MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, February 10

1. More Special Forms

The special form begin has the following form. It evaluates each one of the expressions in turn. The
value of the begin expression is the value of the last expression.

(begin <expril> <expr2> ... <exprN>)

Example: (begin (+ 5 3) (- x 5) (x 9 9))
Wait a second... Why do we need this?

The special form cond has the following form. Conditional expressions are evaluated as follows.
<pred1> is evaluated, and if that value is not #f, then the value of the cond clause is the value of
<exprl>. If <predi1> evaluates to #f, then <pred2> is evaluated, etc.. If all of the predicates are #f,
then the else expression <exprE> is evaluated and returned.

(cond (<predi> <expril>) Example: (define (sign x)
(<pred2> <expr2>) (cond ((> x 0) 1)
e (< x0) -1)
(<predN> <exprN>) (else 0))
(else <exprE>))

2. Iterative vs Recursive Processes
Consider the following functions similar to those presented in lecture.

(define (mul2 n m)
(define (iter count ans)
(if (= count 0)
ans
(iter (- count 1) (+ m amns))))
(iter n 0))

(define (mul3 n m)
(cond ((=n 0) 0)
((even? n)
(double (mul3 (halve n) m)))
(else
(+m (mul3 (- n 1) m)))))

Now write a procedure mul4 that computes m*n in 6(logn) time in 6(1) space.

(define (mul4 m n)
(define (mul4-iter m count ans)
(cond ((= count 0) ans)
((even? count)
(mul4-iter (double m) (halve count) ans))
(else
(muld4-iter m (- count 1) (+ m ans)))))
(mul4-iter m n 0)
)

2 6.001, Spring Semester, 1999—Recitation — Wednesday, February 10

3. More Iterative vs Recursive Processes
Consider the following two procedures.

(define (count-down x by)
(cond ((< x 0) #t)
(else (print x)
(count-down (- x by) by))))

(define (count-up x by)
(cond ((< x 0) #t)
(else (count-up (- x by) by)
(print x))))

What happens for each of

= (count-down 11 3)
11 85 2

= (count-up 11 3)
258 11

Write a function count-up-2 which performs the same way as count-up, but is an iterative process.

(define (count-up-2 x by)
(define (iter val)
(cond ((> val x) #t)
(else (print val)
(iter (+ val by)))))
(iter (modulo x by))

4. Orders of Growth
Why should we care?

Name 0 notation | n =2 | n = 10 n = 100
Constant 0(1) 1 1 1
Logarithmic | 60(logn) 1 3.33 6.66
Linear O(n) 2 10 100
Quadratic 0(n?) 4 100 10,000
Exponential 6(2m) 4 1024 | ~1.26 x 10%°

At 1 billion operations per second (current state of the art), if you were to run an exponential time
algorithm in the lab on a data set of size n = 100, you would be waiting for approximately 4 x 10!
centuries for the code to finish running!

Formal Definition

Let R be some resource (e.g. space or time) used by a computation, and suppose R is a function of
the size n of a problem. The amount of resources consumed will be R(n). We say R(n) has order of
growth ©(f(n)) written R(n) = O(f(n)) if there is some constant k; and ko independent of n such
that

kif(n) < R(n) < kzf(n)

for sufficiently large n.

6.001, Spring Semester, 1999—Recitation — Wednesday, February 10 3

5. Order of Growth Examples

For the following functions R, find the simplest and slowest growing function f for which R(n) =
O(f(n)).
(a) R(n) =6
(1) 1-1<6<6-1 VYn>0
(b) R(n) =n?+3
O(n?) 1-n><n?+3<2-n% VYn>2
(¢) R(n) = 6n3 + 3n* 4+ 7n + 100
O(n3) 1-n®*<6n3+3n*+7Tn+100<7-n% Vn> 100
(@) R(n) = 5- log(n")
0(log(n)) 1-log(n) <5 -log(n®) <40 -log(n) Vn>1
(e) R(n) = 23n+7
O(8") 1-8" < 23T <28.87 yn > ()

What are the Orders of Growth (space and time) for the procedures listed below?

(define (factl n) Time = 9(77,)
(if (=n 1) Space = 6(n)
1
(¥ n (factorial (- n 1)))))

(define (fact2 n) Time = 6(n)
(define (helper cur k) Space — 9(1)
(if =k 1)

cur
(helper (* cur k) (- k 1))))
(helper 1 n))

(define (fibl n) Time = 0(2")
(cond ((=n 0) 0) Space = 6(n)
(=n1) 1)

(else (+ (fibl (- n 1))
(fib1l (- n 2))))))

(define (fib2 n) Time = 6(n)
(define (fib-iter a b count) Space = 0(1)
(if (= count 0)
b

(fib-iter (+ a b) a (- count 1))))
(fib-iter 1 0 n))

