MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, April 14

1. Analyzing an Expression before Evaluation

We briefly saw this idea of using analyze to cut down on the amount of work we do at run time.
What does analyze do? First, recall what eval and apply do.

exp L proc 7
v — eval value args — apply }— value

Consider the form of analyze:

execution

e&p —— andyze —— gSiocedure

Ok, so what’s an execution procedure? Compare it to what we know about regular procedures:

e Procedures pack up computation.
args —— procedure —— value e Can call multiple times w/ different arguments.
e Don’t have to be re-write the procedure each time.

. Execution Procedures pack up computation.
execution
procedure

— value e Can call multiple times w/ different environments.

Don’t have to re-analyze the expression each time.

Using this method, we analyze an expression only once but can evaluate it many times, with respect
to different environments.

2. Code for Analyze

(define (eval exp env) ((analyze exp) env))

(define (analyze exp)
(cond ((self-evaluating? exp) (analyze-self-evaluating exp))
((variable? exp) (analyze-variable exp))
((definition? exp) (analyze-definition exp))
((lambda? exp) (analyze-lambda exp))
((cond? exp) (analyze (cond->if exp)))
((application? exp) (analyze-application exp))))

(define (analyze-self-evaluating exp) (lambda (env) exp))

(define (analyze-variable exp)
(lambda (env)
(lookup-variable-value exp env)))

(define (analyze-lambda exp)
(let ((bproc (analyze (lambda-body exp))))
(lambda (env)
(make-procedure (lambda-parameters exp) bproc env))))



2 6.001, Spring Semester, 1999—Recitation — Wednesday, April 14

3. An Example
Consider evaluating the following expressions with and without using analyze.

(define foo (lambda () (+ 1 2)))

(foo)

(foo)

4. Adding and to the Evaluator

Recall that and is a special form that takes an arbirary number of arguments. And evalutes each
argument in turn until one of its arguments is false, in which case it returns false. For example,

(and) => #t
(and #t) ==> #t
(and #t #f (/ 1 0)) ==> #f

Write the function and? to see if an expression is an and.
(define (and? exp)
)
Consider adding and to the Evaluator. Write a version of eval-and that does not do any desugaring.

(define (eval-and exp env)

)
Write a version of eval-and that desugars into an if-statement.

(define (eval-and exp env)



