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A statistical profile summarizes the instances of a database. It describes aspects such as 
the number of tuples, the number of values, the distribution of values, the correlation 
between value sets, and the distribution of tuples among secondary storage units. 
Estimation of database profiles is critical in the problems of query optimization, physical 
database design, and database performance prediction. This paper describes a model of a 
database of profile, relates this model to estimating the cost of database operations, and 
surveys methods of estimating profiles. The operators and objects in the model include 
build profile, estimate profile, and update profile. The estimate operator is classified by 
the relational algebra operator (select, project, join), the property to be estimated 
(cardinality, distribution of values, and other parameters), and the underlying method 
(parametric, nonparametric, and ad-hoc). The accuracy, overhead, and assumptions of 
methods are discussed in detail. Relevant research in both the database and the statistics 
disciplines is incorporated in the detailed discussion. 

Categories and Subject Descriptors: H.0 [Information Systems]: General; H.2.2 
[Database Management]: Physical Design--access methods; H.2.3 [Database 
Management]: Languages-query languages; H.2.4 [Database Management]: 
Systems-query processing; H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval-query formulution; retrieval models; search process; selection 
process 

General Terms: Algorithms, Languages, Performance 

Additional Key Words and Phrases: Access plan, Boolean expressions, database profile, 
relational model 

INTRODUCTION an integral element of the optimizing com- 
ponent in query optimization and, in some 

The quantitative properties that summa- cases, physical database design. 
rize the instances of a database are its The objective of query optimization is to 
statistical profile. Estimation of profiles is derive an efficient plan for obtaining the 
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information requested by the user. A plan 
is a high-level description of a program. 
It describes the algorithms, file structures, 
order of operations, and outer/inner 
loop variables. To find an efficient plan, 
an optimizer generates and evaluates a 
number of alternatives. The evaluation of 
alternatives is based on cost formulas 
that estimate the number of secondary 
storage accesses, the central processing 
effort, and in the case of distributed data- 
bases, the communication costs and de- 
lays. Since these formulas depend directly 
or indirectly on the estimated size of the 
operands, statistical profile estimation 
assumes importance in the process of query 
optimization. 

Statistical profile estimation can also 
play an important role in physical database 
design problems such as index selection. 
For example, DBDSGN [Finkelstein et al. 
19881, a tool for index selection, utilizes the 
query optimizer developed for the System 
R database manager [Chamberlin et al. 
19811. The choice of indexes is based largely 
on their screening ability, which is heavily 

influenced by the database profiles and the 
Boolean expressions in a standard set of 
queries. 

There is no doubt that profile estimation 
plays an important role in query optimiza- 
tion and other problems. The question that 
faces designers of such systems is, How 
important? How sensitive to accurate size 
estimates are the cost models? In which 
circumstances are the cost models sensi- 
tive? How much effort in terms of time and 
space should be devoted to accurate esti- 
mation of size and other profile properties? 
These questions are difficult to answer. 

This paper provides insights into these 
questions and presents both a tutorial and 
a survey on the subject of statistical profile 
estimation with a focus on its application 
in query optimization. It presents a simple 
model of a database profile, relates this 
model to cost estimation, describes the un- 
derlying statistical methods for estimating 
profiles, and demonstrates the application 
of the statistical methods for estimating 
the results of individual relational algebra 
operations, as well as trees of relational 
algebra operations. Unresolved issues and 
potential research opportunities are also 
explored. It is assumed that the reader 
possesses knowledge of the relational data 
model and elementary statistics. 

The remainder of this paper is organized 
as follows: Section 1 describes a database 
profile as a complex object; the properties 
and operations on profiles are described. 
Section 2 discusses the relationship be- 
tween cost and profile estimation, with em- 
phasis on how certain assumptions affect 
cost estimation. Section 3 reviews basic 
statistical techniques, and Section 4 shows 
how these techniques have been applied to 
estimating the cardinality of select, project, 
and join operations. Section 5 discusses 
techniques for estimating the cardinality 
and other parameters of trees of rela- 
tional algebra operations. Section 6 ex- 
plores open research questions. Section 7 
concludes the work. 

1. DATABASE PROFILE AS A COMPLEX 
OBJECT 

In this section we first describe a statistical 
profile as a complex object and then discuss 
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I 

Relation Profile: 1 
Cardinality: 1000 
Pages: 1200 
Number of Attributes: 7 
Attribute Profiles 0, 

Attribute Profile: 1 
Values: 100 
Size: 12 
Minimum Value: 10 
Maximum Value: 60 
Distribution: Uniform 
Index Profiles p 

Index Profile: 1 
Leaf Pages: 100 
Key Size: 12 
Height: 4 
Values: 100 

Figure 1. Example profiles. 

the operations on profiles. For illustrative 
purposes, the relational data model is cho- 
sen as the basis of discussion. The ideas 
and techniques presented herein, however, 
can be extended to other data models and 
applications. When referring to relational 
databases, we use the formal terms relation, 
tuple, and attribute instead of the more 
familiar terms table, row, and column. 

A statistical profile can be viewed as a 
complex object composed of quantitative 
descriptors. Statisticians have long used 
quantitative descriptors to summarize data 
and make inferences. The most commonly 
used quantitative descriptors fall into four 
main categories: (1) descriptors of central 
tendency such as mode, mean, and median, 
(2) descriptors of dispersion such as range 
(maximum and minimum), variance, and 
standard deviation, (3) descriptors of size 
such as the number of instances (cardinal- 
ity) and the number of distinct values, and 
(4) descriptors of frequency distribution 

such as normality, uniformity, and value 
intervals and counts. 

A statistical profile is built from these 
descriptors. A profile can be regarded as a 
complex object because it can be described 
by other profiles. In Figure 1, a relation 
profile contains a list of attribute profiles, 
which in turn are described by index pro- 
files. The relation profiles include proper- 
ties such as the tuple cardinality and the 
number of secondary storage units (pages). 
The attribute profiles contain properties 
such as the number of distinct values, 
the parameters of the distribution, and the 
range. The index profiles characterize the 
properties of tree-structured indexes such 
as the number of levels, the number of leaf 
pages, and the percentage of free space. 

The choice of descriptors depends on the 
usual time and space trade-offs plus the 
requirements of the query optimizer. If 
the database system has an optimizer that 
does not estimate the cost of alternative 
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Target Target 
Profile Profile r A 

JOIN 

Intermediate Intermediate 
Profile :1’ 

Figure 2. Example access plan. 

plans, only a few descriptors are main- 
tained, such as the number of tuples and 
pages for each relation. If the optimizer 
computes the cost of alternative plans, then 
descriptors about dispersion, distribution, 
and index properties are also maintained. 

Profiles describe base and intermediate 
objects. A base object physically exists; for 
instance, a relation in the database is a 
base object. Applying operators to base ob- 
jects results in intermediate objects; for 
instance, performing a selection on a base 
relation results in an intermediate relation. 

In query optimization, profiles rather 
than actual objects are manipulated. Pro- 
files and operations are encapsulated in 
hierarchically structured access plans (Fig- 
ure 2). The leaf nodes of a plan are base 
profiles. Internal nodes are operations or 
intermediate profiles. The operations in- 
clude counterparts of the relational algebra 
operators such as select, project and join 

and restructuring operations such as SORT 
and BUILDINDEX. A profile above an 
operation describes the output relation. 

A base profile is built from its associated 
base object occurrences. Some of the de- 
scriptors are routinely maintained by the 
database management system such as the 
tuple and page cardinality. Others are spec- 
ified by the database designer such as an 
attribute’s value range. The remainder are 
collected on demand or perhaps according 
to a periodic schedule by statistical pro- 
grams that either sample the database or 
exhaustively scan all tuples. 

Intermediate profiles, on the other hand, 
have to be estimated, since query optimiz- 
ers do not generally work with intermediate 
objects. Optimizers are designed in this 
manner because global optimization cannot 
be done if the results of an operation must 
be materialized before the next step is de- 
cided and optimizing on the fly forces the 
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Database -+ii+ Base Profile 
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Base Profile 47 

Database 
Operation 
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(b) 
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Descr,it,onJTb Operation i!I;neecliate 

(c) 

Figure 3. Data flow of profile operators. 
(a) BUILD operator. (b) UPDATE operator. (c) ESTIMATE operator. 

execution of the query and its optimization 
to be performed simultaneously. As a con- 
sequence of this policy, there is a degree of 
uncertainty associated with an interme- 
diate profile reflecting its accuracy and 
reliability. As an intermediate profile 
moves farther away from base profiles, 
its accuracy diminishes. 

Base and intermediate profiles can also 
be distinguished by their applicable opera- 
tors. Base profiles are created by the 
BUILD operator (Figure 3a) and updated 
by the UPDATE operator (Figure 3b). The 
BUILD operator employs statistical func- 
tions to compute each profile property used 
by the query optimizer. The BUILD oper- 
ator can compute the profile properties 
either by scanning the database exhaus- 
tively or by sampling. It is triggered by a 
command given by the database adminis- 
trator. The UPDATE operator changes the 
value of selected profile properties to reflect 
database changes. It is internally triggered 
by the database system. For example, the 
tuple cardinality is sometimes changed 
every time a tuple is added. Usually only 
the simplest profile properties are dynami- 
cally updated. For the others, the BUILD 
operator must be executed again to revise 

their values. The ESTIMATE operator 
(Figure 3c) constructs intermediate profiles 
from base profiles or other intermediate 
profiles and an operation description. It is 
performed by the query optimizer during 
the evaluation of an access plan. Section 3 
describes the underlying statistical meth- 
ods for estimating database profiles. Sec- 
tions 4 and 5 describe the estimation of 
tuple cardinality and conditional profile 
properties, respectively. 

.2. RELATIONSHIP BETWEEN PROFILE AND 
COST ESTIMATION 

Profiles are maintained primarily because 
of their effect on cost estimation and ulti- 
mately on plan selection. Although no one 
doubts that there is a strong relationship, 
a precise characterization is still an open 
question. This is partly due to the large 
number of cases to consider, which is influ- 
enced by the access plan operators, envi- 
ronment (centralized versus distributed), 
storage structures, algorithms, and relation 
sizes. Moreover, the question is not just 
their relationship but the sensitivity on the 
choice of access plans. Inaccuracies can be 
tolerated as long as the optimizer can avoid 
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bad plans. To complicate matters further, 
optimizers often make simplifying assump- 
tions, such as ignoring the effects of mul- 
tiple users, buffer replacement policies, and 
logging and concurrency control activity. 
Accuracy in profile estimation cannot com- 
pensate for these simplifying assumptions. 

This section explores the relationship be- 
tween profile and cost estimation. We first 
describe the nature of cost estimation with 
an emphasis on the typical assumptions 
used. We then present a simple example 
that demonstrates the sensitivity under 
varying assumptions. Finally, we summa- 
rize studies of the sensitivity between 
profile and cost estimation. 

