is, the probability of
referencing any page is l/P, where P is
the number of pages.
Random placement of tuples among
pages: The placement of tuples among
pages does not affect their probability
of reference; that is, the probability of
referencing any tuple is l/N, where N
is the number of tuples.

Assumptions 1 and 2 affect the estimates
of the sizes of plan operations. Assump-
tion 3 affects the size estimate of queries
that reference a parameter and physical
database design problems. Assumptions 4
and 5 affect the estimation of logical page
references given an estimated number
of tuples.

These assumptions simplify the cost es-
timation effort, but they can also decrease
estimation accuracy. Some query optimiz-
ers improve cost estimation by a more de-
tailed modeling for assumptions 1 and 2.
Few optimizers model assumptions 3-5 in
more detail.

2.2 Example Cost Estimates

To depict the relationship between profile
and cost estimation further, we show cost
estimates under varying assumptions for a
simple query and several alternative pro-
cessing strategies. We use an example
based on the student population of a major
university. Similar examples have been de-
scribed for financial information on large
companies [Piatetsky-Shapiro and Connell
19841 and for the population of Canadian
engineers [Christodoulakis 1983a].

Consider the following query, which lists
students over 33 years old with a business

major:

Assume nonclustered indexes are main-
tained for the two attributes, MAJOR and
AGE. A nonclustered index is one in which
the order of the index is not related to the
order of tuples on the data pages. The use
of an unclustered index on an exact match
results in an ordered scan of the data pages
because the tuple identifiers are normally
sorted within index values. When tuples
satisfying more than one index value are
searched, the scan of data pages is unor-
dered across index values. Thus, a query
over a range of values may result in multi-
ple physical references to the same data
page [Schkolnick and Tiberio 19791.

We consider four processing strategies:
First, we can scan the entire student rela-
tion and examine every tuple to see if it
meets the two stated conditions. Second,
we can use the index on MAJOR to access
the records of those students whose major
is “business” and then check whether their
age is greater than 33. Third, we can use
the index on AGE and access the records
of those students whose age is greater than
33 and then check whether their major is
“business”. Fourth, we can intersect the
qualifying tuple identifiers from both in-
dexes, sort the resulting list, and then ac-
cess the underlying tuples.

Cost estimates for these four strategies
are derived under three scenarios: (1) actual
sizes, (2) size estimates under assump-
tions of uniformity and independence, and
(3) size estimates using a two-dimensional
histogram. Table 1 displays the two-
dimensional histogram. We assume the ac-
tual number of qualifying tuples is 380. The
estimate using the histogram is 490, which
assumes the cells of the histogram are uni-
formly distributed. The estimate using uni-
formity and independence assumptions is
3000.’

Table 2 shows the tuples accessed and
the costs of the four alternatives. We as-
sume a data page size of 40 tuples, an index
page size of 250, and an index height of 2.
Except for the scan alternative, the data

1 3000 = 40,000 x 1 x =. 8 45

ACM Computing Surveys, Vol. 20, No. 3 September 1988

198 l M. V. Mannino et al.

Table 1. Two-Dimensional Histogram

AGE

MAJOR 16-20 21-25 26-30 31-35 36-40 41-60 Total

Business 2,045 3,600 3,625
Education 215 500 750
Engineering 750 1,800 1,775
Liberal arts 2,250 3,000 3,600
Public administration 250 575 875
Natural Science 715 1,850 2,000
Nursing 225 550 375
Social Science 575 900 1,200

Total 7,145 12,775 14,200

400 175 155
625 250 100
450 125 100
500 400 250
425 250 125
150 150 75
200 120 30
500 225 100

3,250 1,695 935

10,000
2,500
5,000

10,000
2,500
5,000
1,500
3,500

40,000

Table 2. Cost Estimates of Four Alternatives under Three Size Estimates

MAJOR +
Scan MAJOR index AGE index AGE indices

Actual Sizes
Tuple references
Index references page
Data references page
Total references page

40,000 10,000 3,780 380
0 41 16 57

1,000 1,000 3,184 317
1,000 1,041 3,200 374

Assumption Estimates
Tuple references
Index references page
Data references page
Total references page

Histogram Estimates
Tuple references
Index references page
Data references page
Total page references

40,000 5,000 24,000 3,000
0 21 97 118

1,000 995 15,984 955
1,000 1,016 16,081 1,073

40,000 10,000 3,930 490
0 41 17 58

1,000 1,000 3,322 390
1,000 1,041 3,339 448

page references are largely based on the
formula provided by Whang et al. [1983],
which assumes random placement of tuples
among pages. For the AGE index, we use
the formula of Schkolnick and Tiberio
[1979] because it results in an unordered
scan across index values. Their formula
assumes a buffer size of one page, which
penalizes unordered scans. The data page
references for the MAJOR + AGE indexes
are based on an ordered scan because we
assume that the tuple identifiers that result
from intersecting indexes are sorted.

In this example, the query optimizer
would have made a poor choice if it relied
on the uniformity and independence as-
sumptions. The sequential scan rather than
the use of both indexes would have been
chosen, resulting in perhaps three times as
many page accesses as needed. If the opti-

ACM Computing Surveys, Vol. 20, No. 3 September 1988

mizer did not consider the fourth strategy,
the size estimates would not have made a
major difference since the estimated costs
are all in favor of the scan strategy.

In this example, the sensitivity between
cost and size estimates is straightforward
because of the characteristics of the query
and because it involved only a single oper-
ator query in a centralized database envi-
ronment. The sensitivity issues become
much more complex when evaluating trees
of relational algebra operations and when
considering distributed environments.

2.3 Sensitivity Analysis

A number of studies have examined the
relationship between profile and cost esti-
mation. Some have analytically studied
the bias when using certain assumptions,

Statistical Profile Estimation in Database Systems 199

whereas others have experimentally tested
sensitivity. We first examine the analytical
studies and then the experimental ones.

Christodoulakis [1984b] analyzed the im-
plications of the five assumptions stated in
Section 2.1 on database performance eval-
uation. He considered the effects of these
assumptions on the problems of estimating
the (1) expected page accesses for a given
N records, (2) expected number of page
accesses for all queries on an attribute, (3)
expected number of page accesses for mul-
tiattribute queries, and (4) distinct number
of attribute values after a selection opera-
tion. He proved that these assumptions
lead to worst-case cost estimates. For ex-
ample, he demonstrated that the uniform-
ity and independence assumptions lead to
a worst-case estimate for the distinct at-
tribute values. He also argued persuasively
that optimizers that use them will often
choose worst-case access strategies such as
sequential scanning and sorting. Direct ac-
cess structures will often be ignored be-
cause the pessimistic cost estimates favor
the simpler structures.

Montgomery et al. [1983] compared the
size estimates of selection and join opera-
tions using uniformity assumptions when
the data are heavily skewed. They com-
pared models of size estimation using for-
mulas based on uniformity assumptions
against their own based on a skewed data
distribution. They validated their formulas
by comparing their estimates against sim-
ulated data. For the selection case, they
found that uniformity assumptions tended
to overestimate the result by 200-300%.
For the join case, they found the opposite
result.

Mackert and Lohman [1986a, 1986b] ex-
perimentally validated the local and dis-
tributed cost models used for single table,
sorting, and two table joins in R*. Their
tests confirmed the contribution of CPU
costs to the total costs especially for sort
operations. For index scans and sorts, size
estimation is an important factor in both
the I/O and CPU components of their cost
formulas. Their experiments also revealed
that the optimizer overstates the cost of the
nested loop join algorithm when the inner
table fits in main memory and there is an
index on its join column. They suggested

that the nested loop cost is very sensitive
to three parameters: join cardinality, the
outer table’s cardinality, and the buffer uti-
lization. In the case of distributed joins, the
buffer sensitivity is less important because
there is less contention for buffer space
among the two joined tables. The join
cardinality, however, assumes more im-
portance because of its influence on the
number of messages and bytes transmitted.

Kumar and Stonebraker [1987] investi-
gated the effects of join selectivity on the
selection of the optimal nesting order for
four and five variable queries. They devel-
oped a simulated query processor that be-
haves similarly to the System R optimizer
[Selinger et al. 19791 in that it considers
two join algorithms (nested loops and
merge scan), performs only two-way joins,
and considers using secondary indexes on
the inner join table. They measured the
sensitivity of a query with respect to
changes in the joint selectivity by the ratio
between the cost of the optimal plan and
the plan of interest. The best plan under
varying selectivities was either the one that
minimizes the average cost ratio or the one
that minimizes the maximum cost ratio.
They measured the sensitivity of four and
five variable queries under a variety of join
selectivities using this sensitivity factor.
They assumed known input relation sizes
and independence among join clauses.
Their results demonstrated that the opti-
mal plan is insensitive to varying join se-
lectivities if the optimal plan is chosen
according to their criteria. They did not,
however, investigate the sensitivity when
the optimal plan is chosen in a traditional
manner without consideration of varying
join selectivities.

Vander Zander et al. [1986] studied the
impact of correlation of attributes on the
assumption of random placement of tuples
to pages. They tested the query, “Retrieve
all tuples from relation R where R.B =
constant” when R is clustered according to
another attribute (say A). High correlation
between A and B causes skewness in the
distribution of tuples to pages, which vio-
lates the random-placement assumption.
Using simulation, they found that the dif-
ference between the estimated logical page
references under the random-placement

ACM Computing Surveys, Vol. 20, No. 3 September 1988

200 l M. V. Mannino et al.

assumption and the actual was significant either univariate or multivariate distribu-
beyond a correlation of .4. With a correla- tions. Multivariate distributions are usually
tion of .6, the estimates overstated actuals more difficult to estimate than univariate
by 70%. When correlation approached 1, distributions because of the increasingly
the estimates overstated actuals by almost complex manner in which the variables
3000%. may interact as their number grows. This

multivariate comnlexitv can be consider-

3. PRIMER ON STATISTICAL METHODS

In this section we discuss the statistical
methods that are used in the remaining
sections. Some acquaintance with basic
statistical concepts is assumed.

In statistics, the population (relation) is
the set of all observations (tuples) of inter-
est. Each observation consists of one or
more values of variables (attributes). An
extremely important objective of statistical
inference is to estimate the distribution of
the population. Knowledge of the distribu-
tion conveys the ability to calculate which
values of variables are most likely to occur,
how many values should occur in specified
ranges, summary measures such as mean
and standard deviation, and so on.

