MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, April 28

1. Explicit Control Evaluator: The Important Contracts

Function Assumption Promise

eval-dispatch Expression in EXP, Environment in ENV, con- | End up at CONT with result in VAL
tinuation in CONT

apply-dispatch Procedure in PROC, list of arguments in ARGL, | End up at CONT with result in VAL and the
continuation at the top of the stack. stack popped

eval-sequence Sequence of expressions in UNEV, Environment | Evaluate the expressions in sequence, and
in ENV, continuation at the top of the stack. end up at CONT with result of the final ex-

pression in VAL and the stack popped.

2. Adding AND to the Explicit Control Evaluator

We can also add and to our explicit-control evaluator. We first add a clause to the evaluator dispatch

eval-dispatch

(test (op and?) (reg exp))
(branch (label ev-and))

EV-AND presumes that the EXP register holds the expression to be evaluated, the ENV register holds the
current environment pointer, and the CONT register holds the place to jump to.

The key is to write register machine code to implement AND starting at the label EV-AND. Fill in the
missing spots. Assume we’ve got the primitives first-conjunct and second-conjunct.

1. ev-and

2. (assign unev )
3. (assign exp ‘ )
4. (save continue)

5. (save env)

6. (save unev)

7. (assign continue eval-after-first)

8. (goto ‘ )

9. eval-after—-first

10. (restore )
11. (restore )
12. (test (op true?) (reg val))

13. (branch (label eval-second-arg))

14. (assign val #f)

15. (restore ‘ ‘)
16. (goto (reg continue))

17. eval-second-arg

18. (assign exp ‘ ‘)
19. (assign continue after-second)

20. (goto ‘ ‘)

21. after-second

22. ‘

23. (goto (reg continue))



2 6.001, Spring Semester, 1999—Recitation — Wednesday, April 28

3. Tail Recursion

Does this ev-and routine handle tail recursion? For example, consider the scheme code below. What
result (if any) do we get when we evaluate (1ist? x) in our regular scheme? How about a scheme
built on top of the above explicit-control evaluator?

(define (1list? x)
(or (null? x)
(and (pair? x) (1list? (cdr x)))))
(define z (list 1))
(set-cdr! z z)
(list? z)

To see how this is working, let’s evaluate the expression (and #t (and #f #t)).

How could we change the code above so that it handles tail-recursion? Hint: remove lines 19 through
23 and add two lines in their place.

19.

20.

Can we get rid of the new line 19 by moving another line somewhere?

Could we remove line 14 without changing the value returned by the code? Why or why not?

How can we get rid of line 18 by changing another line?