2.1 Basics of Cost Estimation 

The economic principle requires that opti- 
mization procedures either maximize out- 
put for a given collection of resources or 
minimize resource usage for a given level of 
output. In query optimization, the objective 
is to minimize the resources needed to eval- 
uate an expression that retrieves or updates 
a database. Resources can be considered as 
the response time (the user’s time) or the 
processing effort of the computer. In cen- 
tralized database systems these objectives 
coincide, and optimizers attempt to mini- 
mize processing effort. In distributed data- 
base systems these objectives may not 
coincide, and the optimization problem 
can be much more difficult. In this paper 
we concentrate on centralized database 
systems, but we indicate how profile 
estimation influences optimization in 
distributed systems. 

There are a number of contributors to 
processing effort of which a query optimizer 
can influence only a few. Teorey and Fry 
[1982] identify effort factors such as CPU 
service time, CPU queue waiting time, I/O 
service time, I/O queue waiting time, lock- 
out delay, and communications delay. The 
CPU and I/O waiting times and the lockout 
delays are heavily influenced by the mix of 
jobs. It is very difficult to influence these 
by the selection of specific access plans. 
The I/O and CPU service times and, in the 
case of distributed databases, the commu- 
nication delays can be directly influenced 
by the access plan chosen. 
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Therefore, most query optimizers mea- 
sure cost as a weighted sum of I/O, CPU, 
and communication costs and delays. The 
weights can be assigned at database gener- 
ation time to reflect a specific environment. 
The I/O cost is frequently measured by the 
estimated number of logical page reads and 
writes. A reference to a database page is a 
logical reference. If the database page is not 
in the buffer, a logical reference becomes a 
physical reference. To estimate the physical 
references, one must consider the effects of 
buffer sizes, replacement policies, and con- 
tention for buffer space among the different 
operations of a plan. For details of a model 
that estimates the physical references, con- 
sult Mackert and Lohman [1986b]. 

CPU cost has been measured in various 
ways, primarily because researchers do not 
agree on the contribution of CPU effort to 
total cost. Some researchers [Mackert and 
Lohman 1986a; Dewitt et al. 19841 mea- 
sure it on a per operator basis to reflect 
relative differences in CPU effort. For ex- 
ample, the estimated CPU cost to sort 1000 
tuples will be more than the estimated cost 
to scan 1000 tuples. Other researchers, 
however, do not agree that CPU cost needs 
to be measured in such a detailed manner. 
Some have ignored CPU costs entirely 
[Kooi 19801 or used simple measures such 
as the number of storage system calls 
[Selinger et al. 19791 or the number of out- 
put tuples [Kumar and Stonebraker 19871. 

Communication costs are frequently 
measured by the number of bytes transmit- 
ted [Goodman et al. 1981; Hevner and Yao 
1979; Kerschberg et al. 19821. In the dis- 
tributed database System RX [Lohman et 
al. 19851 the number of messages is also 
used, where the message cost represents 
the fixed overhead to transmit a number 
of bytes. 

As discussed, query optimizers often 
make assumptions about what resources to 
measure. They also often make assump- 
tions about the content of database profiles. 
Christodoulakis [ 1984131 identified five sim- 
plifying assumptions: 

(1) Uniformity of attribute values: There 
are an equal number of tuples with each 
value. 
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(2) 

(3) 

(4) 

(5) 

Independence of attribute values: The 
values of two attributes (say A and B) 
are independent if the conditional 
probability of an A value given a B 
value is equal to the probability of ob- 
taining the A value. 
Uniformity of queries: Queries refer- 
ence all attribute values with the same 
frequency. 
Constant number of tuples per page: 
Each page contains the average number 
of tuples; that is, the probability of 
referencing any page is l/P, where P is 
the number of pages. 
Random placement of tuples among 
pages: The placement of tuples among 
pages does not affect their probability 
of reference; that is, the probability of 
referencing any tuple is l/N, where N 
is the number of tuples. 

Assumptions 1 and 2 affect the estimates 
of the sizes of plan operations. Assump- 
tion 3 affects the size estimate of queries 
that reference a parameter and physical 
database design problems. Assumptions 4 
and 5 affect the estimation of logical page 
references given an estimated number 
of tuples. 

These assumptions simplify the cost es- 
timation effort, but they can also decrease 
estimation accuracy. Some query optimiz- 
ers improve cost estimation by a more de- 
tailed modeling for assumptions 1 and 2. 
Few optimizers model assumptions 3-5 in 
more detail. 

2.2 Example Cost Estimates 

To depict the relationship between profile 
and cost estimation further, we show cost 
estimates under varying assumptions for a 
simple query and several alternative pro- 
cessing strategies. We use an example 
based on the student population of a major 
university. Similar examples have been de- 
scribed for financial information on large 
companies [Piatetsky-Shapiro and Connell 
19841 and for the population of Canadian 
engineers [Christodoulakis 1983a]. 

Consider the following query, which lists 
students over 33 years old with a business 

major: 

Assume nonclustered indexes are main- 
tained for the two attributes, MAJOR and 
AGE. A nonclustered index is one in which 
the order of the index is not related to the 
order of tuples on the data pages. The use 
of an unclustered index on an exact match 
results in an ordered scan of the data pages 
because the tuple identifiers are normally 
sorted within index values. When tuples 
satisfying more than one index value are 
searched, the scan of data pages is unor- 
dered across index values. Thus, a query 
over a range of values may result in multi- 
ple physical references to the same data 
page [ Schkolnick and Tiberio 19791. 

We consider four processing strategies: 
First, we can scan the entire student rela- 
tion and examine every tuple to see if it 
meets the two stated conditions. Second, 
we can use the index on MAJOR to access 
the records of those students whose major 
is “business” and then check whether their 
age is greater than 33. Third, we can use 
the index on AGE and access the records 
of those students whose age is greater than 
33 and then check whether their major is 
“business”. Fourth, we can intersect the 
qualifying tuple identifiers from both in- 
dexes, sort the resulting list, and then ac- 
cess the underlying tuples. 

Cost estimates for these four strategies 
are derived under three scenarios: (1) actual 
sizes, (2) size estimates under assump- 
tions of uniformity and independence, and 
(3) size estimates using a two-dimensional 
histogram. Table 1 displays the two- 
dimensional histogram. We assume the ac- 
tual number of qualifying tuples is 380. The 
estimate using the histogram is 490, which 
assumes the cells of the histogram are uni- 
formly distributed. The estimate using uni- 
formity and independence assumptions is 
3000.’ 

Table 2 shows the tuples accessed and 
the costs of the four alternatives. We as- 
sume a data page size of 40 tuples, an index 
page size of 250, and an index height of 2. 
Except for the scan alternative, the data 

1 3000 = 40,000 x 1 x =. 8 45 
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Table 1. Two-Dimensional Histogram 

AGE 

MAJOR 16-20 21-25 26-30 31-35 36-40 41-60 Total 

Business 2,045 3,600 3,625 
Education 215 500 750 
Engineering 750 1,800 1,775 
Liberal arts 2,250 3,000 3,600 
Public administration 250 575 875 
Natural Science 715 1,850 2,000 
Nursing 225 550 375 
Social Science 575 900 1,200 

Total 7,145 12,775 14,200 

400 175 155 
625 250 100 
450 125 100 
500 400 250 
425 250 125 
150 150 75 
200 120 30 
500 225 100 

3,250 1,695 935 

10,000 
2,500 
5,000 

10,000 
2,500 
5,000 
1,500 
3,500 

40,000 

Table 2. Cost Estimates of Four Alternatives under Three Size Estimates 

MAJOR + 
Scan MAJOR index AGE index AGE indices 

Actual Sizes 
Tuple references 
Index references page 
Data references page 
Total references page 

40,000 10,000 3,780 380 
0 41 16 57 

1,000 1,000 3,184 317 
1,000 1,041 3,200 374 

Assumption Estimates 
Tuple references 
Index references page 
Data references page 
Total references page 

Histogram Estimates 
Tuple references 
Index references page 
Data references page 
Total page references 

40,000 5,000 24,000 3,000 
0 21 97 118 

1,000 995 15,984 955 
1,000 1,016 16,081 1,073 

40,000 10,000 3,930 490 
0 41 17 58 

1,000 1,000 3,322 390 
1,000 1,041 3,339 448 

page references are largely based on the 
formula provided by Whang et al. [1983], 
which assumes random placement of tuples 
among pages. For the AGE index, we use 
the formula of Schkolnick and Tiberio 
[1979] because it results in an unordered 
scan across index values. Their formula 
assumes a buffer size of one page, which 
penalizes unordered scans. The data page 
references for the MAJOR + AGE indexes 
are based on an ordered scan because we 
assume that the tuple identifiers that result 
from intersecting indexes are sorted. 

In this example, the query optimizer 
would have made a poor choice if it relied 
on the uniformity and independence as- 
sumptions. The sequential scan rather than 
the use of both indexes would have been 
chosen, resulting in perhaps three times as 
many page accesses as needed. If the opti- 
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mizer did not consider the fourth strategy, 
the size estimates would not have made a 
major difference since the estimated costs 
are all in favor of the scan strategy. 

In this example, the sensitivity between 
cost and size estimates is straightforward 
because of the characteristics of the query 
and because it involved only a single oper- 
ator query in a centralized database envi- 
ronment. The sensitivity issues become 
much more complex when evaluating trees 
of relational algebra operations and when 
considering distributed environments. 

2.3 Sensitivity Analysis 

A number of studies have examined the 
relationship between profile and cost esti- 
mation. Some have analytically studied 
the bias when using certain assumptions, 
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whereas others have experimentally tested 
sensitivity. We first examine the analytical 
studies and then the experimental ones. 

Christodoulakis [ 1984b] analyzed the im- 
plications of the five assumptions stated in 
Section 2.1 on database performance eval- 
uation. He considered the effects of these 
assumptions on the problems of estimating 
the (1) expected page accesses for a given 
N records, (2) expected number of page 
accesses for all queries on an attribute, (3) 
expected number of page accesses for mul- 
tiattribute queries, and (4) distinct number 
of attribute values after a selection opera- 
tion. He proved that these assumptions 
lead to worst-case cost estimates. For ex- 
ample, he demonstrated that the uniform- 
ity and independence assumptions lead to 
a worst-case estimate for the distinct at- 
tribute values. He also argued persuasively 
that optimizers that use them will often 
choose worst-case access strategies such as 
sequential scanning and sorting. Direct ac- 
cess structures will often be ignored be- 
cause the pessimistic cost estimates favor 
the simpler structures. 

Montgomery et al. [1983] compared the 
size estimates of selection and join opera- 
tions using uniformity assumptions when 
the data are heavily skewed. They com- 
pared models of size estimation using for- 
mulas based on uniformity assumptions 
against their own based on a skewed data 
distribution. They validated their formulas 
by comparing their estimates against sim- 
ulated data. For the selection case, they 
found that uniformity assumptions tended 
to overestimate the result by 200-300%. 
For the join case, they found the opposite 
result. 