Methods for estimating the distribution
of a population can be divided into two
basic types according to how much is
known about the shape of the distribution.
Parametric methods assume that the dis-
tribution has a form that is completely
known except for a few parameters; the goal
then becomes the estimation of those few
remaining parameters. For instance, a pop-
ulation may be thought to have a normal
distribution. This completely specifies the
distribution except for its mean and stan-
dard deviation, which are then estimated.
Nonparametric methods are the second
type. These methods assume little or noth-
ing about the form of the distribution, so
the estimation task is often more difficult
than with parametric methods. The histo-
gram, or bar chart, is a simple, common
nonparametric estimate.

Methods for estimating the distribution
of a population can also be divided into two
basic types according to the number of vari-
ables measured per observation. Univariate
populations have only one variable; multi-
variate populations have more than one
variable. Both parametric and nonpara-
metric methods may be used to estimate

ably simplified if the variables are statisti-
cally independent. If independence holds,
then the multivariate distribution reduces
to the product of the individual, or mar-
ginal, distributions of each variable.
Independence can be tested by any of a
collection of standard statistical tests
such as the chi-square test for categorical
variables or the correlation coefficient
for continuous variables. Such tests, how-
ever, may be used only to reject the null
hypothesis of independence-not to accept
it.

Variables may also be classified accord-
ing to the nature of their values into cate-
gorical and numerical types. To estimate
the distribution of a categorical variable is
to estimate the probability of occurrence of
each category; summary measures such as
the mean or standard deviation are either
not calculable or inappropriate. The most
general probability model for categorical
variables is the multinomial. Numerical
variables are either ratio scale (with a
meaningful zero point) or interval scale
(with an arbitrary zero point). This is fur-
ther complicated by the classification of
numerical variables into discrete and
continuous types. Discrete variables are
distinguished from continuous ones in
that discrete variables have repetitions
or duplicates of the same values with
positive probability, whereas the probability
of duplicate values of continuous vari-
ables is zero. Discrete distributions are
estimated parametrically by positing a
model such as the binomial, multinomial,
or Poisson, estimating the appropriate
parameters, and then testing the goodness
of fit, for example, by the chi-square
test; they are estimated nonparametri-
tally by tallying the occurrences of each
different value, that is, a histogram. Most
of the effort in modern statistics has been
lavished on the more difficult task of esti-
mating continuous distributions.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 201

3.1 Common Parametric Distributions

The distributions that have been reported
in the literature as models for profile
estimation include the uniform, normal,
Pearson family, and Zipf. The uniform is
the simplest and may apply to all types of
variables, from categorical to numerical
and from discrete to continuous. For cate-
gorical or discrete variables, the uniform
distribution posits equal probability for all
distinct categories or values. In the case of
a continuous variable, the uniform distri-
bution has constant probability density
over the range of possible values. In the
absence of any knowledge of the probabil-
ity distribution of a variable, the uniform
distribution is a conservative, minimax
assumption.

The normal distribution is a symmetric,
unimodal, “bell-shaped” distribution for
continuous variables. It has two parameters
to estimate, the mean and standard devia-
tion, which control the location and disper-
sion, respectively, of the variable. Many
variables follow approximate normal distri-
butions, particularly those obtained as the
result of summing or averaging other pro-
cesses. The normal distribution is the min-
imum entropy choice when the mean and
standard deviation parameters are known.

Karl Pearson proposed the eponymous
family that would provide a wide range of
choice of shapes but also be sufficiently
concise so that a few parameters would
suffice. The Pearson family includes the
normal, uniform, beta, F, t, and gamma, all
of which arise as solutions to a single dif-
ferential equation [Johnson and Kotz
19701,

1 dy b+x --=
Y dx a0 + alx + a2x2’

for various choices of the constants. These
four constants are related directly to the
first four moments of the distribution and
therefore provide an easy means for esti-
mation of the distribution.

Zipf’s law for continuous variables has a
density function proportional to a power of
the abscissa and therefore provides a model
for positively skewed variables with higher
probability of outliers than the normal,

gamma, and others. The exponent of the
abscissa is the only parameter to estimate.
Attempts to find a generally applicable law
of nature in Zipf’s law have met with mixed
success.

3.2 Nonparametric Estimation

In order to avoid the restrictions of partic-
ular parametric methods, many researchers
have proposed nonparametric methods for
estimating a distribution. The oldest and
most common of these methods is the his-
togram. The essence of the histogram is to
divide the range of values of a variable into
intervals, or “buckets” and, by exhaustive
scanning or sampling, tabulate frequency
counts of the number of observations fall-
ing into each bucket. The frequency counts
and the bucket boundaries are stored as a
distribution table. The distribution table
can be used to obtain upper and lower
selectivity estimates. Within those bounds,
a more precise estimate is then computed
by interpolation or other simple techniques.
As noted below, modern methods of density
estimation have refined and extended the
classical histogram.

There are several different types of his-
tograms, or distribution tables, depending
primarily on the criteria chosen to set
bucket boundaries. In the equal-width table
the widths of the buckets are equal, but the
frequencies or heights are variable. In an
equal-height table the widths are deter-
mined so that the frequency within each
bucket is the same. In a variable-width table
the widths are determined so that the fre-
quency within each bucket meets some
other criterion, such as the values being
uniformly distributed.

The equal-width table corresponds to the
classical histogram and is very easy to apply
in selectivity estimates: Simply search the
table for the first bucket that contains the
constant of the relational expression and
interpolate between the endpoints of the
bucket. But there are several drawbacks to
the equal-width method:

(1) Since the maximum error rate is deter-
mined by the height of the tallest
bucket, some prior knowledge about the

ACM Computing Surveys, Vol. 20, No. 3 September 1988

202 l M. V. Mannino et al.

(2)

distribution of attribute values is nec-
essary to predict estimation accuracy.

The statistics literature offers little
help in choosing bucket boundaries
without some knowledge of the distri-
bution. This lends that choice an arbi-
trary component, which can have a
significant effect on whatever error
measure is used.

The statistics literature offers more help
in choosing the number of buckets. Ob-
viously, the number of buckets should be
increased with the number of records. Be-
fore modern mathematical analysis of den-
sity estimation, Sturges’ rule [1926], based
on the binomial distribution, offered an
empirically satisfactory choice. The num-
ber of buckets for n records is 1 + logzn
under this rule. But modern analysis has
provided optimal rules for given data-set
sizes and error measures [Tapia and
Thompson 19781. Interestingly, Sturges’
rule agrees reasonably well with the modern
rules for data sets up to 500 records. In
addition to maximum error rate, the liter-
ature has studied the mean error rate and
mean-squared error rate (corresponding
to the principle of least squares), among
others. With maximum, mean, or mean-
squared error rate, the size of the error can
be determined to within a multiple of a
power of the data-set size without other
knowledge of the distribution. But what-
ever error measure is used, even with opti-
mal choices, the equal-width method is
asymptotically inferior to more modern
methods such as the kernel or nearest
neighbor techniques. For example, with
mean-squared error, the asymptotic rate
for the equal-width method is O(n-2’3),
whereas the modern methods are O(n-4’5)
or better, where n is the number of records
[Tapia and Thompson 19781.

Better error control can be achieved by
varying the width. In the equal-height
method, a relationship is established be-
tween the number of buckets and the max-
imum error rate. If all buckets have about
the same height, the error rate can be easily
controlled by increasing the number of
buckets. In the field of density estimation,
this is called the nearest neighbor tech-

nique. The difficult part is to establish
bucket ranges that satisfy the equal-height
criterion since some knowledge of the dis-
tribution is essential. In density estimation,
establishing the bucket range would be
done by ordering the attribute values and
choosing bucket boundaries at every kth
value. Since this might be expensive, an
approximation based on training sets or
sampling might be implemented. Moreover,
the performance of this estimator is asymp-
totically improved by permitting overlap-
ping buckets; that is, for each attribute
value of potential interest, record the loca-
tion of the bucket of its k nearest neighbors.
As with the equal-width technique, analysis
has established asymptotically optimal
choices (up to order of n) for the number
of buckets (and hence k) without requiring
further knowledge of the distribution. Of
course, as noted previously, the location of
those buckets will depend on some distri-
bution knowledge.

Knowledge of the large-n properties of
this technique was significantly advanced
by Moore and Yackel [1977], who showed
the duality of several modern density esti-
mation techniques including the nearest
neighbor; that is, after proper adjustment
for the differences between techniques, a
large-n theorem proved for one technique
could be translated into a similar theorem
for another technique without further
proof. For example, with optimal choices,
the asymptotic mean-squared error of the
nearest neighbor estimator is 0 (ne4”‘)
or better, and one should choose k about
O(n4’5) with about O(n115) buckets. Fur-
ther discussion about density estimation
techniques is given by Wegman [1983]
and Wertz 119781.

In the third type of distribution table,
the width of each bucket is varied according
to criteria other than equal frequency. In
density estimation, this technique is called
the variable kernel. The variable kernel
technique is difficult to analyze, and few
results about the error control and the
number of buckets have been reported.
General references describing the variable
kernel are Wegman [1983] and Wertz
[19781. Specific results are described by
Devroye [1985] and Breiman et al.
[1977].

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 203

The density estimation literature pro-
vides multivariate analogs of the equal-
width and equal-height methods. In the
equal-width case a grid of cells of equal area
or volume can be laid down in the joint
space of the attributes, and the number of
tuples with combined values in each cell
can be counted. In the equal-height case
variably sized buckets, each containing ap-
proximately k nearest neighbors, can be
determined. The new problem in the mul-
tivariate case is that the shape of the bucket
must also be chosen. With the equal-width
analog, squares (or cubes or hypercubes
depending on the dimension) are a natural
choice. If the range or variation of one
attribute’s values is much less than anoth-
er’s, however, a rectangle with its short side
parallel to the axis of the low-variance
attribute would be better. With the equal-
height analog and overlapping buckets per-
mitted, use Euclidean circles, spheres, or
hyperspheres. A better choice, particularly
for distributions thought to be close
to multinormal, is Mahalanobis distance
[Mahalanobis 19361, which yields ellip-
ses. Defining distance as the maximum
of marginal attribute distances yields
squares. In most cases there are no clear
guidelines for choosing a distance mea-
sure. If the buckets should be nonover-
lapping, tolerance regions may be con-
structed by the method of Fraser [1957,
chap. 41. This method provides no gui-
dance on choice of shapes but permits a
wide mixture of varieties, all of which are
shown to be statistically equivalent.

