MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 1

1. Some of the Important Things to Know

e Rules for Evaluation (substitution model) — when in doubt stop thinking!

Rules for Special Forms
Iteration vs. Recursion

Higher Order Procedures (procedures returning procedures)

[]
[]
e Pairs, Lists, and Trees (defining, manipulating, contracts, abstractions)
[]
°

Abstraction of List Operations (map, accumulate, and filter.

2. Tricky Stuff

What are the values of the following expressions:
1f 012 =1

(define (my-if pred conseq alt)
(if (zero? pred) alt conseq))

(my-if 0 1 2) = 2

(define (factorial n)
(my-if n
(* n (factorial (- n 1)))
1))

(fact 5) = [infinite loop!]

3. Writing Some Procedures
Write the following procedures:

The procedure count-pairs that counts the
number of cons pairs in a tree structure.
(count-pairs (list 2 (list 3 4) (list 5))) =6

(define (count-pairs tree)
(if (pair? tree)
(+ 1 (count-pairs (car tree))
(count-pairs (cdr tree)))
0)

4. Order of Growth

(define x 5)
(define y 6)
(let ((x 7)
(y %))
+zxy) = 12
((lambda (x y) ((y 6) x)) 4
(lambda (w) (lambda (z) (* 2 z))))

(list 1 (list 2 list 3) 4)
—> (1 (2 #[procedure] 3) 4)

((Af + - %) 43) = 1

The procedure copy-some that copies the first n
elements of a list
(copy-some 3 (list 1 2 3 4 5)) =>(1 2 3)

(define (copy-some n 1lst)
(if (=n 0)
nil
(cons (car 1st)
(copy-some (- n 1) (cdr 1st))))

What’s the order of growth of the procedure copy-some above? ©(n). Consider the following procedure
to copy the last n elements of a list. What is the order of growth of last-n? ©(n?).

(define (last-k k 1lst)
(if (= (length 1st) k)
1st
(last-k k (cdr 1st))))

2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 1

5. Defining a New List Abstraction

Notice that it can take a long time to find the length of one of our list structures. Say we want to
define a new sequence abstraction, similar to lists, but that can return the length in constant time.
Here’s the contract:

(head (attach x seq)) == x

(tail (attach x seq)) == seq
(seq-empty? empty-seq) == #t
(seq-empty? (attach x seq)) == #f

(seq-length seq) == the length in O(1) time. <q
How can we do this? Let’s define a sequence as i I 117
show to the right. The list (1 3 5) would be LJ_H LJ_H Lj_l_[
represented as a list of pairs. The cars are the
elements of the list, and the cdrs are the lengths 13 32 51

of the lists. Fill in the blanks below to complete
the abstraction.

(define empty-seq nil) (define (list->seq 1lst)
(define seq-empty? null?) (define (helper 1lst n)
(if (null? 1st)
(define (head seq) (caar seq)) nil
(define (tail seq) (cdr seq)) (cons (cons (car 1lst) n)
(helper (cdr 1lst) (- n 1)))))
(define (seq-length seq) (helper 1st (length 1st))
(if (seq-empty? seq))
0
(cdar seq))) (define (seq->list seq)
(map car seq)
(define (attach x seq))
(cons (cons x (+ 1 (seq-length seq))) seq)
)
—1t i [+~]
How about another way? Here a sequence is a S 1
pair of two things. The car is the original list, [y]
and the cdr stores the lengths of the list. Fill in ——{r [[
the blanks below to complete the abstraction. 3) !

(define empty-seq (cons nil nil))
(define (seq-empty? seq) (null? (car seq)))
(define (list->seq 1lst)

(define (head seq) (caar seq)) (define (helper n)
(define (tail seq) (cons (cdar seq) (cddr seq))) (if (=n 0)
nil
(define (seq-length seq) (cons n (helper (- n 1)))))
(if (seq-empty? seq) (cons 1st (helper (length 1st)))
0)
(cadr seq)))
(define (seq->list seq)
(define (attach x seq) (car seq)
(cons (cons x (car seq)))

(cons (+ 1 (seqg-length seq)) (cdr seq)))

Notice that with either of these abstractions, lists behave in the same way as they did before, except
that the length of a list can be computed in constant time. We traded time for space.