Mackert and Lohman [1986a, 1986b] ex- 
perimentally validated the local and dis- 
tributed cost models used for single table, 
sorting, and two table joins in R*. Their 
tests confirmed the contribution of CPU 
costs to the total costs especially for sort 
operations. For index scans and sorts, size 
estimation is an important factor in both 
the I/O and CPU components of their cost 
formulas. Their experiments also revealed 
that the optimizer overstates the cost of the 
nested loop join algorithm when the inner 
table fits in main memory and there is an 
index on its join column. They suggested 

that the nested loop cost is very sensitive 
to three parameters: join cardinality, the 
outer table’s cardinality, and the buffer uti- 
lization. In the case of distributed joins, the 
buffer sensitivity is less important because 
there is less contention for buffer space 
among the two joined tables. The join 
cardinality, however, assumes more im- 
portance because of its influence on the 
number of messages and bytes transmitted. 

Kumar and Stonebraker [1987] investi- 
gated the effects of join selectivity on the 
selection of the optimal nesting order for 
four and five variable queries. They devel- 
oped a simulated query processor that be- 
haves similarly to the System R optimizer 
[Selinger et al. 19791 in that it considers 
two join algorithms (nested loops and 
merge scan), performs only two-way joins, 
and considers using secondary indexes on 
the inner join table. They measured the 
sensitivity of a query with respect to 
changes in the joint selectivity by the ratio 
between the cost of the optimal plan and 
the plan of interest. The best plan under 
varying selectivities was either the one that 
minimizes the average cost ratio or the one 
that minimizes the maximum cost ratio. 
They measured the sensitivity of four and 
five variable queries under a variety of join 
selectivities using this sensitivity factor. 
They assumed known input relation sizes 
and independence among join clauses. 
Their results demonstrated that the opti- 
mal plan is insensitive to varying join se- 
lectivities if the optimal plan is chosen 
according to their criteria. They did not, 
however, investigate the sensitivity when 
the optimal plan is chosen in a traditional 
manner without consideration of varying 
join selectivities. 

Vander Zander et al. [1986] studied the 
impact of correlation of attributes on the 
assumption of random placement of tuples 
to pages. They tested the query, “Retrieve 
all tuples from relation R where R.B = 
constant” when R is clustered according to 
another attribute (say A). High correlation 
between A and B causes skewness in the 
distribution of tuples to pages, which vio- 
lates the random-placement assumption. 
Using simulation, they found that the dif- 
ference between the estimated logical page 
references under the random-placement 
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assumption and the actual was significant either univariate or multivariate distribu- 
beyond a correlation of .4. With a correla- tions. Multivariate distributions are usually 
tion of .6, the estimates overstated actuals more difficult to estimate than univariate 
by 70%. When correlation approached 1, distributions because of the increasingly 
the estimates overstated actuals by almost complex manner in which the variables 
3000%. may interact as their number grows. This 

multivariate comnlexitv can be consider- 

3. PRIMER ON STATISTICAL METHODS 

In this section we discuss the statistical 
methods that are used in the remaining 
sections. Some acquaintance with basic 
statistical concepts is assumed. 

In statistics, the population (relation) is 
the set of all observations (tuples) of inter- 
est. Each observation consists of one or 
more values of variables (attributes). An 
extremely important objective of statistical 
inference is to estimate the distribution of 
the population. Knowledge of the distribu- 
tion conveys the ability to calculate which 
values of variables are most likely to occur, 
how many values should occur in specified 
ranges, summary measures such as mean 
and standard deviation, and so on. 

Methods for estimating the distribution 
of a population can be divided into two 
basic types according to how much is 
known about the shape of the distribution. 
Parametric methods assume that the dis- 
tribution has a form that is completely 
known except for a few parameters; the goal 
then becomes the estimation of those few 
remaining parameters. For instance, a pop- 
ulation may be thought to have a normal 
distribution. This completely specifies the 
distribution except for its mean and stan- 
dard deviation, which are then estimated. 
Nonparametric methods are the second 
type. These methods assume little or noth- 
ing about the form of the distribution, so 
the estimation task is often more difficult 
than with parametric methods. The histo- 
gram, or bar chart, is a simple, common 
nonparametric estimate. 

Methods for estimating the distribution 
of a population can also be divided into two 
basic types according to the number of vari- 
ables measured per observation. Univariate 
populations have only one variable; multi- 
variate populations have more than one 
variable. Both parametric and nonpara- 
metric methods may be used to estimate 

ably simplified if the variables are statisti- 
cally independent. If independence holds, 
then the multivariate distribution reduces 
to the product of the individual, or mar- 
ginal, distributions of each variable. 
Independence can be tested by any of a 
collection of standard statistical tests 
such as the chi-square test for categorical 
variables or the correlation coefficient 
for continuous variables. Such tests, how- 
ever, may be used only to reject the null 
hypothesis of independence-not to accept 
it. 

Variables may also be classified accord- 
ing to the nature of their values into cate- 
gorical and numerical types. To estimate 
the distribution of a categorical variable is 
to estimate the probability of occurrence of 
each category; summary measures such as 
the mean or standard deviation are either 
not calculable or inappropriate. The most 
general probability model for categorical 
variables is the multinomial. Numerical 
variables are either ratio scale (with a 
meaningful zero point) or interval scale 
(with an arbitrary zero point). This is fur- 
ther complicated by the classification of 
numerical variables into discrete and 
continuous types. Discrete variables are 
distinguished from continuous ones in 
that discrete variables have repetitions 
or duplicates of the same values with 
positive probability, whereas the probability 
of duplicate values of continuous vari- 
ables is zero. Discrete distributions are 
estimated parametrically by positing a 
model such as the binomial, multinomial, 
or Poisson, estimating the appropriate 
parameters, and then testing the goodness 
of fit, for example, by the chi-square 
test; they are estimated nonparametri- 
tally by tallying the occurrences of each 
different value, that is, a histogram. Most 
of the effort in modern statistics has been 
lavished on the more difficult task of esti- 
mating continuous distributions. 
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3.1 Common Parametric Distributions 

The distributions that have been reported 
in the literature as models for profile 
estimation include the uniform, normal, 
Pearson family, and Zipf. The uniform is 
the simplest and may apply to all types of 
variables, from categorical to numerical 
and from discrete to continuous. For cate- 
gorical or discrete variables, the uniform 
distribution posits equal probability for all 
distinct categories or values. In the case of 
a continuous variable, the uniform distri- 
bution has constant probability density 
over the range of possible values. In the 
absence of any knowledge of the probabil- 
ity distribution of a variable, the uniform 
distribution is a conservative, minimax 
assumption. 

The normal distribution is a symmetric, 
unimodal, “bell-shaped” distribution for 
continuous variables. It has two parameters 
to estimate, the mean and standard devia- 
tion, which control the location and disper- 
sion, respectively, of the variable. Many 
variables follow approximate normal distri- 
butions, particularly those obtained as the 
result of summing or averaging other pro- 
cesses. The normal distribution is the min- 
imum entropy choice when the mean and 
standard deviation parameters are known. 

Karl Pearson proposed the eponymous 
family that would provide a wide range of 
choice of shapes but also be sufficiently 
concise so that a few parameters would 
suffice. The Pearson family includes the 
normal, uniform, beta, F, t, and gamma, all 
of which arise as solutions to a single dif- 
ferential equation [Johnson and Kotz 
19701, 

1 dy b+x --= 
Y dx a0 + alx + a2x2’ 

for various choices of the constants. These 
four constants are related directly to the 
first four moments of the distribution and 
therefore provide an easy means for esti- 
mation of the distribution. 

Zipf’s law for continuous variables has a 
density function proportional to a power of 
the abscissa and therefore provides a model 
for positively skewed variables with higher 
probability of outliers than the normal, 

gamma, and others. The exponent of the 
abscissa is the only parameter to estimate. 
Attempts to find a generally applicable law 
of nature in Zipf’s law have met with mixed 
success. 

3.2 Nonparametric Estimation 

In order to avoid the restrictions of partic- 
ular parametric methods, many researchers 
have proposed nonparametric methods for 
estimating a distribution. The oldest and 
most common of these methods is the his- 
togram. The essence of the histogram is to 
divide the range of values of a variable into 
intervals, or “buckets” and, by exhaustive 
scanning or sampling, tabulate frequency 
counts of the number of observations fall- 
ing into each bucket. The frequency counts 
and the bucket boundaries are stored as a 
distribution table. The distribution table 
can be used to obtain upper and lower 
selectivity estimates. Within those bounds, 
a more precise estimate is then computed 
by interpolation or other simple techniques. 
As noted below, modern methods of density 
estimation have refined and extended the 
classical histogram. 

There are several different types of his- 
tograms, or distribution tables, depending 
primarily on the criteria chosen to set 
bucket boundaries. In the equal-width table 
the widths of the buckets are equal, but the 
frequencies or heights are variable. In an 
equal-height table the widths are deter- 
mined so that the frequency within each 
bucket is the same. In a variable-width table 
the widths are determined so that the fre- 
quency within each bucket meets some 
other criterion, such as the values being 
uniformly distributed. 

The equal-width table corresponds to the 
classical histogram and is very easy to apply 
in selectivity estimates: Simply search the 
table for the first bucket that contains the 
constant of the relational expression and 
interpolate between the endpoints of the 
bucket. But there are several drawbacks to 
the equal-width method: 

(1) Since the maximum error rate is deter- 
mined by the height of the tallest 
bucket, some prior knowledge about the 
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(2) 

distribution of attribute values is nec- 
essary to predict estimation accuracy. 

The statistics literature offers little 
help in choosing bucket boundaries 
without some knowledge of the distri- 
bution. This lends that choice an arbi- 
trary component, which can have a 
significant effect on whatever error 
measure is used. 

The statistics literature offers more help 
in choosing the number of buckets. Ob- 
viously, the number of buckets should be 
increased with the number of records. Be- 
fore modern mathematical analysis of den- 
sity estimation, Sturges’ rule [1926], based 
on the binomial distribution, offered an 
empirically satisfactory choice. The num- 
ber of buckets for n records is 1 + logzn 
under this rule. But modern analysis has 
provided optimal rules for given data-set 
sizes and error measures [Tapia and 
Thompson 19781. Interestingly, Sturges’ 
rule agrees reasonably well with the modern 
rules for data sets up to 500 records. In 
addition to maximum error rate, the liter- 
ature has studied the mean error rate and 
mean-squared error rate (corresponding 
to the principle of least squares), among 
others. With maximum, mean, or mean- 
squared error rate, the size of the error can 
be determined to within a multiple of a 
power of the data-set size without other 
knowledge of the distribution. But what- 
ever error measure is used, even with opti- 
mal choices, the equal-width method is 
asymptotically inferior to more modern 
methods such as the kernel or nearest 
neighbor techniques. For example, with 
mean-squared error, the asymptotic rate 
for the equal-width method is O(n-2’3), 
whereas the modern methods are O(n-4’5) 
or better, where n is the number of records 
[Tapia and Thompson 19781. 