Each multivariate technique shares the
same general advantages and disadvantages
as its univariate counterpart. But much less
is specifically known about any technique,
and the error properties of each deteriorate
as the number of attributes increases, even
under optimal conditions. For example, the
mean-squared error of the kernel density
estimator is known to be O(n-4’(d+4))
[Cacoullos 19661, where n is again the
number of records and d the number of
attributes.

4. ESTIMATION OF SINGLE OPERATIONS

This section discusses estimation of the
cardinality of the operators select, project,

join, union, difference, and intersection.
The first three operators are the most
important and are widely studied. Union
is an important operator in distributed
databases with horizontally partitioned
relations, but otherwise it is not widely
used in queries. Intersection and differ-
ence are used less frequently and are the
least studied.

Our discussion makes frequent reference
to the statistical methods described in Sec-
tion 3. We note where database researchers
have used standard parametric and non-
parametric methods and where extensions
and new methods have been developed. We
also describe a third class of methods called
ad hoc. These methods are based on integ-
rity constraints or other knowledge of the
database semantics and can be used to
bound an estimate or compute a number.

4.1 Select

The output tuple cardinality of a select
operation is estimated by the following for-
mula:

OUTCARD
= INCARD * SEL-(BOOLEXPR),

where INCARD is the input cardinality,
BOOLEXPR is the_ associated Boolean
expression, and SEL (X) is the selectivity
estimation function that estimates the
fraction of records satisfying its Boolean
expression argument. The selectivity esti-
mation method depends on the type of Boo-
lean expression (Figure 4). We begin our
discussion with methods for simple rela-
tional expressions, which are the founda-
tion for the more complex conjunctive and
disjunctive expressions.

4.1.1 Simple Relational Expressions

A simple relational expression is of the
form (attribute) (comparison operator)
(value), where (comparison operator)
yields a true or false value. Traditional
comparison operators are <, =, >, and so
on. In an environment with abstract data
types [Stonebraker et al. 19831, other com-
parison operators such as intersect and
overlap are possible. The following query

ACM Computing Surveys, Vol. 20, No. 3 September 1988

204 . M. V. Mannino et al.

Select-Project
Boolean

Figure 4. Classification of Boolean expression terms.

contains a simple relational expression:

SELECT,,,,,,, AGE-25 (STUDENT).

Cardinality estimation of simple rela-
tional expressions depends on the operator
and the estimation method. Of the tradi-
tional operators, estimation of expressions
with only = and < are necessary. Estima-
tion of expressions with other traditional
operators such as > can be rewritten in
terms of < and =. For example, the estimate
of the cardinality of AGE > 35 can be
written as

INCARD-(OUTCARD(AGE = 35)

+ OUTCARD(AGE < 35)),

where OUTCARD is the estimate of the
number of tuples satisfying expression X.

Methods from all three types (ad hoc,
parametric, and nonparametric) have been
proposed to estimate the selectivity of sim-
ple relational expressions. Common ad-hoc
methods are based on constraints about
candidate keys and value bounds. If a query
contains an equality expression on can-
didate key, the selectivity estimate is
l/INCARD because at most one record
can qualify. The value bound constraints
are especially important for queries
against views. Suppose a view contains
students with a grade point average greater

ACM Computing Surveys, Vol. 20, No. 3 September 1988

than 3.5. If a query asks for students in the
view with an average less than 3.5, the
selectivity estimate is zero.

The use of integrity constraints is related
to the antisampling work of Rowe [1985].
In this approach, certain statistics, such as
mean, standard deviation, and mode, are
computed on a larger population. These
facts are then used to infer simple statistics
on subset populations. Rowe demonstrated
the use of this technique to compute
count, mean, maximum, minimum, median,
and mode. Antisampling, however, has
never been directly applied to selectivity
estimation.

For most cases, the selectivity cannot be
estimated by inferences from integrity con-
straints. Some knowledge of the frequency
distribution of an attribute is necessary.
This knowledge can be obtained by using
simple assumptions or a more detailed
modeling with a parametric or nonpara-
metric method. Early query optimizers such
as System R [Selinger et al. 19791 relied on
the uniformity and independence assump-
tions. This was primarily due to the small
computational overhead and the ease of
obtaining the parameters (maximum and
minimum values).

The use of the uniform distribution as-
sumption has been criticized, however, be-
cause many attributes have few occurrences

Statistical Profile Estimation in Database Systems l 205

with extreme values. For example, few com-
panies have very large sales, and few em-
ployees are very old or very young. The Zipf
distribution [Zipf 19491 has been suggested
by Fedorowicz [1984, 19871 and Samson
and Bendell [1983] for attributes with a
skewed distribution such as the occurrence
of words in a text.

Christodoulakis [1983a] demonstrated
that many attributes have unimodal distri-
butions that can be approximated by a fam-
ily of distributions. He proposed a model
based on a family of probability density
functions, which includes the Pearson
types 2 and 7 and the normal distributions.
The parameters of the models (mean,
standard variation, and other moments)
can be estimated in one pass and can
be dynamically updated. Christodoulakis
demonstrated the superiority of this model
over the uniform distribution approach us-
ing a set of queries against a population of
Canadian engineers.

Nonparametric methods have been
widely used over parametric ones because
of limitations cited in Section 3. Database
developers have used the three types of
distribution tables described in Section 3:
equal width, equal height, and variable
width. To demonstrate these three types,
we use the frequency distribution of the
AGE attribute on 100 students (Table 3).
Figure 5a displays a bar graph for an equal-
width distribution table that is divided into
four intervals of width five.

Because of the limitations of equal-width
tables (see Section 3), database developers
have proposed the other types. Piatetsky-
Shapiro and Connell [1984] proposed an
equal-height method for selectivity esti-
mation. To achieve equal-height buckets,
the BUILD operator sorts the underlying
data values. Bucket or step values are de-
termined by positions in the sorted list
according to the following formula:

POS(i) = ROUND(l + i * N, 0)

N = (INCARD-1)

S

S = number of buckets

ROUND(i, j) rounds i to j digits
to the right of the decimal place.

Table 3. Age Distribution

Age Number Cumulative

20 2 2
21 3 5
22 5 10
23 8 18
24 2 20
25 0 20
26 0 20
27 0 20
28 30 50
29 2 52
30 8 60
31 5 65
32 5 70
33 0 70
34 10 80
35 14 94
36 2 96
37 1 97
38 1 98
39 1 99
40 1 100

The steps are numbered 0 through S. Step
0 is always the first value in the sorted list,
and step S is always the last position (IN-
CARD). As an example, Figure 5b illus-
trates a bar graph of an equal-height dis-
tribution table for the AGE attribute with
S equal to 4. The positions in the sorted
list of AGE values for the buckets are 0,26,
51,76, and 100, respectively. Because of the
sorting requirement, equal-height tables
cannot be dynamically updated.

Intervals in equal-height tables are
closed on both ends. In other words, step i
includes all values u, where VAL(i - 1) 5 u
I VAL(i). The fraction of records in step i
is computed as follows: (POW) - POS(L’ - 1))

INCARD
when i > o

FRAC(i) ={

when i = 0,

The method to obtain selectivity esti-
mates is more complex for equal-height
tables because the matching between a con-
stant and a step value has more cases.
Piatetsky-Shapiro and Connell [1984] de-
scribe eight cases, including the constant
between step values and the constant
matching one interior step value. Both the

ACM Computing Surveys, Vol. 20, No. 3 September 1988

206 . M. V. Mannino et al.

Frequency

20-24 25-29 30-34 35-40

AGE

(a)

Frequency

40

30 25 25 25 25

(b)

Frequency

20-24 25-27 26 29-32 33 34-35 36-40
PGE

Cc)

Figure 5. Example distribution tables.
(a) Equal width. (b) Equal height. (c) Variable width.

upper and lower bounds and the within-
bounds methods depend on these cases.
Once a case is determined, the calculation
is straightforward.

Muralikrishna and Dewitt [1988] ex-
tended the equal-height method for multi-
dimensional attributes such as those based
on point sets. Multidimensional attributes
are very common in geographical, image,
and design databases. A typical query with
a multidimensional attribute is to find all
the objects that overlap a given grid area.
The authors proposed an algorithm to
construct an equal-height histogram for
multidimensional attributes, a storage
structure, and two estimation techniques.

Their estimation techniques are simpler
than the single-dimension version because
they assume that multidimensional attri-
butes will not have duplicates. Performance
analysis by the authors was conducted to
compare the estimation techniques and
the use of random sampling to construct
the histogram.

Database researchers have also proposed
variable-width distribution tables. Merrett
and Otoo [19791, Kooi [19801, and Muthu-
swamy and Kerschberg [1985] suggested
that widths be set so that the values within
each bucket are approximately uniformly
distributed. Figure 5c illustrates a bar graph
for a variable-width table for the AGE

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 207

Table 4. Nonsimple Relational Expression Types

Name Pattern

Parameteric (attribute) (camp-op)(parameter)
Dyadic (attribute) (camp-op) (attribute)
Functional {(attribute) 1 (func-expr)}(comp-op)(func-expr)

attribute where the buckets have been set
according to the uniformity criterion. The
storage overhead of the variable-width ta-
ble can be more than the equal-width table
because both the height and range of each
bucket must be stored. None of these re-
searchers provide a method to determine
bucket ranges for a given maximum error
rate. The database administrator is as-
sumed to possess enough knowledge to as-
sign appropriate bucket ranges.

Christodoulakis [19811 proposed a vari-
able-width table based on a uniformity
measure (the maximal difference criterion)
for choosing bucket ranges. This criterion
clusters attribute values that have a similar
proportion of tuples; that is, the difference
between the maximum and minimum pro-
portions of the attribute values in the
bucket must be less than some constant,
which can depend on the attribute. This
criterion minimizes the estimation error on
certain values rather than the average error
on all values. It seems most appropriate
where queries are not uniformly spread over
all attribute values.

Kamel and King [1985] proposed a
method based on pattern recognition to
construct the cells of variable-width distri-
bution tables. In pattern recognition a fre-
quent problem is to compress the storage
for an image without distorting its appear-
ance. In selectivity estimation the problem
can be restated to partition the data space
into nonuniform cells that minimize the
expected estimation error subject to an up-
per bound on storage size. They begin by
dividing the data space into equal-sized
cells and computing a homogeneity mea-
sure for each cell. The homogeneity is the
measure of the nonuniformity or dispersion
around the average number occurrences per
value in the cell. The homogeneity can be
computed by the function defined by the
authors or by sampling. Adjacent cells with
similar homogeneity measures are folded

together by considering the physical prox-
imity of cells and the resulting homogeneity
of the new combined cell. The authors
report experimental results of their homo-
geneity function but no more complete im-
plementation of their method.

