MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Friday, February 12

1. Cons Pairs and Lists

Recall the contract for cons, car, cdr, pair?, and null?.

(car (cons a b)) == a (list a b c) == (cons a
(cdr (cons a b)) == (cons b
(pair? (cons a b)) == #t (cons ¢ nil)))

(null? nil) == #t

There are three main methods of representing cons and list structures. You should be able to convert
between them.

Scheme Expression Box & Pointer Scheme Printout
(cons 1 2)

(cons 1 (cons 2 nil))

(cons 1 nil)

(cons 1 (cons 2 3))

(cons (cons 1 2) nil)

(list 1 2 3 4)

(list 1 (cons 2 3) (list 4 5))

2. Other Accessors

In scheme, we often want to access elements deep in a cons structure. Therefore, the following accessors
have been defined to help us out:

(cadr x) == (car (cdr x)) (cddr x) == (cdr (cdr x))
(caddr x) == (car (cdr (cdr x))) (cdadar x) == (cdr (car (cdr (car x))))
(cdaar x) == (cdr (car (car x))) etc, etc...

For lists, we also often want to easily access the n’th element of a list. The accessors first, second,
third, ..., tenth are defined to access the corresponding values of a list. For example,

(sixth (list 1 234567 8 9))

;Value: 6
How could you define first, second, third, and fourth using the ¢??7r functions?

(first x) == (third x) ==
(second x) == (fourth x) ==

2 6.001, Spring Semester, 1999—Recitation — Friday, February 12

3. Practice
Draw box and pointer diagrams and write what will Scheme print for the following expressions.

= (define x (cons 5 2))
= (car x)

= (cdr x)

= (car (cdr x))

= (define y (comns sqgrt x))

= (car (cdr y))

= (car y)

= (define z (cons ((car y) 49) x))
= Z

Write a Scheme expression that will print each of the following. Also draw box and pointer diagrams.

=
;Value: (1 2 3)
=

;Value: (1 2 . 3)
=

;Value: ((1 (2)) . 3)

Write Scheme expressions that correspond to the following.
a

.

; \\:
b 1 G
3 4
2 1 2

4. Functions on Lists

We saw that we have the primitive function pair? to see if an object is a pair. What if we wanted to
write the function 1ist? to see if an object is a list?

What is the contract for 1ist? Vrq,xo,...,x, (QList? (list x1 x2 ... x,)) == #t
What’s another way to write it? (list? nil) == #t
(1ist? (cons z [l)) == #t ==> (1list? ()

Now, how can we write 1ist? in scheme?
(define (list? x)

)

What is the Order of Growth of pair? and list? ?
pair? is ©() and 1ist? is O()