Better error control can be achieved by 
varying the width. In the equal-height 
method, a relationship is established be- 
tween the number of buckets and the max- 
imum error rate. If all buckets have about 
the same height, the error rate can be easily 
controlled by increasing the number of 
buckets. In the field of density estimation, 
this is called the nearest neighbor tech- 

nique. The difficult part is to establish 
bucket ranges that satisfy the equal-height 
criterion since some knowledge of the dis- 
tribution is essential. In density estimation, 
establishing the bucket range would be 
done by ordering the attribute values and 
choosing bucket boundaries at every kth 
value. Since this might be expensive, an 
approximation based on training sets or 
sampling might be implemented. Moreover, 
the performance of this estimator is asymp- 
totically improved by permitting overlap- 
ping buckets; that is, for each attribute 
value of potential interest, record the loca- 
tion of the bucket of its k nearest neighbors. 
As with the equal-width technique, analysis 
has established asymptotically optimal 
choices (up to order of n) for the number 
of buckets (and hence k) without requiring 
further knowledge of the distribution. Of 
course, as noted previously, the location of 
those buckets will depend on some distri- 
bution knowledge. 

Knowledge of the large-n properties of 
this technique was significantly advanced 
by Moore and Yackel [1977], who showed 
the duality of several modern density esti- 
mation techniques including the nearest 
neighbor; that is, after proper adjustment 
for the differences between techniques, a 
large-n theorem proved for one technique 
could be translated into a similar theorem 
for another technique without further 
proof. For example, with optimal choices, 
the asymptotic mean-squared error of the 
nearest neighbor estimator is 0 ( ne4”‘) 
or better, and one should choose k about 
O(n4’5) with about O(n115) buckets. Fur- 
ther discussion about density estimation 
techniques is given by Wegman [1983] 
and Wertz 119781. 

In the third type of distribution table, 
the width of each bucket is varied according 
to criteria other than equal frequency. In 
density estimation, this technique is called 
the variable kernel. The variable kernel 
technique is difficult to analyze, and few 
results about the error control and the 
number of buckets have been reported. 
General references describing the variable 
kernel are Wegman [1983] and Wertz 
[ 19781. Specific results are described by 
Devroye [1985] and Breiman et al. 
[1977]. 
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The density estimation literature pro- 
vides multivariate analogs of the equal- 
width and equal-height methods. In the 
equal-width case a grid of cells of equal area 
or volume can be laid down in the joint 
space of the attributes, and the number of 
tuples with combined values in each cell 
can be counted. In the equal-height case 
variably sized buckets, each containing ap- 
proximately k nearest neighbors, can be 
determined. The new problem in the mul- 
tivariate case is that the shape of the bucket 
must also be chosen. With the equal-width 
analog, squares (or cubes or hypercubes 
depending on the dimension) are a natural 
choice. If the range or variation of one 
attribute’s values is much less than anoth- 
er’s, however, a rectangle with its short side 
parallel to the axis of the low-variance 
attribute would be better. With the equal- 
height analog and overlapping buckets per- 
mitted, use Euclidean circles, spheres, or 
hyperspheres. A better choice, particularly 
for distributions thought to be close 
to multinormal, is Mahalanobis distance 
[Mahalanobis 19361, which yields ellip- 
ses. Defining distance as the maximum 
of marginal attribute distances yields 
squares. In most cases there are no clear 
guidelines for choosing a distance mea- 
sure. If the buckets should be nonover- 
lapping, tolerance regions may be con- 
structed by the method of Fraser [1957, 
chap. 41. This method provides no gui- 
dance on choice of shapes but permits a 
wide mixture of varieties, all of which are 
shown to be statistically equivalent. 

Each multivariate technique shares the 
same general advantages and disadvantages 
as its univariate counterpart. But much less 
is specifically known about any technique, 
and the error properties of each deteriorate 
as the number of attributes increases, even 
under optimal conditions. For example, the 
mean-squared error of the kernel density 
estimator is known to be O(n-4’(d+4)) 
[Cacoullos 19661, where n is again the 
number of records and d the number of 
attributes. 

4. ESTIMATION OF SINGLE OPERATIONS 

This section discusses estimation of the 
cardinality of the operators select, project, 

join, union, difference, and intersection. 
The first three operators are the most 
important and are widely studied. Union 
is an important operator in distributed 
databases with horizontally partitioned 
relations, but otherwise it is not widely 
used in queries. Intersection and differ- 
ence are used less frequently and are the 
least studied. 

Our discussion makes frequent reference 
to the statistical methods described in Sec- 
tion 3. We note where database researchers 
have used standard parametric and non- 
parametric methods and where extensions 
and new methods have been developed. We 
also describe a third class of methods called 
ad hoc. These methods are based on integ- 
rity constraints or other knowledge of the 
database semantics and can be used to 
bound an estimate or compute a number. 

4.1 Select 

The output tuple cardinality of a select 
operation is estimated by the following for- 
mula: 

OUTCARD 
= INCARD * SEL-(BOOLEXPR), 

where INCARD is the input cardinality, 
BOOLEXPR is the_ associated Boolean 
expression, and SEL (X) is the selectivity 
estimation function that estimates the 
fraction of records satisfying its Boolean 
expression argument. The selectivity esti- 
mation method depends on the type of Boo- 
lean expression (Figure 4). We begin our 
discussion with methods for simple rela- 
tional expressions, which are the founda- 
tion for the more complex conjunctive and 
disjunctive expressions. 

4.1.1 Simple Relational Expressions 

A simple relational expression is of the 
form (attribute) (comparison operator) 
(value), where (comparison operator) 
yields a true or false value. Traditional 
comparison operators are <, =, >, and so 
on. In an environment with abstract data 
types [Stonebraker et al. 19831, other com- 
parison operators such as intersect and 
overlap are possible. The following query 
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Select-Project 
Boolean 

Figure 4. Classification of Boolean expression terms. 

contains a simple relational expression: 

SELECT,,,,,,, AGE-25 (STUDENT). 

Cardinality estimation of simple rela- 
tional expressions depends on the operator 
and the estimation method. Of the tradi- 
tional operators, estimation of expressions 
with only = and < are necessary. Estima- 
tion of expressions with other traditional 
operators such as > can be rewritten in 
terms of < and =. For example, the estimate 
of the cardinality of AGE > 35 can be 
written as 

INCARD-(OUTCARD(AGE = 35) 

+ OUTCARD(AGE < 35)), 

where OUTCARD is the estimate of the 
number of tuples satisfying expression X. 

Methods from all three types (ad hoc, 
parametric, and nonparametric) have been 
proposed to estimate the selectivity of sim- 
ple relational expressions. Common ad-hoc 
methods are based on constraints about 
candidate keys and value bounds. If a query 
contains an equality expression on can- 
didate key, the selectivity estimate is 
l/INCARD because at most one record 
can qualify. The value bound constraints 
are especially important for queries 
against views. Suppose a view contains 
students with a grade point average greater 
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than 3.5. If a query asks for students in the 
view with an average less than 3.5, the 
selectivity estimate is zero. 

The use of integrity constraints is related 
to the antisampling work of Rowe [1985]. 
In this approach, certain statistics, such as 
mean, standard deviation, and mode, are 
computed on a larger population. These 
facts are then used to infer simple statistics 
on subset populations. Rowe demonstrated 
the use of this technique to compute 
count, mean, maximum, minimum, median, 
and mode. Antisampling, however, has 
never been directly applied to selectivity 
estimation. 

For most cases, the selectivity cannot be 
estimated by inferences from integrity con- 
straints. Some knowledge of the frequency 
distribution of an attribute is necessary. 
This knowledge can be obtained by using 
simple assumptions or a more detailed 
modeling with a parametric or nonpara- 
metric method. Early query optimizers such 
as System R [Selinger et al. 19791 relied on 
the uniformity and independence assump- 
tions. This was primarily due to the small 
computational overhead and the ease of 
obtaining the parameters (maximum and 
minimum values). 

The use of the uniform distribution as- 
sumption has been criticized, however, be- 
cause many attributes have few occurrences 
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with extreme values. For example, few com- 
panies have very large sales, and few em- 
ployees are very old or very young. The Zipf 
distribution [Zipf 19491 has been suggested 
by Fedorowicz [1984, 19871 and Samson 
and Bendell [1983] for attributes with a 
skewed distribution such as the occurrence 
of words in a text. 

Christodoulakis [1983a] demonstrated 
that many attributes have unimodal distri- 
butions that can be approximated by a fam- 
ily of distributions. He proposed a model 
based on a family of probability density 
functions, which includes the Pearson 
types 2 and 7 and the normal distributions. 
The parameters of the models (mean, 
standard variation, and other moments) 
can be estimated in one pass and can 
be dynamically updated. Christodoulakis 
demonstrated the superiority of this model 
over the uniform distribution approach us- 
ing a set of queries against a population of 
Canadian engineers. 

Nonparametric methods have been 
widely used over parametric ones because 
of limitations cited in Section 3. Database 
developers have used the three types of 
distribution tables described in Section 3: 
equal width, equal height, and variable 
width. To demonstrate these three types, 
we use the frequency distribution of the 
AGE attribute on 100 students (Table 3). 
Figure 5a displays a bar graph for an equal- 
width distribution table that is divided into 
four intervals of width five. 

Because of the limitations of equal-width 
tables (see Section 3), database developers 
have proposed the other types. Piatetsky- 
Shapiro and Connell [1984] proposed an 
equal-height method for selectivity esti- 
mation. To achieve equal-height buckets, 
the BUILD operator sorts the underlying 
data values. Bucket or step values are de- 
termined by positions in the sorted list 
according to the following formula: 

POS(i) = ROUND(l + i * N, 0) 

N = (INCARD-1) 

S 

S = number of buckets 

ROUND(i, j) rounds i to j digits 
to the right of the decimal place. 

Table 3. Age Distribution 

Age Number Cumulative 

20 2 2 
21 3 5 
22 5 10 
23 8 18 
24 2 20 
25 0 20 
26 0 20 
27 0 20 
28 30 50 
29 2 52 
30 8 60 
31 5 65 
32 5 70 
33 0 70 
34 10 80 
35 14 94 
36 2 96 
37 1 97 
38 1 98 
39 1 99 
40 1 100 

The steps are numbered 0 through S. Step 
0 is always the first value in the sorted list, 
and step S is always the last position (IN- 
CARD). As an example, Figure 5b illus- 
trates a bar graph of an equal-height dis- 
tribution table for the AGE attribute with 
S equal to 4. The positions in the sorted 
list of AGE values for the buckets are 0,26, 
51,76, and 100, respectively. Because of the 
sorting requirement, equal-height tables 
cannot be dynamically updated. 

Intervals in equal-height tables are 
closed on both ends. In other words, step i 
includes all values u, where VAL(i - 1) 5 u 
I VAL(i). The fraction of records in step i 
is computed as follows: (POW) - POS(L’ - 1)) 

INCARD 
when i > o 

FRAC(i) ={ 

when i = 0, 

The method to obtain selectivity esti- 
mates is more complex for equal-height 
tables because the matching between a con- 
stant and a step value has more cases. 
Piatetsky-Shapiro and Connell [1984] de- 
scribe eight cases, including the constant 
between step values and the constant 
matching one interior step value. Both the 
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Frequency 

20-24 25-29 30-34 35-40 

AGE 

(a) 

Frequency 

40 

30 25 25 25 25 

(b) 

Frequency 

20-24 25-27 26 29-32 33 34-35 36-40 
PGE 

Cc) 

Figure 5. Example distribution tables. 
(a) Equal width. (b) Equal height. (c) Variable width. 

upper and lower bounds and the within- 
bounds methods depend on these cases. 
Once a case is determined, the calculation 
is straightforward. 