4.1.2 Nonsimple Relational Expressions

Nonsimple relational expressions are di-
vided into three types, as shown in Table 4
and Figure 4. Parametric expressions have
a run-time parameter; dyadic expressions
involve a comparison of two attributes from
the same relation; functional expressions
have operators such as addition, multipli-
cation, and pattern matching.

Ad-hoc estimation methods are fre-
quently used for nonsimple expression
types. The justifications for the use of ad-
hoc methods are (1) nonsimple expression
types are not common and (2) no estima-
tion technique can handle arbitrarily
complex functional expressions. In the re-
mainder of this section we concentrate
on estimation techniques for the following
types of nonsimple relational expressions:
(1) equality parametric expressions (2)
functional expressions containing string at-
tributes and meta characters, and (3) equal-
ity dyadic expressions.

For the first case, the problem can be
reduced to estimating the fraction of rec-
ords with the same value. The most widely
used technique is to use l/ATTRVALS,
where ATTRVALS is the number of dis-
tinct attribute values. This method does
not account for distribution among attri-
bute values. To reflect distribution, a
weighted average can be used. Piatetsky-
Shapiro and Connell [1984] described a
weighted average that he called the attrib-
ute density. It is computed as

NUMVAL x c is1 NR2’

ACM Computing Surveys, Vol. 20, No. 3 September 1988

208 l M. V. Mannino et al.

where NRi is the number of record occur-
rences for value i, and i ranges over all
distinct values. This gives extra weight
to values associated with more than the
average number of records.

Use of both the distinct values and the
attribute density is based on no knowledge
of the underlying parameter value. If a his-
tory of values is maintained, a better esti-
mate can be made. Christodoulakis [1983a]
describes a method for estimating the av-
erage record selectivity over a collection of
queries. His method estimates the average
selectivity as a function of the standard
deviation of attribute values in queries.
This method has the advantage that it
could be applied to parametric expressions
with comparison operators other than
equality.

The second case involves relational
expressions with meta characters. A meta
character does not match itself; instead, it
matches a pattern of characters. Many
query languages support meta characters to
match (1) zero or more of any character,
(2) any single character, and (3) any single
character from an interval of characters. In
Unify SQL [UNIFY 19851 these meta char-
acters are *, ?, and [1, respectively. For
example, the expression NAME = ‘A*’
matches names beginning with A.

The techniques for parametric queries
cannot be applied since an arbitrary string
with meta characters matches more than
one value. Mannino [1986] describes a
technique to translate an expression with
meta characters into one or more expres-
sions without meta characters. For exam-
ple, the expression NAME = ‘A*’ can be
translated into

NAME >= ‘A##### . . . #’

AND NAME <= ‘A@@@@@ . . . 0’

where # represents the low value in the
attribute’s collating sequence and @ repre-
sents the high value. The estimation tech-
niques for simple relational expressions can
then be used. Mannino [19861 describes the
translation of strings with a single wildcard
character * or a single character class [1.

The third case involves equality dyadic
expressions such as EMPLOYEE.SAL-

ARY = EMPLOYEE.COMMISSION. Lit-
tle or no work has been reported on
comparison operators other than equality.
When the operator is equality, the methods
described under join selectivity estimation
(Section 4.3) can apply. In practice, meth-
ods assuming uniform distributions have
been widely used. This is mostly due to the
infrequent occurrence of simple dyadic
expressions in select-project operations.

4.1.3 Boolean Combinations of Relational
Expressions

Relational expressions can be combined
with the Boolean operators AND and OR.
In analyzing a Boolean expression, it is
common to convert it into a standard form.
A conjunctive normal form expression
matches the pattern AND(X,, X2, . . . , X,,),
where Xi is either a relational expression
or a disjunction of relational expressions.
In a disjunctive normal form expression,
the position of the ANDs and ORs are
swapped. Arbitrary Boolean expressions
can be transformed into these normal forms
through application of the laws of Boolean
algebra such as the distribution of AND
over OR and DeMorgan’s law. Jarke and
Koch [1984] give a detailed explanation of
the transformations.

To estimate the selectivities of conjunc-
tive and disjunctive normal form expres-
sions, one must be able to estimate the
selectivities of conjunctive and disjunctive
collections of relational expressions. Accu-
rate estimation is difficult because the at-
tributes in the relational expressions can
be correlated. For example, the attributes
sex, job title, and age group of many uni-
versity faculties are often highly correlated.
Correlation among attributes is difficult to
account for because of the large number of
attribute combinations.

The general formula for estimating the
selectivity of a conjunctive expression is

SEL-(A and B)

= SEL-(A) * SEL-(B 1 A),

where A and B are relational expressions
and SEL (B] A) is the conditional proba-
bility of B given A [Clark and Schkade

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 209

19831. SEL (B] A) indicates the degree
of association between terms A-and B. If
A and B are independent, SEL (B] A) =
SEL”(B) and the correlation can be
ignored.

If the conjunctive expression involves a
range such as in the following query, the
formulas change:

SELECT FACUI,TY.SALARY<40.000 (FACULTY).
ANDFAC”LTY.SALAHY>P”,OW

The possible cases for range queries are

(1) X 2 val-1 and X 5 val-2 (closed).
(2) X > val-1 and X 5 val-2 (left open).
(3) X L val-1 and X < val-2 (right open).
(4) X > val-1 and X < val-2 (open).

The first case can be reformulated as a
disjunctive expression:

1 - SEL-(X < val-1 OR X > val-2)

The other three cases can be similarly re-
formulated as disjunctive expressions.

The general formula for estimating the
selectivity of disjunctive expressions is

SEL-(A OR B) = SEL-(A) + SEL-(B)
.

- SEL (A and B).

This formula applies whether A and B are
mutually exclusive or not. I,f A and B are
mutually exclusive, the SEL (A AND B) is
zero. Mutual exclusiveness is expected for
terms related to the same attribute. For
terms related to different attributes, the
third term is evaluated as for conjunctive
expressions.

Thus in both conjunctive and disjunc-
tive expressions, if @tributes are not inde-
pendent, the SEL (A AND B) must be
estimated. Ad-hoc, parametric, and non-
parametric methods can be used. As in the
simple relational expression case, the most
common ad-hoc method is based on candi-
date key constraints. The composite can-
didate rule can be used for conjunctive
equality expressions containing a compos-
ite candidate key. Ad-hoc methods can also
be based on value-combination rules. A
value-combination rule states that attri-
butes rarely assume values in certain com-
binations. Value-combination rules are

Table 5. Distribution Frequency on Age and Status

Age (X)

Status (Y)

Graduate
Undergraduate

18-24 25-35 Over 35

150 400 50
800 150 20

generally not supported in most database
systems.

For the parametric case, Christodoulakis
[1983a] proposed a family of distributions
defined by the multivariate normal distri-
bution and the multivariate extensions of
the Pearson type 2 and 7 distributions. As
in the univariate case described earlier,
these distribution families encompass a
wide range of theoretical distributions and
can be dynamically updated. In addition,
any subset of attributes from a member of
these distribution families conforms to the
same distribution as the entire collection.
This is important, since most queries will
reference only a subset of the attributes.

Multivariate nonparametric methods are
important because of the scale restriction
of parametric methods, and it can be diffi-
cult to match the actual distribution of an
attribute collection to a known theoretical
one. The basic idea is to use a matrix in
representing the relationship between at-
tributes. In two dimensions, the row vector
and the column vector represent the
subdomains of the two attributes. Within
cell X(i)Y(j) is the count of tuples whose
value for attribute X falls in subdomain
i and whose value for attribute Y falls in
subdomain j. Table 5 shows how this ap-
proach can be used in estimating selectivity
involving conjunctive or disjunctive query
expressions.

If the query is about the number of stu-
dents who are either of graduate status aged
over 35 or of undergraduate status aged
under 25, the answer is 850 (the count in
cell X(3)Y(l) plus the count in cell
X(l)Y(2)). If we alter the first term to the
graduate students 35 or over, part of cell
X(2)Y(l) qualifies. As in the case of uni-
variate frequency distributions, an estima-
tion error is possible because we do not
know the distribution within a cell. As
described in Section 3, less is known

ACM Computing Surveys, Vol. 20, No. 3 September 1988

210 l M. V. Mannino et al.

about error control for multivariate distri-
bution tables than for their univariate
counterparts.

Multivariate nonparametric methods for
selectivity estimation have been proposed
by Merrett and Otoo [1979], Muthuswamy
and Kerschberg [19851, Christodoulakis
[1981], and Kamel and King [1985]. As in
the univariate case, only the latter two pre-
sented a method to compute cell bounda-
ries. Christodoulakis [1981] described a
method that combines the independence
assumption with maintaining more infor-
mation on cells that have large deviations
from independence. He demonstrated how
this method can improve tuple estimation
of Boolean expressions of two attributes.
He did not, however, analyze this method
for n-dimensional expressions.

King and Kamel [1985] demonstrated
that the storage requirements can be very
large for an n-dimensional distribution
table that is divided into equal-sized
cells. For example, for a relation of 12 at-
tributes where each may assume any of 100
different values, a cell size of 50 still re-
quires almost 1 megabyte of storage. They
also derived error bounds for n-dimensional
distribution tables and showed that it is
possible for a selectivity estimate to err by
half the relation size regardless of the result
size of the query. As a response, they pro-
posed a method to compute cell boundaries
based on pattern recognition. Their tech-
nique is an extension to that described in
Section 4.1.1.

4.2 Project

The project operator computes a vertical
subset of a relation. Input is a relation and
a list of attributes. Output is a relation with
only the attribute list and duplicate tuples
removed. In this section we consider a sin-
gle projection operator as a leaf node in an
access plan. Only a relatively small amount
of work has been reported on this problem
because projections are frequently not leaf
nodes. The work on projections after other
operations (selections and joins) is de-
scribed in Section 5.1.

Merrett and Otoo [1979] described a non-
parametric approach toward estimating the

distribution of a projection. They assumed
that the input relation is described by an
n-dimensional distribution table divided
into equal-sized cells. Assuming uniformity
within the cells, they demonstrated an it-
erative formula for computing the distri-
bution of a projection of any subset of the
n attributes. Since projections do not con-
tain duplicates, the resulting cell counts
cannot exceed the width of a cell.

