MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Friday, April 2

1. Object Oriented Programming

Below is the object oriented system from the April 1st Lecture Notes (just included for reference):

(define (get-method message object) (define (ask object message . args)
(object message)) (let ((method (get-method message object)))
(if (method? method)
(define method? procedure?) (apply method object args)

(error "No method for mesage" message))))

2. Object Oriented Stacks

Using this object oriented style, write the function create-stack that will create a stack object. Recall
that stacks are data structures that include the operations push, pop, peek, and clear. Objects get
pushed on and popped off the stack in a last-in-first-out manner. Complete the function create-stack.

(define (create-stack) (define s (create-stack))
(let ((value *Q))) (ask s ’push 5)
(lambda (message) (ask s ’push 3)
(case message (ask s ’pop) ==> 3
((PUSH) (ask s ’push 1)
(lambda (self new) (ask s ’pop) ==> 1
(set! value (cons new value)))) (ask s ’pop) =>5
((PEEK)
(lambda (self) (car value)))
((CLEAR)
(lambda (self) (set! value ’())))
((pPOP)

(lambda (self)
(let ((return (ask self ’peek)))
(set! value (cdr value))

return)))))))
3. Object Oriented Variables

Next, let’s write an abstraction for variables in the object oriented style. We do this so that in addition
to the get (lookup) and set! operations that we have in scheme, we also want to implement an undo!
method that un-does the last set!ing of the variable. We want to store an arbitrary number of undos.
How can we use stacks to help us with this undo!? Complete the code for create-var.

(define (create-var value) (define a (create-var 1))
et ((undo (create-stac ask a ’get
1 ((undo (k))) (ask ‘get)
(ask undo ’push value) ==> 1
ambda (message ask a ’set!
(lambda (ge) (ask a ’set! 2)
case message ask a ’get
(g (get)
((SET!) ==> 2
ambda (self new ask a ’undo!
(lambda (self) (ask a ’undo!)
ask undo ’push new ask a ’get
(ask undo ’push))) (ask ‘get)
((GET) ==> 1

(lambda (self)
(ask undo ’peek)))
((unDO!)
(lambda (self)
(ask undo ’pop)))))))

2 6.001, Spring Semester, 1999—Recitation — Friday, April 2

4. Object Oriented Pairs

Well, we wrote it for one variable, now let’s write it for pairs. Consider the function create-pair
that generates a pair of variables (the car and the cdr) that you can get or set. When the message
undo! is sent, the last setting gets undone (be it a set-car! or set-cdr!. Consider the following
example and complete the code for create-pair.

(define (create-pair car-val cdr-val) (define p (create-pair 1 2))
(let ((last-change (create-var ’())) (ask p ’print) => (1. 2)
(the-car (create-var car-val)) (ask p ’set-car! 3)
(the-cdr (create-var cdr-val))) (ask p ’print) ==> (3 . 2)
(lambda (message) (ask p ’set-cdr! 4)
(case message (ask p ’print) => (3 . 4)
((SET-CAR!) (ask p ’set-car! 5)
(lambda (self new) (ask p ’print) => (5 . 4)
(ask last-change ’set! ’car) (ask p ’undo!)
(ask the-car ’set! new))) (ask p ’print) ==> (3 . 4)
((SET-CDR!) (ask p ’undo!)
(lambda (self new) (ask p ’print) => (3. 2)
(ask last-change ’set! ’cdr) (ask p ’undo!)
(ask the-cdr ’set! new))) (ask p ’print) => (1. 2)
((CAR)
(lambda (self) (ask the-car ’get)))
((CDR)
(lambda (self) (ask the-cdr ’get)))
((PRINT)

(lambda (self)
(display (ask self ’car))
(display "."
(display (ask self ’cdr))))
((unDO!)
(lambda (self)
(case (ask last-change ’undo!)
((CAR) (ask the-car ’undo!))
((CDR) (ask the-cdr ’undo!)))))))))

5. Object Oriented Variables with Redo!

Now we have the ability to undo! the results to set, let’s add a redo! feature, such that successive
calls to undo! and be taken back using a call to redo!. Complete the code for create-var.

(define (create-var value) (define a (create-var 1))
(let ((undo (create-stack)) (ask a ’set! 2)

(redo (create-stack))) (ask a ’undo!)

(ask undo ’push value) (ask a ’get) ==> 2
(lambda (message) (ask a ’undo!)

(case message (ask a ’get) ==>1
((SET!) (ask a ’redo!)

(lambda (self new) (ask a ’get) ==> 2

(ask redo ’clear)
(ask undo ’push new)))
((GET)
(lambda (self)
(ask undo ’peek)))
((unNDO!)
(lambda (self)
(ask redo ’push (ask undo ’pop))))
((REDO!)
(lambda (self)
(ask undo ’push (ask redo ’pop))))))))