Muralikrishna and Dewitt [1988] ex- 
tended the equal-height method for multi- 
dimensional attributes such as those based 
on point sets. Multidimensional attributes 
are very common in geographical, image, 
and design databases. A typical query with 
a multidimensional attribute is to find all 
the objects that overlap a given grid area. 
The authors proposed an algorithm to 
construct an equal-height histogram for 
multidimensional attributes, a storage 
structure, and two estimation techniques. 

Their estimation techniques are simpler 
than the single-dimension version because 
they assume that multidimensional attri- 
butes will not have duplicates. Performance 
analysis by the authors was conducted to 
compare the estimation techniques and 
the use of random sampling to construct 
the histogram. 

Database researchers have also proposed 
variable-width distribution tables. Merrett 
and Otoo [ 19791, Kooi [ 19801, and Muthu- 
swamy and Kerschberg [1985] suggested 
that widths be set so that the values within 
each bucket are approximately uniformly 
distributed. Figure 5c illustrates a bar graph 
for a variable-width table for the AGE 
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Table 4. Nonsimple Relational Expression Types 

Name Pattern 

Parameteric (attribute) (camp-op)(parameter) 
Dyadic (attribute) (camp-op) (attribute) 
Functional {(attribute) 1 (func-expr)}(comp-op)(func-expr) 

attribute where the buckets have been set 
according to the uniformity criterion. The 
storage overhead of the variable-width ta- 
ble can be more than the equal-width table 
because both the height and range of each 
bucket must be stored. None of these re- 
searchers provide a method to determine 
bucket ranges for a given maximum error 
rate. The database administrator is as- 
sumed to possess enough knowledge to as- 
sign appropriate bucket ranges. 

Christodoulakis [ 19811 proposed a vari- 
able-width table based on a uniformity 
measure (the maximal difference criterion) 
for choosing bucket ranges. This criterion 
clusters attribute values that have a similar 
proportion of tuples; that is, the difference 
between the maximum and minimum pro- 
portions of the attribute values in the 
bucket must be less than some constant, 
which can depend on the attribute. This 
criterion minimizes the estimation error on 
certain values rather than the average error 
on all values. It seems most appropriate 
where queries are not uniformly spread over 
all attribute values. 

Kamel and King [1985] proposed a 
method based on pattern recognition to 
construct the cells of variable-width distri- 
bution tables. In pattern recognition a fre- 
quent problem is to compress the storage 
for an image without distorting its appear- 
ance. In selectivity estimation the problem 
can be restated to partition the data space 
into nonuniform cells that minimize the 
expected estimation error subject to an up- 
per bound on storage size. They begin by 
dividing the data space into equal-sized 
cells and computing a homogeneity mea- 
sure for each cell. The homogeneity is the 
measure of the nonuniformity or dispersion 
around the average number occurrences per 
value in the cell. The homogeneity can be 
computed by the function defined by the 
authors or by sampling. Adjacent cells with 
similar homogeneity measures are folded 

together by considering the physical prox- 
imity of cells and the resulting homogeneity 
of the new combined cell. The authors 
report experimental results of their homo- 
geneity function but no more complete im- 
plementation of their method. 

4.1.2 Nonsimple Relational Expressions 

Nonsimple relational expressions are di- 
vided into three types, as shown in Table 4 
and Figure 4. Parametric expressions have 
a run-time parameter; dyadic expressions 
involve a comparison of two attributes from 
the same relation; functional expressions 
have operators such as addition, multipli- 
cation, and pattern matching. 

Ad-hoc estimation methods are fre- 
quently used for nonsimple expression 
types. The justifications for the use of ad- 
hoc methods are (1) nonsimple expression 
types are not common and (2) no estima- 
tion technique can handle arbitrarily 
complex functional expressions. In the re- 
mainder of this section we concentrate 
on estimation techniques for the following 
types of nonsimple relational expressions: 
(1) equality parametric expressions (2) 
functional expressions containing string at- 
tributes and meta characters, and (3) equal- 
ity dyadic expressions. 

For the first case, the problem can be 
reduced to estimating the fraction of rec- 
ords with the same value. The most widely 
used technique is to use l/ATTRVALS, 
where ATTRVALS is the number of dis- 
tinct attribute values. This method does 
not account for distribution among attri- 
bute values. To reflect distribution, a 
weighted average can be used. Piatetsky- 
Shapiro and Connell [1984] described a 
weighted average that he called the attrib- 
ute density. It is computed as 

NUMVAL x c is1 NR2’ 
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where NRi is the number of record occur- 
rences for value i, and i ranges over all 
distinct values. This gives extra weight 
to values associated with more than the 
average number of records. 

Use of both the distinct values and the 
attribute density is based on no knowledge 
of the underlying parameter value. If a his- 
tory of values is maintained, a better esti- 
mate can be made. Christodoulakis [1983a] 
describes a method for estimating the av- 
erage record selectivity over a collection of 
queries. His method estimates the average 
selectivity as a function of the standard 
deviation of attribute values in queries. 
This method has the advantage that it 
could be applied to parametric expressions 
with comparison operators other than 
equality. 

The second case involves relational 
expressions with meta characters. A meta 
character does not match itself; instead, it 
matches a pattern of characters. Many 
query languages support meta characters to 
match (1) zero or more of any character, 
(2) any single character, and (3) any single 
character from an interval of characters. In 
Unify SQL [UNIFY 19851 these meta char- 
acters are *, ?, and [ 1, respectively. For 
example, the expression NAME = ‘A*’ 
matches names beginning with A. 

The techniques for parametric queries 
cannot be applied since an arbitrary string 
with meta characters matches more than 
one value. Mannino [1986] describes a 
technique to translate an expression with 
meta characters into one or more expres- 
sions without meta characters. For exam- 
ple, the expression NAME = ‘A*’ can be 
translated into 

NAME >= ‘A##### . . . #’ 

AND NAME <= ‘A@@@@@ . . . 0’ 

where # represents the low value in the 
attribute’s collating sequence and @ repre- 
sents the high value. The estimation tech- 
niques for simple relational expressions can 
then be used. Mannino [ 19861 describes the 
translation of strings with a single wildcard 
character * or a single character class [ 1. 

The third case involves equality dyadic 
expressions such as EMPLOYEE.SAL- 

ARY = EMPLOYEE.COMMISSION. Lit- 
tle or no work has been reported on 
comparison operators other than equality. 
When the operator is equality, the methods 
described under join selectivity estimation 
(Section 4.3) can apply. In practice, meth- 
ods assuming uniform distributions have 
been widely used. This is mostly due to the 
infrequent occurrence of simple dyadic 
expressions in select-project operations. 

4.1.3 Boolean Combinations of Relational 
Expressions 

Relational expressions can be combined 
with the Boolean operators AND and OR. 
In analyzing a Boolean expression, it is 
common to convert it into a standard form. 
A conjunctive normal form expression 
matches the pattern AND(X,, X2, . . . , X,,), 
where Xi is either a relational expression 
or a disjunction of relational expressions. 
In a disjunctive normal form expression, 
the position of the ANDs and ORs are 
swapped. Arbitrary Boolean expressions 
can be transformed into these normal forms 
through application of the laws of Boolean 
algebra such as the distribution of AND 
over OR and DeMorgan’s law. Jarke and 
Koch [1984] give a detailed explanation of 
the transformations. 

To estimate the selectivities of conjunc- 
tive and disjunctive normal form expres- 
sions, one must be able to estimate the 
selectivities of conjunctive and disjunctive 
collections of relational expressions. Accu- 
rate estimation is difficult because the at- 
tributes in the relational expressions can 
be correlated. For example, the attributes 
sex, job title, and age group of many uni- 
versity faculties are often highly correlated. 
Correlation among attributes is difficult to 
account for because of the large number of 
attribute combinations. 

The general formula for estimating the 
selectivity of a conjunctive expression is 

SEL-(A and B) 

= SEL-(A) * SEL-(B 1 A), 

where A and B are relational expressions 
and SEL (B ] A) is the conditional proba- 
bility of B given A [Clark and Schkade 
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19831. SEL (B ] A) indicates the degree 
of association between terms A-and B. If 
A and B are independent, SEL (B ] A) = 
SEL”(B) and the correlation can be 
ignored. 

If the conjunctive expression involves a 
range such as in the following query, the 
formulas change: 

SELECT FACUI,TY.SALARY<40.000 (FACULTY). 
ANDFAC”LTY.SALAHY>P”,OW 

The possible cases for range queries are 

(1) X 2 val-1 and X 5 val-2 (closed). 
(2) X > val-1 and X 5 val-2 (left open). 
(3) X L val-1 and X < val-2 (right open). 
(4) X > val-1 and X < val-2 (open). 

The first case can be reformulated as a 
disjunctive expression: 

1 - SEL-(X < val-1 OR X > val-2) 

The other three cases can be similarly re- 
formulated as disjunctive expressions. 

The general formula for estimating the 
selectivity of disjunctive expressions is 

SEL-(A OR B) = SEL-(A) + SEL-(B) 
. 

- SEL (A and B). 

This formula applies whether A and B are 
mutually exclusive or not. I,f A and B are 
mutually exclusive, the SEL (A AND B) is 
zero. Mutual exclusiveness is expected for 
terms related to the same attribute. For 
terms related to different attributes, the 
third term is evaluated as for conjunctive 
expressions. 

Thus in both conjunctive and disjunc- 
tive expressions, if @tributes are not inde- 
pendent, the SEL (A AND B) must be 
estimated. Ad-hoc, parametric, and non- 
parametric methods can be used. As in the 
simple relational expression case, the most 
common ad-hoc method is based on candi- 
date key constraints. The composite can- 
didate rule can be used for conjunctive 
equality expressions containing a compos- 
ite candidate key. Ad-hoc methods can also 
be based on value-combination rules. A 
value-combination rule states that attri- 
butes rarely assume values in certain com- 
binations. Value-combination rules are 

Table 5. Distribution Frequency on Age and Status 

Age (X) 

Status (Y) 

Graduate 
Undergraduate 

18-24 25-35 Over 35 

150 400 50 
800 150 20 

generally not supported in most database 
systems. 

For the parametric case, Christodoulakis 
[1983a] proposed a family of distributions 
defined by the multivariate normal distri- 
bution and the multivariate extensions of 
the Pearson type 2 and 7 distributions. As 
in the univariate case described earlier, 
these distribution families encompass a 
wide range of theoretical distributions and 
can be dynamically updated. In addition, 
any subset of attributes from a member of 
these distribution families conforms to the 
same distribution as the entire collection. 
This is important, since most queries will 
reference only a subset of the attributes. 