Gelenbe and Gardy [1982] described a
nonparametric approach toward estimating
the size of a projection of n columns. Input
is the size of the relation, which they as-
sumed is known with certainty. They as-
sumed that attributes are uniformly
distributed and independent and that the
projection is randomly generated with a
uniform distribution. Using a probabilis-
tic argument, they derived formulas to
compute the number of projections with
size k and the expected size over all pos-
sible randomly generated projections.
They also addressed the problem of com-
puting projection sizes given a collection
of functional dependencies that hold on a
relation. They reduced this problem to one
of computing the conditional expected
value given that the number of values of
the determinant attribute(s) is equal to
the number of tuples.

Other approaches are based on fast ways
to estimate distinct values. Piatetsky-
Shapiro [1985] estimated the number of
distinct attribute values by means of sam-
pling. The proposed method assumes uni-
form distribution of values. Applied to non-
uniform distributions, the method gives a
lower bound on the number of distinct val-
ues. Astrahan et al. [1985] developed three
probabilistic methods based on hash func-
tions. Each method requires only one pass
of the relation, no sorting, and a small
amount of memory and computation. Es-
timation error rates are claimed within
10%.

4.3 Join

Join is a derived, binary operator. In
terms of primitive operators, it is a Cartes-
ian product followed by selection and
sometimes by a projection. The selection

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 211

operation contains a dyadic Boolean
expression with an attribute from each rela-
tion in each term. The following query dem-
onstrates a join followed by a projection

Primitive Relational Algebra:

PROJECT
(NAME, MAJOR
C~ELECT,,,,,NT.~~N

=ENROLLMENT.SSN
(STUDENT TIMES ENROLLMENT)))

Using a join operator:

PROJECT(NAME, MAJOR
(STUDENT JOINSTUDENT.SSN

=ENROLLMENT SSN
ENROLLMENT))

When the comparison operator in the
join is equality, it is called an equijoin. A
frequent type of equijoin is the natural join
in which one of the join attributes is pro-
jected out. The natural join is the most
widely studied and frequently used join.
Only crude estimation techniques have
been proposed for nonequijoins.

When the attributes of only one relation
are required as in the previous example, the
operation is called a semijoin. A semijoin is
literally half of a join. Rl SEMI-JOIN R2
is the tuples of Rl that join with at least
one tuple from R2. In a distributed envi-
ronment, Rl is called the receive relation
and R2 is called the send relation because
the join values of R2 are sent to the site of
Rl. The previous query can be rewritten as
follows using a semijoin;

PROJECT
(NAME, MAJOR
(STUDENT SEMI-JOIN,,,,,mssiv

=ENROLLMENT.SSN
ENROLLMENT))

The semijoin is an important operator in
distributed access plans because it is some-
times cheaper to transmit join attribute
values than an entire relation. Ceri and
Pelagatti [19841 summarize approaches
to distributed query optimization using
semijoins.

The output cardinalities of the join and
semijoin can be computed by the following

formulas:

OUTCARD(JOIN)

= SEL-(JOIN)*INNCARD,,*INNCARD,,

OUTCARD(SEMI-JOIN)

= SEL”(SEMI-JOIN)*INNCARD,,

In the first formula, SEL”(JOIN) repre-
sents the fraction of the Cartesian product
that participate? in the join. In the second
formula, SEL (SEMI-JOIN) represents
the fraction of Rl that joins with at least
one tuple of R2. It is assumed that Rl is
the receive relation.

In general, accurate estimation of join
and semijoin selectivities is more difficult
than select or project. In the latter cases
information about univariate and joint fre-
quency distributions is sufficient; in the
former case this information is not enough.
Information about the distribution of
tuples with matching join values is also
necessary.

The estimation problem is even more
acute because select and project operations
are normally performed before the more
expensive join operations. The frequency
distributions of the join columns can
change after select and project operations.
Reliance on the original frequency distri-
butions can lead to pessimistic estimates.
Section 5 describes the problem of estimat-
ing the distribution of join attributes to
reflect previous select and project opera-
tions. In the remainder of this section, we
assume that the join attributes are inde-
pendent of other attributes, and hence that
the join attribute distributions do not
change as a result of previous operations.

Join and semijoin selectivity estimation
methods can be divided into the ad-hoc,
parametric, and nonparametric categories.
Ad-hoc methods can provide bounds and
sometimes an exact number. By definition,
the join cardinality is at most the product
of its operand relations, and the semijoin
cardinality is at most the cardinality of the
receive relation. For join, a tighter upper
.bound can be computed if one or both tables
has a unique join attribute. These rules can

ACM Computing Surveys, Vol. 20, No. 3 September 1988

212 l M. V. Mannino et al.

be stated as follows:

if the join attribute(s) of Rl are unique and
the join attribute(s) of R2 are unique

then OUTCARD(JOIN)
5 MIN(INCARD(Rl),

INCARD(R2))

if the join attribute(s) of Rl are unique and
the join attribute(s) of R2 are NOT candidate

keys
then OUTCARD(JOIN) 5 INCARD(R2)

Determining whether a join attribute is
unique depends on both the underlying in-
tegrity constraints and the join operation.
A join attribute is unique if (1) it is a
candidate key and (2) its underlying base
table is preserved in a one-to-one manner
in the join input. A relation is preserved if
it is a base relation or if each tuple joins
with at most one tuple of the other relation.
The first requirement depends on the static
properties of an attribute, but the second
depends on the position of the join opera-
tion in an access plan. For example, assume
we join three relations (Rl, R2, and R3)
with the following Boolean expression:
Rl.Al = R2.A2 and R2.A3 = R3.A3. R2.A3
is a candidate key, but the other columns
are not. If the join between R2 and R3 is
performed first, the join cardinality is lim-
ited by the input cardinality of R3. If the
join of Rl and R2 is performed first, the
join of (Rl, R2) and R3 will not satisfy any
of the unique rules because R2 is not pre-
served in the output of JOIN(R1, R2).

A lower bound can be determined if one
join attribute is complete [Kooi 19801. An
attribute is complete if every value in the
attribute’s domain maps to at least one
tuple in the attribute’s table; in other
words, the active domain of the attribute
equals the theoretical domain. The com-
plete property usually only applies to base
relations because all occurrences of selected
attribute values are frequently removed by
earlier operations.

If attribute Rl.Al is complete, each tuple
of R2 must join with at least one tuple of
Rl. Therefore, the join cardinality must be
at least the cardinality of R2. If both the
unqiue and complete rules hold, an exact
estimate can be computed. For example, if
Rl.Al is unique and complete, the JOIN

cardinality equals the cardinality of R2.
The combination of these rules can also
apply to semijoins. For example, if R2
SEMI-JOIN Rl and Rl’s join attribute is
unique and complete, the cardinality equals
R2.

Because these rules often do not provide
precise estimates, the uniform distribution
assumption has also been used. Kooi [19801
and Ceri and Pelagatti [1984] give the fol-
lowing formula, which assumes that both
join attributes are uniformly distributed
over the tuples of Rl and R2 and the values
of Rl.Al also appear as values in R2.A2:

SEL-(Rl JOINmA,+..mR2)

1

= VAL(Rl.Al)

A variation of this formula was used in
System R by Selinger et al. [1979]; they
assume uniform distribution of values and
at least one of the join attributes is com-
plete. A similar formula has been proposed
in Goodman et al. [1981] and Hevner and
Yao [1979] for semijoin estimation if the
uniform distribution and matching value
assumptions hold:

SEL-(Rl SEMI-JOIN RI Al R2.42 _ R2

VAL(R2.A2)

= VAL(Rl.Al) ’

Parametric methods have not been pro-
posed for join or semijoin estimation. For
the join operator, there is no precedent in
the statistics literature. For the semijoin
operator, a probability density function can
be used to estimate the semijoin distribu-
tion table described later in this section.
No work has reported such an approach,
possibly because it may be difficult to find
an appropriate density function.

Two types of nonparametric methods
have been proposed. The first type is based
on a weighted average of matching join
values and the independence between the
join attributes and the other attributes.
Kerschberg et al. [1982] provide the basic
formula: CffI nlin2i, where nl and n2 are
the number of tuples in Rl and R2, respec-
tively, that have value Vi, the ith element

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 213

in the domain of values taken on by attrib-
ute A, and M is the number of distinct
values that attribute A has.

If kl and k2 records are selected from
each of the relations before the join, the
expected size of the join is shown to be
(klk2/nln2) CE1 nlin2i, [Christodoulakis
1983133. The expected number of tuples of
Rl after a semijoin is (k/n) Cgl P2;n;
[Christodoulakis 1983b], where P2i is the
probability that the ith element in the do-
main of values of attribute A is nonzero in
relation R2, and k is the number of records
isolated from selections or semijoin on
other domains. The semijoin is performed
by sending distinct values of R2 in A to the
site containing Rl.

The second type of nonparametric
method is based on a table approximating
the distribution of tuples with matching
join values. Kooi [1980] proposed a method
that uses variable-width distribution tables
on the join columns. He assumed that val-
ues within a cell are uniformly distributed.
If both join attributes are described by dis-
tribution tables with N cells with corre-
sponding ranges, the join cardinality is
computed as follows:

N C,,,,/ * INCARD,, * CAzj * INCARD,
c

j=l EVAIJ - EVA~,j-~

Here, CAl,j is the fraction of Tl tuples
within cell j of attribute Al, and EVAl,j is
the ending value of cell j. If the cell ranges
do not coincide, Kooi [1980] provides an-
other formula, which is equivalent to a lin-
ear interpolation of the overlapping parts
of cell ranges.

Muthuswamy and Kerschberg [19851
used a new type of distribution table in
their nonparametric method. To estimate
the cardinality of a semijoin operation, they
used a semijoin matrix. Recall that in a
semijoin, the join column values of one
table (the send table) are sent to the site
containing the other relation (the receive
relation). Each row of the matrix represents
a value range of a join column. The join
value component of a row is the number of
tuples of the receive relation that join with
the send relation. The join ratio component
is the join value divided by the number of

Table 6. Semijoin Distribution Table

Range JOINVAL JOINRATIO

l-10 40 40/60
11-20 35 35176
21-36 25 25/64

Table 7. Restrictions on Expression Type
Arguments

Operator Expression Restrictions

SELECT Simple None
Parametric Equality only
Functional Equality only
Dyadic Equality only

JOIN Simple Equality only
Boolean Simple equality terms only

tuples of the send relation within the row’s
range.

