1.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 10

Generic Operations

Type Abstraction

Rationals and Integers

(define (attach-type type contents)
(cons type contents))

(define (type datum)
(if (pair? datum)
(car datum)
(error "Bad Datum")))

(define (contents datum)
(if (pair? datum)
(cdr datum)
(error "Bad Datum’’)))

(define (make-rat n d)
(attach-type ’rat (cons n d)))

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (mul-rat x y)
(make-rat (MUL (numer x) (numer y))
(MUL (denom x) (denom y))))

(define (make-int n) (attach-type ’int n))
(define (mul-int nl1 n2)
(make-int (* nl n2)))

Dispatch Method

Table Method

2.

(define (MUL x y)
(cond ((and (rat? x) (rat? y))
(mul-rat (contents x) (contents y)))
((and (int? x) (int? y))
(mul-int (contents x) (contents y)))
(else (error "No method avail."))))

An Example

(define (apply-generic op . args)
(let ((type-tags (map type args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(error "No method available")))))

(define (MUL x y) (apply-generic ’mul x y))
(put ’mul ’(rat rat) mul-rat)
(put ’mul ’(int int) mul-int)

Let’s walk through the evaluation of (mul x y) with the tree structures below. Notice the pattern:

1
2
3
4

. Find the correct procedure based on type.
. Strip off the tag to get to the data.

. Call the procedure with the data arguments (maybe recursively calling “smart procedures”).

. Attach the tag to the result.

2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 10

3. Comments on Generic Operations

1. Adding New Types and Operators

e How would we add a new type (say polynomials)?

For the dispatch method, each operator must be changed to account for the new type.
For the table method, we need another put for each operator.

e How would we add a new operator (say divide)?

For the dispatch method, write a new operator that has the proper dispatch table
For the table method, we need another put for each type.

2. There are three main ways of dealing with |

operations on these different types:

e Dumb: Implement each box separately, and be sure

to use the right procedure.

e Type Dispatch: Make “Smart Procedures” from

the Columns.

H MUL | ADD SUB
rat mul-rat add-rat sub-rat
int mul-int add-int sub-int
complex || mul-complex | add-complex | sub-complex
poly mul-poly add-poly sub-poly
sets set—-xsect set—-union set-sub

e Object Oriented: Make “Smart Data” from the

Rows.

4. Representing Sets

A set is a mathematical object defined as a collection of unique objects (i.e. an element appears at most
once in a set). To model sets, we need to build an implementation that supports several operations.
Build an implementation for sets of symbols, using unordered lists as the basic representation. Try to

use map, filter, and accumulate where appropriate.

e element? takes as input an element and a set
and returns true if the element is in the set.
(define (element? x s)
(not (null?
(filter (lambda (elt) (eq? elt x)) s)))
)
e adjoin takes as input an element and a set and
returns a new set with that element added.
(define (adjoin x s)
(if (element? x s)
S
(cons x 8))

e intersection takes as input two sets and re-
turns a new set containing any element contained
in both of the input sets.

(define (intersection s t)
(filter
(lambda (x) (element? x t)
s))
)

e set- takes as input two sets and returns a new
set containing all elements of the first set that
are not in the second set

) (define (set- s t)
e union takes as input two sets and returns a (filter
new set will all elements from both sets. (lambda (x) (not (element? x t)
. . s)))
(define (union s t))
(accumulate adjoin t s)
)
What are the orders of growth of these functions in Time | Space
. N element? O(n) | ©(n)
time and space?
)] adjoin O(n) | ©(n)
Some of these operations are very expensive? Is there | .~ o(n?) | o)
any way that we can do better than this? intersection | ©(n?) | O(n)
Sorted sets using symbol< set— 9(n2) o(n)