Multivariate nonparametric methods are 
important because of the scale restriction 
of parametric methods, and it can be diffi- 
cult to match the actual distribution of an 
attribute collection to a known theoretical 
one. The basic idea is to use a matrix in 
representing the relationship between at- 
tributes. In two dimensions, the row vector 
and the column vector represent the 
subdomains of the two attributes. Within 
cell X(i)Y(j) is the count of tuples whose 
value for attribute X falls in subdomain 
i and whose value for attribute Y falls in 
subdomain j. Table 5 shows how this ap- 
proach can be used in estimating selectivity 
involving conjunctive or disjunctive query 
expressions. 

If the query is about the number of stu- 
dents who are either of graduate status aged 
over 35 or of undergraduate status aged 
under 25, the answer is 850 (the count in 
cell X(3)Y(l) plus the count in cell 
X(l)Y(2)). If we alter the first term to the 
graduate students 35 or over, part of cell 
X(2)Y(l) qualifies. As in the case of uni- 
variate frequency distributions, an estima- 
tion error is possible because we do not 
know the distribution within a cell. As 
described in Section 3, less is known 
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about error control for multivariate distri- 
bution tables than for their univariate 
counterparts. 

Multivariate nonparametric methods for 
selectivity estimation have been proposed 
by Merrett and Otoo [1979], Muthuswamy 
and Kerschberg [ 19851, Christodoulakis 
[1981], and Kamel and King [1985]. As in 
the univariate case, only the latter two pre- 
sented a method to compute cell bounda- 
ries. Christodoulakis [1981] described a 
method that combines the independence 
assumption with maintaining more infor- 
mation on cells that have large deviations 
from independence. He demonstrated how 
this method can improve tuple estimation 
of Boolean expressions of two attributes. 
He did not, however, analyze this method 
for n-dimensional expressions. 

King and Kamel [1985] demonstrated 
that the storage requirements can be very 
large for an n-dimensional distribution 
table that is divided into equal-sized 
cells. For example, for a relation of 12 at- 
tributes where each may assume any of 100 
different values, a cell size of 50 still re- 
quires almost 1 megabyte of storage. They 
also derived error bounds for n-dimensional 
distribution tables and showed that it is 
possible for a selectivity estimate to err by 
half the relation size regardless of the result 
size of the query. As a response, they pro- 
posed a method to compute cell boundaries 
based on pattern recognition. Their tech- 
nique is an extension to that described in 
Section 4.1.1. 

4.2 Project 

The project operator computes a vertical 
subset of a relation. Input is a relation and 
a list of attributes. Output is a relation with 
only the attribute list and duplicate tuples 
removed. In this section we consider a sin- 
gle projection operator as a leaf node in an 
access plan. Only a relatively small amount 
of work has been reported on this problem 
because projections are frequently not leaf 
nodes. The work on projections after other 
operations (selections and joins) is de- 
scribed in Section 5.1. 

Merrett and Otoo [1979] described a non- 
parametric approach toward estimating the 

distribution of a projection. They assumed 
that the input relation is described by an 
n-dimensional distribution table divided 
into equal-sized cells. Assuming uniformity 
within the cells, they demonstrated an it- 
erative formula for computing the distri- 
bution of a projection of any subset of the 
n attributes. Since projections do not con- 
tain duplicates, the resulting cell counts 
cannot exceed the width of a cell. 

Gelenbe and Gardy [1982] described a 
nonparametric approach toward estimating 
the size of a projection of n columns. Input 
is the size of the relation, which they as- 
sumed is known with certainty. They as- 
sumed that attributes are uniformly 
distributed and independent and that the 
projection is randomly generated with a 
uniform distribution. Using a probabilis- 
tic argument, they derived formulas to 
compute the number of projections with 
size k and the expected size over all pos- 
sible randomly generated projections. 
They also addressed the problem of com- 
puting projection sizes given a collection 
of functional dependencies that hold on a 
relation. They reduced this problem to one 
of computing the conditional expected 
value given that the number of values of 
the determinant attribute(s) is equal to 
the number of tuples. 

Other approaches are based on fast ways 
to estimate distinct values. Piatetsky- 
Shapiro [1985] estimated the number of 
distinct attribute values by means of sam- 
pling. The proposed method assumes uni- 
form distribution of values. Applied to non- 
uniform distributions, the method gives a 
lower bound on the number of distinct val- 
ues. Astrahan et al. [1985] developed three 
probabilistic methods based on hash func- 
tions. Each method requires only one pass 
of the relation, no sorting, and a small 
amount of memory and computation. Es- 
timation error rates are claimed within 
10%. 

4.3 Join 

Join is a derived, binary operator. In 
terms of primitive operators, it is a Cartes- 
ian product followed by selection and 
sometimes by a projection. The selection 

ACM Computing Surveys, Vol. 20, No. 3 September 1988 



Statistical Profile Estimation in Database Systems l 211 

operation contains a dyadic Boolean 
expression with an attribute from each rela- 
tion in each term. The following query dem- 
onstrates a join followed by a projection 

Primitive Relational Algebra: 

PROJECT 
(NAME, MAJOR 
C~ELECT,,,,,NT.~~N 

=ENROLLMENT.SSN 
(STUDENT TIMES ENROLLMENT))) 

Using a join operator: 

PROJECT(NAME, MAJOR 
(STUDENT JOINSTUDENT.SSN 

=ENROLLMENT SSN 
ENROLLMENT)) 

When the comparison operator in the 
join is equality, it is called an equijoin. A 
frequent type of equijoin is the natural join 
in which one of the join attributes is pro- 
jected out. The natural join is the most 
widely studied and frequently used join. 
Only crude estimation techniques have 
been proposed for nonequijoins. 

When the attributes of only one relation 
are required as in the previous example, the 
operation is called a semijoin. A semijoin is 
literally half of a join. Rl SEMI-JOIN R2 
is the tuples of Rl that join with at least 
one tuple from R2. In a distributed envi- 
ronment, Rl is called the receive relation 
and R2 is called the send relation because 
the join values of R2 are sent to the site of 
Rl. The previous query can be rewritten as 
follows using a semijoin; 

PROJECT 
(NAME, MAJOR 
(STUDENT SEMI-JOIN,,,,,mssiv 

=ENROLLMENT.SSN 
ENROLLMENT)) 

The semijoin is an important operator in 
distributed access plans because it is some- 
times cheaper to transmit join attribute 
values than an entire relation. Ceri and 
Pelagatti [ 19841 summarize approaches 
to distributed query optimization using 
semijoins. 

The output cardinalities of the join and 
semijoin can be computed by the following 

formulas: 

OUTCARD(JOIN) 

= SEL-(JOIN)*INNCARD,,*INNCARD,, 

OUTCARD(SEMI-JOIN) 

= SEL”(SEMI-JOIN)*INNCARD,, 

In the first formula, SEL”(JOIN) repre- 
sents the fraction of the Cartesian product 
that participate? in the join. In the second 
formula, SEL (SEMI-JOIN) represents 
the fraction of Rl that joins with at least 
one tuple of R2. It is assumed that Rl is 
the receive relation. 

In general, accurate estimation of join 
and semijoin selectivities is more difficult 
than select or project. In the latter cases 
information about univariate and joint fre- 
quency distributions is sufficient; in the 
former case this information is not enough. 
Information about the distribution of 
tuples with matching join values is also 
necessary. 

The estimation problem is even more 
acute because select and project operations 
are normally performed before the more 
expensive join operations. The frequency 
distributions of the join columns can 
change after select and project operations. 
Reliance on the original frequency distri- 
butions can lead to pessimistic estimates. 
Section 5 describes the problem of estimat- 
ing the distribution of join attributes to 
reflect previous select and project opera- 
tions. In the remainder of this section, we 
assume that the join attributes are inde- 
pendent of other attributes, and hence that 
the join attribute distributions do not 
change as a result of previous operations. 

Join and semijoin selectivity estimation 
methods can be divided into the ad-hoc, 
parametric, and nonparametric categories. 
Ad-hoc methods can provide bounds and 
sometimes an exact number. By definition, 
the join cardinality is at most the product 
of its operand relations, and the semijoin 
cardinality is at most the cardinality of the 
receive relation. For join, a tighter upper 
.bound can be computed if one or both tables 
has a unique join attribute. These rules can 
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be stated as follows: 

if the join attribute(s) of Rl are unique and 
the join attribute(s) of R2 are unique 

then OUTCARD(JOIN) 
5 MIN(INCARD(Rl), 

INCARD(R2)) 

if the join attribute(s) of Rl are unique and 
the join attribute(s) of R2 are NOT candidate 

keys 
then OUTCARD(JOIN) 5 INCARD(R2) 

Determining whether a join attribute is 
unique depends on both the underlying in- 
tegrity constraints and the join operation. 
A join attribute is unique if (1) it is a 
candidate key and (2) its underlying base 
table is preserved in a one-to-one manner 
in the join input. A relation is preserved if 
it is a base relation or if each tuple joins 
with at most one tuple of the other relation. 
The first requirement depends on the static 
properties of an attribute, but the second 
depends on the position of the join opera- 
tion in an access plan. For example, assume 
we join three relations (Rl, R2, and R3) 
with the following Boolean expression: 
Rl.Al = R2.A2 and R2.A3 = R3.A3. R2.A3 
is a candidate key, but the other columns 
are not. If the join between R2 and R3 is 
performed first, the join cardinality is lim- 
ited by the input cardinality of R3. If the 
join of Rl and R2 is performed first, the 
join of (Rl, R2) and R3 will not satisfy any 
of the unique rules because R2 is not pre- 
served in the output of JOIN(R1, R2). 

A lower bound can be determined if one 
join attribute is complete [Kooi 19801. An 
attribute is complete if every value in the 
attribute’s domain maps to at least one 
tuple in the attribute’s table; in other 
words, the active domain of the attribute 
equals the theoretical domain. The com- 
plete property usually only applies to base 
relations because all occurrences of selected 
attribute values are frequently removed by 
earlier operations. 

If attribute Rl.Al is complete, each tuple 
of R2 must join with at least one tuple of 
Rl. Therefore, the join cardinality must be 
at least the cardinality of R2. If both the 
unqiue and complete rules hold, an exact 
estimate can be computed. For example, if 
Rl.Al is unique and complete, the JOIN 

cardinality equals the cardinality of R2. 
The combination of these rules can also 
apply to semijoins. For example, if R2 
SEMI-JOIN Rl and Rl’s join attribute is 
unique and complete, the cardinality equals 
R2. 

Because these rules often do not provide 
precise estimates, the uniform distribution 
assumption has also been used. Kooi [ 19801 
and Ceri and Pelagatti [1984] give the fol- 
lowing formula, which assumes that both 
join attributes are uniformly distributed 
over the tuples of Rl and R2 and the values 
of Rl.Al also appear as values in R2.A2: 

SEL-(Rl JOINmA,+..mR2) 

1 

= VAL(Rl.Al) 

A variation of this formula was used in 
System R by Selinger et al. [1979]; they 
assume uniform distribution of values and 
at least one of the join attributes is com- 
plete. A similar formula has been proposed 
in Goodman et al. [1981] and Hevner and 
Yao [1979] for semijoin estimation if the 
uniform distribution and matching value 
assumptions hold: 

SEL-(Rl SEMI-JOIN RI Al R2.42 _ R2 

VAL(R2.A2) 

= VAL(Rl.Al) ’ 

Parametric methods have not been pro- 
posed for join or semijoin estimation. For 
the join operator, there is no precedent in 
the statistics literature. For the semijoin 
operator, a probability density function can 
be used to estimate the semijoin distribu- 
tion table described later in this section. 
No work has reported such an approach, 
possibly because it may be difficult to find 
an appropriate density function. 