Table 6 shows an example semijoin
matrix for the expression Rl SEMI-
JOINRM=R~.A~ R2. The cardinality of the
semijoin is 100, which is computed by sum-
ming the JOINVAL column. The cardinal-
ity of the send relation is 200, which is
computed by summing the denominators of
the JOINRATIO column.

The cardinality of a semijoin is computed
by using a distribution table on the send
table’s join attribute and the JOINRATIO
column of the semijoin matrix. The result
is a new distribution table for the join col-
umn of the receive relation. The cardinality
can be easily derived from the new distri-
bution table.

4.4 Set Operators

Little work has been reported on the esti-
mation of union and difference operations.
This is due to their infrequent appearance
in user queries. In horizontally partitioned
relations, union operations are used to com-
bine partitions either before or after other
operations. In this case, the union opera-
tions are not part of the original query but
instead are added by the query optimizer
“under the covers.”

ACM Computing Surveys, Vol. 20, No. 3 September 1988

214 . M. V. Mannino et al.

Table 8. Summary of Estimation Methods

Method

Operator Ad-hoc Parametric Nonparametric

Select (Relational)

Select (Boolean)

JOIN (Relational)

Candidate key rule,
Value constraints

Candidate key rule

Unique rule, complete
rule

Many proposed Equal width, equal
height, variable
width

Multivariate normal, Multivariate exten-
Pearson type 2 and 7 sions, independence

assumptions, and
univariate distribu-
tion tables

None . Weighted matching
value parameters;
semijoin distribution
table

Ceri and Pelagatti [1984] give rules to
bound the cardinality of union and differ-
ence operations but no more precise for-
mulas. We present rules for completeness:

OUTCARD(R1 UNION R2)

5 INCARD(R1) + INCARD(R2)

MAX(0, INCARD(R1) - INCARD(R2))

5 OUTCARD(R1 MINUS R2)

5 INCARD(R1)

4.5 Summary

We summarize this section in two tables.
Table 7 lists the restrictions that apply to
expression arguments of the select and join
operators. The restrictions denote where
little work has been reported except for
crude estimates. For example, little work
has been reported on nonequality dyadic
relational expressions in select operations.
Table 8 summarizes the estimation meth-
ods for the select and join operators. For
brevity, we have included only the major
expression type arguments. As shown, the
independence assumption has played a very
significant role in join estimation and
a smaller, yet significant, role in select
estimation.

5. ESTIMATION OF MULTIPLE
OPERATIONS

In the previous section we described meth-
ods to estimate the size of individual rela-
tional algebra operations. These methods

ACM Computing Surveys, Vol. 20, No. 3 September 1988

are necessary but insufficient because a
query is typically a tree of relational algebra
operations rather than an individual oper-
ation. To extend single operator methods,
one can make simplifying assumptions,
such as independence of attributes, or es-
timate conditional parameter values. We
highlight the use of assumptions and con-
ditional parameter values in several typical
sequences of operations: a projection pre-
ceded by a selection or join, and a join
preceded by a selection. From these cases
we generalize to methods for estimating
arbitrary trees of selections, projections,
and joins.

5.1 Projections after Selections and Joins

Computing the size of projections after
selections and joins is important for esti-
mating semijoin operations that follow the
projection. Semijoins are frequently used in
distributed database systems. The join col-
umn of one table is projected and sent to
the site of another table where the semijoin
occurs. As in the single operator case, most
proposed methods are nonparametric.

For projections after selections, there are
two cases to consider. First, one needs to
estimate the size of an attribute used in a
Boolean formula of a selection operation.
Here, the size is proportional to the number
of tuples, except in the case of a simple
equality selection, where it is equal to 1
[Ceri and Pelagatti 19841. Second, one
needs to estimate the distinct values of an
attribute not used in a selection operation.

Statistical Profile Estimation in Database Systems 215

This problem is related to the classic sta-
tistics problem [Kotz and Johnson 19771:

Given n balls to distribute over m urns,
what is the expected number of urns
occupied when k balls are deposited?

When applying this problem to distinct
value estimation, the balls are tuples and
the urns are distinct values. This problem
has also been applied to estimating logical
page references and other physical database
problems. In the logical page case, balls are
tuples and urns are disk pages.

The latter problem has been investigated
by many database researchers over the last
15 years. Most work has been dominated
by the following assumptions:

(1)

(2)

(3)

(4)

Records are selected without replace-
ment.
The variables n, m, and k are known
constants.
There is a constant number of tuples
per page.
There is random placement of tuples
among pages.

Cardenas [19751 developed the following
formula for the expected number of page
accesses under the above assumptions, ex-
cept that tuples are selected with replace-
ment:

This formula can be derived by noting that
l/m is the probability that a page contains
a tuple, [1 - (l/m)] k is the probability that
a page does not contain any of the k tuples,
and 1 - [l - (l/m)] k is the probability that
a page contains at least one of the k tuples.

The above formula has undergone revi-
sion by several researchers. Yao [1977]
noted that the formula assumes sampling
with replacement, which is unrealistic in
the page access problem because a tuple
can be selected at most once. He thus de-
rived an exact formulation without replace-
ment and demonstrated that when the
blocking factor is 10 or more, the simpler
without-replacement formula provides al-
most identical results. Cheung [1982] de-
veloped a new formula when the requested

tuples may have duplicates. He also devel-
oped a simple formula for estimating the
number of distinct tuples referenced in a
transaction. One of Yao’s equations re-
quires iteration and can be expensive to
compute if k is large. As a response, Whang
et al. [1983] devised a closed, noniterative
approximation. They demonstrated that
their formula has a maximum error of 3.7%
and that the computation time is signifi-
cantly reduced by eliminating the iterative
loop.

More recently, researchers have relaxed
some of these assumptions. The assump-
tion that k is a constant is unrealistic be-
cause it must be estimated in most cases.
Luk [1983] proved that, if k is a random
variable instead of a constant, Yao’s for-
mula overstates the number of pages. He
gave a general guideline to follow when
Yao’s formula is used for varying k.

A number of researchers have replaced
the assumptions of a constant number of
balls per urn and random placement with
detailed modeling. The basic idea is to
represent the page access frequency as a
vector p = (pl, . . . , p,), where pi is the
probability of accessing page i. With the
random-placement assumption each prob-
ability is l/m. Christodoulakis [1984a]
modeled the distribution of records to pages
by attribute values using multivariate dis-
tributions based on the Pearson and normal
families. By integrating the distribution
over the appropriate attribute values, he
derived a page access distribution for a
particular query. This derived distribution
was then used to compute the expected
number of page accesses.

Vander Zander et al. [19861 examined the
problem of estimating the number of logical
page accesses given a selection query with
one simple, equality relational expression
on an attribute (say A) but where the rela-
tion is clustered according to another
attribute (say B). If A and B are highly
correlated, the distribution of tuples to
pages for the query is highly skewed and
the random placement assumption may
lead to poor estimates. To account for pos-
sible skewness resulting from correlations,
they proposed a nonparametric method
to model page distributions and two
ways to build a discretized or compacted

ACM Computing Surveys, Vol. 20, No. 3 September 1988

216 l M. V. Mannino et al.

distribution. The first method partitions a
distribution such that pages with access
frequency greater than the mean are
grouped together in one cell, with the re-
maining pages in another cell. The second
method accounts for the number of selected
records (k) through multiple page distri-
butions: One for the overall distribution of
tuples to pages and other distributions for
the most frequently, the average, and the
least frequently occurring value of each at-
tribute. For a given query they chose an
appropriate distribution based on the at-
tribute and the expected size of the answer,
dynamically modified it, and computed the
expected number of pages. They compared
both methods against actual page accesses
using simulation. Their analysis provided
guidelines for using the random-placement
assumption and compacted page distribu-
tions of sizes 2 and 4.

Several others have also examined the
implications of the random-placement as-
sumption. Zahorjan et al. [1983] used a
technique from queuing theory to construct
a distribution vector for estimating the ex-
pected page accesses. Luk [1983] used the
Zipf distribution as a model of a ball distri-
bution. Ijbema and Blanken [19861 defined
a class of ball distributions and derived
tight upper and lower bounds for the esti-
mation. They demonstrated that Yao’s for-
mula gives results on the upper bound,
whereas Luk’s gives results often beneath
their lower bound. In addition, they pro-
posed a computationally efficient approxi-
mation for the bounds.

For the problem of estimating the dis-
tinct values after a join or semijoin opera-
tion, the previous formulas have also been
applied. Bernstein et al. [1981] gave an
approximation formula for semijoin esti-
mation in a distributed database system.
Their formula, however, relied on the con-
stant-size and random-placement assump-
tions. Christodoulakis [1983b] introduced
an alternate formula:

VAL(0UT.A) = ; PljPZ;,
,=I

where M is the number of distinct values
in the domain of A and Pl, and P2i are the
probability that the ith element in the do-

main of values of attribute A is nonzero in
relations Rl and R2, respectively. In this
formula, only independence of attributes is
assumed.

The distribution model of Merrett and
Otoo [1979] can be applied to projection
sizes after selections or joins because it
estimates conditional distributions rather
than just sizes. This and other approaches
that work with conditional distributions
are described in the following section.

In addition to deriving the expected num-
ber of distinct values mathematically, in-
ference on bounds can be made using rules
such as

if A is a join attribute
then VAL(0UT.A)

5 MIN(VAL(Rl.A), VAL(R2.A))

if A is not a join attribute
then VAL(0UT.A)

5 VAL(R1.A) + VAL(R2.A).

5.2 Joins after Selections

In the description of join estimation in
Section 4.3, it was assumed that either the
join was performed on a base relation or
that independence holds among the attri-
butes. Since the independence assump-
tion is suspect and joins are often not per-
formed on base relations, more detailed
modeling of the correlation can produce
better estimates.

The concept of conditional probability
has been applied to account for correlations
among attributes in a tree of relational
algebra operations. Conditional probability
applies to multioperation access plans be-
cause the result of a previous operation may
affect the statistical properties of attributes
in a later operation. Consider two attributes
X and Y that are described by a multi-
variate distribution. A selection outputs at-
tribute Y and qualifies tuples by a Boolean
expression involving attribute X. A later
join operation uses attribute Y in its
Boolean expression. To estimate the join
cardinality, one must first estimate the
marginal conditional distribution of Y
given the Boolean expression on X. The
attributes with the conditional distribu-
tion to estimate are called indirect because
they do not participate in the Boolean

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 217

EST-CARD(STUDENT SEMIJOIN ENROLLMENT)

I
EST-DlST(ENROLLMENT.SSN)

I
EST-CARD(ENROLLMENT SEMIJOIN OFFERING)

I
EST-DIST(ENROLLMENT.UNlQUENO)

EST-CARD(GRADE >= 90)

EST-DlST(OFFERlNG.UiWWENO)

EST-CARD(SEMS=‘SPRING’ AND YEARd36)

Figure 6. Profile estimation operations.

expression of the previous operation. The
attributes in the Boolean expression of the
previous operation are called direct.

Figure 6 shows the profile estimation op-
erations for the following relational algebra
expression:

STUDENT SEMI-JOIN~T~~~~~.~~~
=ENHOLLMENT.SSN

(SELECT ENROLLMENTGRADE>SO (ENROLLMENT)
SEMI-JOIN ENROI.LMENT.*NIQ”ENO

=OFFERING.“NIQ”ENO

In the expression, OFFERING and EN-
ROLLMENT are combined first, followed
by STUDENT. In the profile estimation
operations, the conditional distributions of
the join attributes (OFFERING.UNIQUE-
NO, ENROLLMENT.UNIQUENO, AND
ENROLLMENT.SSN) are estimated to re-
flect the previous operations. STU-
DENT.SSN is not estimated because no
select operations are performed on STU-
DENT.

If a parametric method is used to com-
pute joint probabilities, the conditional
marginal distribution can be computed by
applying the probability density function.
For example, if attributes X and Y are
described by a bivariate normal distribu-
tion, the conditional marginal distribution
of Y after the selection X > 10 can be

computed by dividing normal bivariate den-
sity by the integral from 3c = 10 to infinity.

If a nonparametric approach is used, the
approaches described by Merrett and Otoo
[1979] and Muthuswamy and Kerschberg
[1985] can be used. In both approaches the
result of an estimation operation is a de-
rived distribution of the resulting relation.
For direct attributes, the derived distribu-
tion is computed by excluding the cells
outside of the Boolean expression. For in-
direct attributes Muthuswamy and Kersch-
berg combine the multivariate distribution
table with the marginal distribution on the
direct attribute to produce the conditional
marginal distribution of the indirect attri-
bute. In matrix algebra, their formula is
Ai = Ad X Mdi, where Ad is the marginal
frequency of the direct attribute after
the selection, Ai is the conditional marginal
frequency of the indirect attribute, and Mdi
is the matrix representing the joint fre-
quency divided by the product of the mar-
ginal frequencies of the direct and indirect
attribute. Merrett and Otoo [1979] also
covered the case in which the indirect at-
tribute is projected (i.e., duplicates are
removed). This case is important in dis-
tributed database systems where projec-
tions are sometimes transmitted from one
site to another.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

218 l M. V. Mannino et al.

We can generalize from this discussion
of conditional probability to two ways of
estimating arbitrary sequences of selec-
tions, projections, and joins. In the stand-
alone approach, the methods for each
operator are independent. The only in-
formation available to a method is the base
profiles and the estimated sizes of inter-
mediate results. This simplifies the esti-
mation process because only the output size
is computed. It also means that estimation
methods need not be compatible because
they only share the computed size. The
estimation accuracy suffers, however, be-
cause conditional parameter values are not
used. In the integrated approach, the meth-
ods for operators must be compatible be-
cause they use conditional profile values as
well as output sizes. The time and space
requirements for computing and saving the
conditional values may add considerable
overhead to the estimation process, but bet-
ter estimates are possible.

6. FUTURE DIRECTIONS

Open research issues can be classified as
(1) use of other decision-theoretic con-
cepts, (2) statistical modeling of logical and
physical page references, and (3) extensi-
bility. Decision theory influences selec-
tivity estimation in two ways. First, in
the estimation of tuple cardinality in Sec-
tion 4, most attention was devoted to esti-
mating the maximum error rate. This is a
strategy of minimizing the maximum error,
which implies the use of equal-height rather
than equal-width methods. That strategy
may be unduly conservative. In decision-
theoretic terms it is a minimax strategy.
Future work might look into the applica-
bility of other criteria such as mean-
squared error. Second, in order to reflect
one’s knowledge of the distribution of an
attribute’s values, the use of prior distri-
butions is useful. Prior distributions can be
updated to posterior distributions by fol-
lowing a Bayes strategy: Take a small sam-
ple and use an appropriate loss function
(e.g., maximum error, mean error, or mean-
squared error) to minimize risk. To a de-
gree, parts of this regimen have already
been proposed in rudimentary form. For

example, the presumption of attribute
value distribution being some specified par-
ametric form such as normal, the parame-
ters of which are periodically updated, is a
partial and unconscious implementation of
the empirical Bayes approach. A conscious
implementation has much to recommend
it: exploitation of the database administra-
tor’s knowledge of the attribute; ease in
updating statistical profiles, flexibility to
future changes, risk minimization, and a
developed body of applicable knowledge in
the statistical literature.

The second research direction deals with
detailed statistical models for estimating
the logical and physical page references.
Some unrealistic assumptions are often
made in estimating logical page references,
but recent work such as Vander Zander et
al. [1986] provides an excellent start to
replace the simplifying assumptions with
detailed modeling. The effects of buffer
space are rarely accounted for in estimating
physical page references. Recently, some
researchers have proposed models that fea-
ture more detailed modeling in place of the
simplifying assumptions. Copeland et al.
[1986] used statistics to model the changing
locality of reference to database pages.
Mackert and Lohman [1985] developed a
model for index scans, which relaxes the
assumption of unlimited buffer space.
These papers represent an important step
in more accurately modeling the effect of
buffer space on a plan’s resource usage.

The third research direction is extensi-
bility. An extensible database system
[Batory and Mannino 19861 can be easily
configured to meet the needs of emerging
application areas such as computer-aided
design, multimedia systems, and statistical
analysis. An extensible approach to profile
estimation separates methods from the pro-
file operators. When an operator is applied,
it is responsible for selecting a method from
a collection chosen by the database de-
signer. This separation permits flexibility
in the modeling of distributions, correla-
tion, relational expression types, and access
plan operators. An extensible model of tu-
ple cardinality estimation for selections has
been proposed by Mannino and Rivera
[1988].

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems 219

7. CONCLUSION

A statistical profile summarizes the in-
stances of a database. It typically describes
the number of instances, the distribution
of values, the correlation between value
sets, and the number of distinct values.
Accurate estimation of profiles is important
in query optimization and sometimes in
physical database design and performance
evaluation. A precise characterization of
the value of accurate profiles, however, is
still an open issue because of the large
number of cases to consider and the need
to measure the sensitivity on the choice of
access plans.

We described three operators on profiles:
The BUILD operator creates a profile from
a base object either through an exhaustive
scan or a sample; the UPDATE operator
revises a base profile to reflect updates to
its underlying base object; the ESTIMATE
operator computes an intermediate profile
using one or more profiles and an operation
description.

The methods for the ESTIMATE oper-
ator were classified by the type of method
(ad hoc, parametric, and nonparametric)
and the relational algebra operator. Ad-hoc
methods provide bounds and sometimes ex-
act estimates. They typically are based on
the existence of integrity constraints such
as candidate keys. Parametric methods use
a probability density function and a small
collection of parameters that can be com-
puted by arithmetic on attribute values.
They require that the attributes have at
least an interval scale. Nonparametric
methods use parameters that can be com-
puted on value counts. They can be more
costly in terms of storage and computation
time, but they do not suffer from goodness-
of-fit and attribute scale limitations. We
described the methods for individual rela-
tional algebra operations as well as for trees
of operations.

ACKNOWLEDGMENTS

We thank Jeff Mischkinsky, Angel Rivera, Chou Lin
Chen, Kuo Tay Chen, and Betsy Greenberg for help-
ful discussions. We also thank the referees and the
editor for a very thorough review and many useful
suggestions.

REFERENCES

APERS, P. M. G., HEVNER, A. R., AND YAO, S. B.
1983. Optimization algorithms for distributed
queries. IEEE Trans. Softw. Eng. SE-g, 1, 57-68.

ASTRAHAN, M., SCHKOLNICK, M., AND WHANG, K.
1985. Counting unique values of an attribute
without sorting. Tech. Rep. RJ 4960, IBM Re-
search Division.

BATORY, D., AND MANNINO, M. 1986. Panel on ex-
tensible database systems. In Proceedings of the
ACM SZGMOD Conference (Washington, D.C.,
May). ACM, New York, pp. 187-190.

BERNSTEIN, P., GOODMAN, N., WONG, E., REEVE, C.,
AND ROTHNIE, J. 1981. Query processing in
SDD-1: A system for distributed databases. ACM
Trans. Database Syst. 6, 4 (Dec.), 602-625.

BREIMAN, L., MEISEL, W., AND PURCELL, E. 1977.
Variable kernel estimates of multivariate densi-
ties. Technometrics 19, 135-144.

CACOULLOS, T., 1966. Estimation of a multivariate
density. Ann. Inst. Stat. Math. 18, 178-189.

CARDENAS, A. 1975. Analysis and performance of
inverted data-base structures. Commun. ACM 18,
5 (May), 253-263.

CERI, S., AND PELAGATTI, G. 1984. Distributed
Databases: Principles & Systems. McGraw-Hill,
New York.

CHAMBERLIN, D., ASTRAHAN, M., KING, W., LORIE,
R., MEHL. J.. PRICE, T., SCHKOLNICK, M..
GRIFFITHS’SE~INGER, P., KLUTZ, D., WADE, B.;
AND YOST, R. 1981. Support for repetitive
transactions and ad hoc queries in system R.
ACM Trans. Database Syst. 6, 1 (Mar.), 70-94.

CHEUNG, T. 1982. Estimating block accesses and
number of records in file management. Commun.
ACM 25, 7 (July), 484-487.

CHRISTODOULAKIS, S. 1981. Estimating selectivities
in data bases. Ph.D. dissertation, CSRG-136,
Computer Systems Research Group, Univ. of
Toronto.

CHRISTODOULAKIS, S. 1983a. Estimating record se-
lectivities. Znf. Syst. 8, 2 105-115.

CHRISTODOULAKIS, S. 1983b. Estimating block
transfers and join sizes. In Proceedings of the
ACM SZGMOD Conference (May). ACM, New
York, pp. 40-54.