Two types of nonparametric methods 
have been proposed. The first type is based 
on a weighted average of matching join 
values and the independence between the 
join attributes and the other attributes. 
Kerschberg et al. [1982] provide the basic 
formula: CffI nlin2i, where nl and n2 are 
the number of tuples in Rl and R2, respec- 
tively, that have value Vi, the ith element 
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in the domain of values taken on by attrib- 
ute A, and M is the number of distinct 
values that attribute A has. 

If kl and k2 records are selected from 
each of the relations before the join, the 
expected size of the join is shown to be 
(klk2/nln2) CE1 nlin2i, [Christodoulakis 
1983133. The expected number of tuples of 
Rl after a semijoin is (k/n) Cgl P2;n; 
[Christodoulakis 1983b], where P2i is the 
probability that the ith element in the do- 
main of values of attribute A is nonzero in 
relation R2, and k is the number of records 
isolated from selections or semijoin on 
other domains. The semijoin is performed 
by sending distinct values of R2 in A to the 
site containing Rl. 

The second type of nonparametric 
method is based on a table approximating 
the distribution of tuples with matching 
join values. Kooi [1980] proposed a method 
that uses variable-width distribution tables 
on the join columns. He assumed that val- 
ues within a cell are uniformly distributed. 
If both join attributes are described by dis- 
tribution tables with N cells with corre- 
sponding ranges, the join cardinality is 
computed as follows: 

N C,,,,/ * INCARD,, * CAzj * INCARD, 
c 

j=l EVAIJ - EVA~,j-~ 

Here, CAl,j is the fraction of Tl tuples 
within cell j of attribute Al, and EVAl,j is 
the ending value of cell j. If the cell ranges 
do not coincide, Kooi [1980] provides an- 
other formula, which is equivalent to a lin- 
ear interpolation of the overlapping parts 
of cell ranges. 

Muthuswamy and Kerschberg [ 19851 
used a new type of distribution table in 
their nonparametric method. To estimate 
the cardinality of a semijoin operation, they 
used a semijoin matrix. Recall that in a 
semijoin, the join column values of one 
table (the send table) are sent to the site 
containing the other relation (the receive 
relation). Each row of the matrix represents 
a value range of a join column. The join 
value component of a row is the number of 
tuples of the receive relation that join with 
the send relation. The join ratio component 
is the join value divided by the number of 

Table 6. Semijoin Distribution Table 

Range JOINVAL JOINRATIO 

l-10 40 40/60 
11-20 35 35176 
21-36 25 25/64 

Table 7. Restrictions on Expression Type 
Arguments 

Operator Expression Restrictions 

SELECT Simple None 
Parametric Equality only 
Functional Equality only 
Dyadic Equality only 

JOIN Simple Equality only 
Boolean Simple equality terms only 

tuples of the send relation within the row’s 
range. 

Table 6 shows an example semijoin 
matrix for the expression Rl SEMI- 
JOINRM=R~.A~ R2. The cardinality of the 
semijoin is 100, which is computed by sum- 
ming the JOINVAL column. The cardinal- 
ity of the send relation is 200, which is 
computed by summing the denominators of 
the JOINRATIO column. 

The cardinality of a semijoin is computed 
by using a distribution table on the send 
table’s join attribute and the JOINRATIO 
column of the semijoin matrix. The result 
is a new distribution table for the join col- 
umn of the receive relation. The cardinality 
can be easily derived from the new distri- 
bution table. 

4.4 Set Operators 

Little work has been reported on the esti- 
mation of union and difference operations. 
This is due to their infrequent appearance 
in user queries. In horizontally partitioned 
relations, union operations are used to com- 
bine partitions either before or after other 
operations. In this case, the union opera- 
tions are not part of the original query but 
instead are added by the query optimizer 
“under the covers.” 
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Table 8. Summary of Estimation Methods 

Method 

Operator Ad-hoc Parametric Nonparametric 

Select (Relational) 

Select (Boolean) 

JOIN (Relational) 

Candidate key rule, 
Value constraints 

Candidate key rule 

Unique rule, complete 
rule 

Many proposed Equal width, equal 
height, variable 
width 

Multivariate normal, Multivariate exten- 
Pearson type 2 and 7 sions, independence 

assumptions, and 
univariate distribu- 
tion tables 

None . Weighted matching 
value parameters; 
semijoin distribution 
table 

Ceri and Pelagatti [1984] give rules to 
bound the cardinality of union and differ- 
ence operations but no more precise for- 
mulas. We present rules for completeness: 

OUTCARD(R1 UNION R2) 

5 INCARD(R1) + INCARD(R2) 

MAX(0, INCARD(R1) - INCARD(R2)) 

5 OUTCARD(R1 MINUS R2) 

5 INCARD(R1) 

4.5 Summary 

We summarize this section in two tables. 
Table 7 lists the restrictions that apply to 
expression arguments of the select and join 
operators. The restrictions denote where 
little work has been reported except for 
crude estimates. For example, little work 
has been reported on nonequality dyadic 
relational expressions in select operations. 
Table 8 summarizes the estimation meth- 
ods for the select and join operators. For 
brevity, we have included only the major 
expression type arguments. As shown, the 
independence assumption has played a very 
significant role in join estimation and 
a smaller, yet significant, role in select 
estimation. 

5. ESTIMATION OF MULTIPLE 
OPERATIONS 

In the previous section we described meth- 
ods to estimate the size of individual rela- 
tional algebra operations. These methods 
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are necessary but insufficient because a 
query is typically a tree of relational algebra 
operations rather than an individual oper- 
ation. To extend single operator methods, 
one can make simplifying assumptions, 
such as independence of attributes, or es- 
timate conditional parameter values. We 
highlight the use of assumptions and con- 
ditional parameter values in several typical 
sequences of operations: a projection pre- 
ceded by a selection or join, and a join 
preceded by a selection. From these cases 
we generalize to methods for estimating 
arbitrary trees of selections, projections, 
and joins. 

5.1 Projections after Selections and Joins 

Computing the size of projections after 
selections and joins is important for esti- 
mating semijoin operations that follow the 
projection. Semijoins are frequently used in 
distributed database systems. The join col- 
umn of one table is projected and sent to 
the site of another table where the semijoin 
occurs. As in the single operator case, most 
proposed methods are nonparametric. 

For projections after selections, there are 
two cases to consider. First, one needs to 
estimate the size of an attribute used in a 
Boolean formula of a selection operation. 
Here, the size is proportional to the number 
of tuples, except in the case of a simple 
equality selection, where it is equal to 1 
[Ceri and Pelagatti 19841. Second, one 
needs to estimate the distinct values of an 
attribute not used in a selection operation. 
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This problem is related to the classic sta- 
tistics problem [Kotz and Johnson 19771: 

Given n balls to distribute over m urns, 
what is the expected number of urns 
occupied when k balls are deposited? 

When applying this problem to distinct 
value estimation, the balls are tuples and 
the urns are distinct values. This problem 
has also been applied to estimating logical 
page references and other physical database 
problems. In the logical page case, balls are 
tuples and urns are disk pages. 

The latter problem has been investigated 
by many database researchers over the last 
15 years. Most work has been dominated 
by the following assumptions: 

(1) 

(2) 

(3) 

(4) 

Records are selected without replace- 
ment. 
The variables n, m, and k are known 
constants. 
There is a constant number of tuples 
per page. 
There is random placement of tuples 
among pages. 

Cardenas [ 19751 developed the following 
formula for the expected number of page 
accesses under the above assumptions, ex- 
cept that tuples are selected with replace- 
ment: 

This formula can be derived by noting that 
l/m is the probability that a page contains 
a tuple, [ 1 - (l/m)] k is the probability that 
a page does not contain any of the k tuples, 
and 1 - [l - (l/m)] k is the probability that 
a page contains at least one of the k tuples. 

The above formula has undergone revi- 
sion by several researchers. Yao [1977] 
noted that the formula assumes sampling 
with replacement, which is unrealistic in 
the page access problem because a tuple 
can be selected at most once. He thus de- 
rived an exact formulation without replace- 
ment and demonstrated that when the 
blocking factor is 10 or more, the simpler 
without-replacement formula provides al- 
most identical results. Cheung [1982] de- 
veloped a new formula when the requested 

tuples may have duplicates. He also devel- 
oped a simple formula for estimating the 
number of distinct tuples referenced in a 
transaction. One of Yao’s equations re- 
quires iteration and can be expensive to 
compute if k is large. As a response, Whang 
et al. [1983] devised a closed, noniterative 
approximation. They demonstrated that 
their formula has a maximum error of 3.7% 
and that the computation time is signifi- 
cantly reduced by eliminating the iterative 
loop. 

More recently, researchers have relaxed 
some of these assumptions. The assump- 
tion that k is a constant is unrealistic be- 
cause it must be estimated in most cases. 
Luk [1983] proved that, if k is a random 
variable instead of a constant, Yao’s for- 
mula overstates the number of pages. He 
gave a general guideline to follow when 
Yao’s formula is used for varying k. 

A number of researchers have replaced 
the assumptions of a constant number of 
balls per urn and random placement with 
detailed modeling. The basic idea is to 
represent the page access frequency as a 
vector p = ( pl, . . . , p,), where pi is the 
probability of accessing page i. With the 
random-placement assumption each prob- 
ability is l/m. Christodoulakis [1984a] 
modeled the distribution of records to pages 
by attribute values using multivariate dis- 
tributions based on the Pearson and normal 
families. By integrating the distribution 
over the appropriate attribute values, he 
derived a page access distribution for a 
particular query. This derived distribution 
was then used to compute the expected 
number of page accesses. 

Vander Zander et al. [ 19861 examined the 
problem of estimating the number of logical 
page accesses given a selection query with 
one simple, equality relational expression 
on an attribute (say A) but where the rela- 
tion is clustered according to another 
attribute (say B). If A and B are highly 
correlated, the distribution of tuples to 
pages for the query is highly skewed and 
the random placement assumption may 
lead to poor estimates. To account for pos- 
sible skewness resulting from correlations, 
they proposed a nonparametric method 
to model page distributions and two 
ways to build a discretized or compacted 
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distribution. The first method partitions a 
distribution such that pages with access 
frequency greater than the mean are 
grouped together in one cell, with the re- 
maining pages in another cell. The second 
method accounts for the number of selected 
records (k) through multiple page distri- 
butions: One for the overall distribution of 
tuples to pages and other distributions for 
the most frequently, the average, and the 
least frequently occurring value of each at- 
tribute. For a given query they chose an 
appropriate distribution based on the at- 
tribute and the expected size of the answer, 
dynamically modified it, and computed the 
expected number of pages. They compared 
both methods against actual page accesses 
using simulation. Their analysis provided 
guidelines for using the random-placement 
assumption and compacted page distribu- 
tions of sizes 2 and 4. 