CHRISTODOULAKIS, S. 1984a. Estimating block se-
lectivities. Znf. Syst. 9, 1, 69-79.

CHRISTODOULAKIS, S. 1984b. Implications of certain
assumptions in database performance evaluation.
ACM Trans. Database Syst. 9, 2 (June), 163-186.

CLARK, C., AND SCHKADE, L. 1983. StatisticalAnaZy-
sis for Administrative Decisions. South-Western,
Cincinnati.

COPELAND, G., KHOSHAFIAN, S., SMITH, M., AND
VALDURIEZ, P. 1986. Buffering schemes for per-
manent data. In Proceedings of the Conference on
Data Engineering (COMPDEC) (Los Angeles,
Calif., Feb.). IEEE, New York, pp. 214-221.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

220 l M. V. Mannino et al.

DEVROYE, L. 1985. A note on the L, consistency
of variable kernel estimates. Ann. Stat. 13,
1041-1049.

DEWITT, D., KATZ, R., OLKEN, F., SHAPIRO, L.,
STONEBRAKER, M., AND WOOD, D. 1984.
Implementation techniques for main memory da-
tabase systems. In Proceedings of the ACM SZG-
MOD Conference (Boston, Mass. June). ACM,
New York, pp. 1-8.

FEDOROWICZ, J. 1984. Database evaluation using
multiple regression techniques. In Proceedings of
the ACM SZGMOD Conference (Boston, Mass.,
June). ACM, New York, pp. 70-76.

FEDOROWICZ, J. 1987. Database performance eval-
uation in an indexed file environment. ACM
Trans. Database Syst. 12, 1 (Mar.), 85-110.

FINKELSTEIN, S., SCHKOLNICK, M., AND TIBERIO, P.
1988. Physical database design for relational
databases. ACM Trans. Database Syst. 13, 1
(Mar.), 91-128.

FRASER, D. 1957. Nonparametric Methods in Stutk-
tics. Wiley, New York.

GELENBE, E., AND GARDY, D. 1982. The size of
projections of relations satisfying a functional
dependency. In Proceedings of the 8th Znterna-
tional Conference on Very Large Data Bases
(Mexico City). Very Large Data Base Endow-
ment, Saratoga, Calif., pp. 325-333.

HEVNER, A., AND YAO, S. B. 1979. Query processing
in distributed database systems. IEEE Trans.
Softw. Eng. SE-3,3.

IJBEMA, A., AND BLANKEN, H. 1986. Estimating
bucket accesses: A practical approach. In Pro-
ceedings of the Conference on Data Engineering
(COMPDEC) (Los Angeles, Calif., Feb.), pp.
30-37.

JARKE, M., AND KOCH, J. 1984. Query optimization
in database systems. ACM Comput. Suru. 16, 2
(June), 111-152.

JOHNSON, N., AND KOTZ, S. 1970. Distributions in
Statistics: Continuous Univariate Distributions,
~01s. 1 and 2. Houghton Mifflin, Boston.

KAMEL, N., AND KING, R. 1985. A model of data
distribution based on texture analysis. In Pro-
ceedings of the ACM SZGMOD Conference (Aus-
tin, Tex., May). ACM, New York, pp. 319-325.

KERSCHBERG, L. TING, P. D., AND YAO, S. B.
1982. Query optimization in star computer net-
works. ACM Trans. Database Syst. 7, 4 (Dec.),
678-711.

KOOI, R. 1980. The optimization of queries in rela-
tional databases. Ph.D. dissertation, Case West-
ern Reserve Univ., Cleveland, Ohio.

KOTZ, S., AND JOHNSON, N. 1977. Urn Models and
Their Application. Wiley, New York.

KUMAR, A., AND STONEBRAKER, M. 1987. The effect
of join selectivities on optimal nesting order.
SZGMOD Rec. 16, 1 (Mar.), 28-41.

LOHMAN, G., MOHAN, C., HAAS, L., LINDSAY, B.,
SELINGER, P., WILMS, P., AND DANIELS, D.
1985. Query processing in R*. In Query Process-
ing in Database Systems, W. Kim, D. Batory, and

D. Reiner, Eds. Springer-Verlag, New York, pp.
31-47.

LUK, W. 1983. On estimating block accesses in
database organizations. Commun. ACM 26, 11
(Nov.), 945-947.

MACKERT, L., AND LOHMAN, G. 1985. Index scans
using a finite LRU buffer: A validated I/O model.
IBM Research Ren. RJ4836. Almaden Research
Center, San Jose, Calif.

MACKERT, L., AND LOHMAN, G. 1986a. R* optimizer
validation and performance evaluation for local
queries. In Proceedings of the ACM SZGMOD
Conference (Washington, D.C., May). ACM, New
York, pp. 84-95.

MACKERT, L., AND LOHMAN, G. 1986b. R* Optimizer
validation and performance evaluation for dis-
tributed Queries. In Proceed&s of the 12th Znter- -
national Conference on Very Large Databases
(Kyoto, Japan, Aug.). Morgan Kaufmann Pub-
lishers, Inc. (Also IBM Research Report RJ5050,
Alamaden Research Center, San Jose, Calif.)

MAHALANOBIS, P. 1936. On the generalized distance
in statistics. In Proceedings of the National Znsti-
tute of Sciences of India 12, pp. 35-49.

MANNINO, M. 1986. Selectivity estimation in unify
SQL. Tech. ROD. Dept. of Management Science
and Information Systems, Univ. of Texas, Austin.

MANNINO, M., AND RIVERA, A. 1988. An extensible
model of selectivity estimation. Znf. Sci.-An Zn-
tern&ion& Journal. Special issue on database
systems to appear Spring 1988.

MERRETT, T. H., AND 0~00, E. 1979. Distribution
models of relations. In Proceediws of the 5th
International Conference on Ve@ Large Data
Bases (Rio de Janeiro, Brazil. Oct.). ACM, New
York, pp. 418-425.

MONTGOMERY, A., D’SOUZA, D., AND LEE, S.
1983. The cost of relational algebraic operations
on skewed data: Estimates and experiments. In
Information Processing Letters 83. Elsevier
North-Holland, New York, pp. 235-241.

MOORE, D., AND YACKEL, J. 1977. Consistencyprop-
erties of nearest neighbor density function esti-
mates. Ann. Stat. 5, 143-154.

MURALIKRISHNA, M., AND DEWIIT, D. 1988. Equi-
depth histograms for estimating selectivity fac-
tors for multi-dimensional queries. In Proceed-
ings of the ACM SZGMOD Conference (Chicago,
Ill., June). ACM, New York, pp. 28-36.

MUTHUSWAMY, B., AND KERSCHBERG, G. 1985. A
DDSM for relational query optimization. Tech.
Rep., Univ. of South Carolina, Columbia. Also in
Proceedings of the ACM Annual Conference
(Denver, Colo., Oct.). ACM, New York.

PIATETSKY-SHAPIRO, G., AND CONNELL, G. 1984.
Accurate estimationof the number of.tuples sat-
isfying a condition. In Proceedings of the ACM
SZGMOD Conference (Boston, Mass., June).
ACM, New York, pp. 256-276.

PIATETSKY-SHAPIRO, G. 1985. Estimating the num-
ber of distinct attribute values by using sampling.
Submitted for publication.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Statistical Profile Estimation in Database Systems l 221

ROWE, N. 1985. Antisampling for estimation: An TEOREY, T. AND FRY, J. 1982. Design of Database
overview. IEEE Trans. Softw. Eng. 11.10 (Oct.).. Structures. Prentice-Hall, Englewood, Cliffs, N.J. - , -
1081-1091. UNIFY CORPORATION. 1985. Unix Relational Data-

SAMSON, W., AND BENDELL, A. 1983. Rank order base Management System-Reference Manual.
distributions and secondarv key indexing (ex- Release 3.2. Portland, Oreg.
tended abstract). In Proceedings of the 2nd>nter-
national Conference on Databases, (Cambridge,
England).

SELINGER, P., ASTRAHAN, M., CHAMBERLIN, D.,
LORIE, R., AND PRICE, T. 1979. Access path
selection in a relational database management
system. In Proceedings of the ACM SZGMOD
Conference (San Jose, Calif.). ACM, New York,
pp. 23-34.

SCHKOLNICK, M., AND TIBERIO, P. 1979. Con-
siderations in developing a design tool for a rela-

VANDER ZANDER, B., TAYLOR, H., AND BITON, D.
1986. Estimating block accesses when attributes
are correlated. In Proceedings of the 12th Znter-
national Conference on Very Large Databases
(Kyoto, Japan, Aug.). Morgan Kaufmann Pub-
lishers, Inc., pp. 119-127.

WEGMAN, E. 1983. Density estimation. In Encyclo-
pedia of Statistical Sciences, Vol. 2, S. Kotz and
N. Johnson, Eds. Wiley, New York.

WERTZ, W. 1978. Statistical Density Estimation: A
Suruev. Vandenhoeck and Runrecht. Gottinzen.

tional DBMS. In Proceedings of the IEEE
COMPSAC Conference (Chicago, Ill., Nov.).

WHANG, K., WIEDERHOLD, G., AND SAGALOWICZ, D.

IEEE Press, New York, pp. 228-235.
1983. Estimating block accesses in database
oreanizations: A closed noniterative formula.

STONEBRAKER, M., RUBENSTEIN, B., AND GUTMANN, Cimmun. ACM 26, 11 (Nov.), 940-944.
A. 1983. Application of abstract data types and
abstract indices to CAD databases. In Proceed-

YAO, S. 1977. Approximating block accesses in da-

ings of Database Week: Engineering Design Ap-
tabase organizations. Commun. ACM 20,4 (Apr.),
260-261.

plications (San Jose, Calif., May). pp. 107-113. ZAHORJAN, J., BELL. B., AND SEVCIK, K. 1983.
STURGES, H. 1926. The choice of class interval. Estimating block transfers when record access

J. Am. Stat. Assoc. 65-66. probabilities are non-uniform. Znf. Process. Z&t.
TAPIA, R., AND THOMPSON, J. 1978. Nonparametric 16, 5 (June), 249-252.

Probability Density Estimation. John Hopkins ZIPF, G. 1949. Human Behavior and the Principle of
University Press, Baltimore, Md. Least Effort. Addison-Wesley, Cambridge, Mass.

Received March 1987; final revision accepted May 1988.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