Several others have also examined the 
implications of the random-placement as- 
sumption. Zahorjan et al. [1983] used a 
technique from queuing theory to construct 
a distribution vector for estimating the ex- 
pected page accesses. Luk [1983] used the 
Zipf distribution as a model of a ball distri- 
bution. Ijbema and Blanken [ 19861 defined 
a class of ball distributions and derived 
tight upper and lower bounds for the esti- 
mation. They demonstrated that Yao’s for- 
mula gives results on the upper bound, 
whereas Luk’s gives results often beneath 
their lower bound. In addition, they pro- 
posed a computationally efficient approxi- 
mation for the bounds. 

For the problem of estimating the dis- 
tinct values after a join or semijoin opera- 
tion, the previous formulas have also been 
applied. Bernstein et al. [1981] gave an 
approximation formula for semijoin esti- 
mation in a distributed database system. 
Their formula, however, relied on the con- 
stant-size and random-placement assump- 
tions. Christodoulakis [ 1983b] introduced 
an alternate formula: 

VAL(0UT.A) = ; PljPZ;, 
,=I 

where M is the number of distinct values 
in the domain of A and Pl, and P2i are the 
probability that the ith element in the do- 

main of values of attribute A is nonzero in 
relations Rl and R2, respectively. In this 
formula, only independence of attributes is 
assumed. 

The distribution model of Merrett and 
Otoo [1979] can be applied to projection 
sizes after selections or joins because it 
estimates conditional distributions rather 
than just sizes. This and other approaches 
that work with conditional distributions 
are described in the following section. 

In addition to deriving the expected num- 
ber of distinct values mathematically, in- 
ference on bounds can be made using rules 
such as 

if A is a join attribute 
then VAL(0UT.A) 

5 MIN(VAL(Rl.A), VAL(R2.A)) 

if A is not a join attribute 
then VAL(0UT.A) 

5 VAL(R1.A) + VAL(R2.A). 

5.2 Joins after Selections 

In the description of join estimation in 
Section 4.3, it was assumed that either the 
join was performed on a base relation or 
that independence holds among the attri- 
butes. Since the independence assump- 
tion is suspect and joins are often not per- 
formed on base relations, more detailed 
modeling of the correlation can produce 
better estimates. 

The concept of conditional probability 
has been applied to account for correlations 
among attributes in a tree of relational 
algebra operations. Conditional probability 
applies to multioperation access plans be- 
cause the result of a previous operation may 
affect the statistical properties of attributes 
in a later operation. Consider two attributes 
X and Y that are described by a multi- 
variate distribution. A selection outputs at- 
tribute Y and qualifies tuples by a Boolean 
expression involving attribute X. A later 
join operation uses attribute Y in its 
Boolean expression. To estimate the join 
cardinality, one must first estimate the 
marginal conditional distribution of Y 
given the Boolean expression on X. The 
attributes with the conditional distribu- 
tion to estimate are called indirect because 
they do not participate in the Boolean 
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EST-CARD(STUDENT SEMIJOIN ENROLLMENT) 

I 
EST-DlST(ENROLLMENT.SSN) 

I 
EST-CARD(ENROLLMENT SEMIJOIN OFFERING) 

I 
EST-DIST(ENROLLMENT.UNlQUENO) 

EST-CARD(GRADE >= 90) 

EST-DlST(OFFERlNG.UiWWENO) 

EST-CARD(SEMS=‘SPRING’ AND YEARd36) 

Figure 6. Profile estimation operations. 

expression of the previous operation. The 
attributes in the Boolean expression of the 
previous operation are called direct. 

Figure 6 shows the profile estimation op- 
erations for the following relational algebra 
expression: 

STUDENT SEMI-JOIN~T~~~~~.~~~ 
=ENHOLLMENT.SSN 

(SELECT ENROLLMENTGRADE>SO (ENROLLMENT) 
SEMI-JOIN ENROI.LMENT.*NIQ”ENO 

=OFFERING.“NIQ”ENO 

In the expression, OFFERING and EN- 
ROLLMENT are combined first, followed 
by STUDENT. In the profile estimation 
operations, the conditional distributions of 
the join attributes (OFFERING.UNIQUE- 
NO, ENROLLMENT.UNIQUENO, AND 
ENROLLMENT.SSN) are estimated to re- 
flect the previous operations. STU- 
DENT.SSN is not estimated because no 
select operations are performed on STU- 
DENT. 

If a parametric method is used to com- 
pute joint probabilities, the conditional 
marginal distribution can be computed by 
applying the probability density function. 
For example, if attributes X and Y are 
described by a bivariate normal distribu- 
tion, the conditional marginal distribution 
of Y after the selection X > 10 can be 

computed by dividing normal bivariate den- 
sity by the integral from 3c = 10 to infinity. 

If a nonparametric approach is used, the 
approaches described by Merrett and Otoo 
[1979] and Muthuswamy and Kerschberg 
[1985] can be used. In both approaches the 
result of an estimation operation is a de- 
rived distribution of the resulting relation. 
For direct attributes, the derived distribu- 
tion is computed by excluding the cells 
outside of the Boolean expression. For in- 
direct attributes Muthuswamy and Kersch- 
berg combine the multivariate distribution 
table with the marginal distribution on the 
direct attribute to produce the conditional 
marginal distribution of the indirect attri- 
bute. In matrix algebra, their formula is 
Ai = Ad X Mdi, where Ad is the marginal 
frequency of the direct attribute after 
the selection, Ai is the conditional marginal 
frequency of the indirect attribute, and Mdi 
is the matrix representing the joint fre- 
quency divided by the product of the mar- 
ginal frequencies of the direct and indirect 
attribute. Merrett and Otoo [1979] also 
covered the case in which the indirect at- 
tribute is projected (i.e., duplicates are 
removed). This case is important in dis- 
tributed database systems where projec- 
tions are sometimes transmitted from one 
site to another. 
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We can generalize from this discussion 
of conditional probability to two ways of 
estimating arbitrary sequences of selec- 
tions, projections, and joins. In the stand- 
alone approach, the methods for each 
operator are independent. The only in- 
formation available to a method is the base 
profiles and the estimated sizes of inter- 
mediate results. This simplifies the esti- 
mation process because only the output size 
is computed. It also means that estimation 
methods need not be compatible because 
they only share the computed size. The 
estimation accuracy suffers, however, be- 
cause conditional parameter values are not 
used. In the integrated approach, the meth- 
ods for operators must be compatible be- 
cause they use conditional profile values as 
well as output sizes. The time and space 
requirements for computing and saving the 
conditional values may add considerable 
overhead to the estimation process, but bet- 
ter estimates are possible. 

6. FUTURE DIRECTIONS 

Open research issues can be classified as 
(1) use of other decision-theoretic con- 
cepts, (2) statistical modeling of logical and 
physical page references, and (3) extensi- 
bility. Decision theory influences selec- 
tivity estimation in two ways. First, in 
the estimation of tuple cardinality in Sec- 
tion 4, most attention was devoted to esti- 
mating the maximum error rate. This is a 
strategy of minimizing the maximum error, 
which implies the use of equal-height rather 
than equal-width methods. That strategy 
may be unduly conservative. In decision- 
theoretic terms it is a minimax strategy. 
Future work might look into the applica- 
bility of other criteria such as mean- 
squared error. Second, in order to reflect 
one’s knowledge of the distribution of an 
attribute’s values, the use of prior distri- 
butions is useful. Prior distributions can be 
updated to posterior distributions by fol- 
lowing a Bayes strategy: Take a small sam- 
ple and use an appropriate loss function 
(e.g., maximum error, mean error, or mean- 
squared error) to minimize risk. To a de- 
gree, parts of this regimen have already 
been proposed in rudimentary form. For 

example, the presumption of attribute 
value distribution being some specified par- 
ametric form such as normal, the parame- 
ters of which are periodically updated, is a 
partial and unconscious implementation of 
the empirical Bayes approach. A conscious 
implementation has much to recommend 
it: exploitation of the database administra- 
tor’s knowledge of the attribute; ease in 
updating statistical profiles, flexibility to 
future changes, risk minimization, and a 
developed body of applicable knowledge in 
the statistical literature. 

The second research direction deals with 
detailed statistical models for estimating 
the logical and physical page references. 
Some unrealistic assumptions are often 
made in estimating logical page references, 
but recent work such as Vander Zander et 
al. [1986] provides an excellent start to 
replace the simplifying assumptions with 
detailed modeling. The effects of buffer 
space are rarely accounted for in estimating 
physical page references. Recently, some 
researchers have proposed models that fea- 
ture more detailed modeling in place of the 
simplifying assumptions. Copeland et al. 
[1986] used statistics to model the changing 
locality of reference to database pages. 
Mackert and Lohman [1985] developed a 
model for index scans, which relaxes the 
assumption of unlimited buffer space. 
These papers represent an important step 
in more accurately modeling the effect of 
buffer space on a plan’s resource usage. 

The third research direction is extensi- 
bility. An extensible database system 
[Batory and Mannino 19861 can be easily 
configured to meet the needs of emerging 
application areas such as computer-aided 
design, multimedia systems, and statistical 
analysis. An extensible approach to profile 
estimation separates methods from the pro- 
file operators. When an operator is applied, 
it is responsible for selecting a method from 
a collection chosen by the database de- 
signer. This separation permits flexibility 
in the modeling of distributions, correla- 
tion, relational expression types, and access 
plan operators. An extensible model of tu- 
ple cardinality estimation for selections has 
been proposed by Mannino and Rivera 
[1988]. 
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7. CONCLUSION 

A statistical profile summarizes the in- 
stances of a database. It typically describes 
the number of instances, the distribution 
of values, the correlation between value 
sets, and the number of distinct values. 
Accurate estimation of profiles is important 
in query optimization and sometimes in 
physical database design and performance 
evaluation. A precise characterization of 
the value of accurate profiles, however, is 
still an open issue because of the large 
number of cases to consider and the need 
to measure the sensitivity on the choice of 
access plans. 

We described three operators on profiles: 
The BUILD operator creates a profile from 
a base object either through an exhaustive 
scan or a sample; the UPDATE operator 
revises a base profile to reflect updates to 
its underlying base object; the ESTIMATE 
operator computes an intermediate profile 
using one or more profiles and an operation 
description. 

The methods for the ESTIMATE oper- 
ator were classified by the type of method 
(ad hoc, parametric, and nonparametric) 
and the relational algebra operator. Ad-hoc 
methods provide bounds and sometimes ex- 
act estimates. They typically are based on 
the existence of integrity constraints such 
as candidate keys. Parametric methods use 
a probability density function and a small 
collection of parameters that can be com- 
puted by arithmetic on attribute values. 
They require that the attributes have at 
least an interval scale. Nonparametric 
methods use parameters that can be com- 
puted on value counts. They can be more 
costly in terms of storage and computation 
time, but they do not suffer from goodness- 
of-fit and attribute scale limitations. We 
described the methods for individual rela- 
tional algebra operations as well as for trees 
of operations. 
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