MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, February 17

1. Review of Lists
Let’s look at simple operations on lists. Say I define a list as follows:
(define primes (list 2 3 5 7))

How could I make the following lists using primes?

non-composites (12357) (define non-composites (cons 1 primes) )
odd-primes (357) (define odd-primes (cdr primes) )
more-primes (235711) (define more-primes (append primes (list 11)) )
less-primes (235) (define less-primes (lrange primes 0 2) )

2. Simple Functions on Lists

We saw that we have the primitive function pair? to see if an object is a pair. What if we wanted to
write the function 1ist? to see if an object is a list?

What is the contract for 1ist? Vay,zo,...,2, (Qist? (list x1 z9 ... x,)) == #t
What’s another way to write it? (list? nil) == #t
(1ist? (cons x 1)) == #t ==> (1ist? I)

Now, how can we write 1ist? in scheme?
(define (list? x)
(cond ((null? x) #t)
((pair? x) (list? (cdr x)))
(else #f))
)

What is the Order of Growth of pair? and 1list? ?
= pair? is ©(1) and 1ist? is ©(n), where n is the length of the list.

3. More Functions on Lists

What if we wanted to reference the n" element of a list? Write the function list-ref that takes a
list x and an integer n and returns the n* element of the list x.

(define (list-ref x n)
(if (=n 0)
(car x)
(list-ref (cdr x) (- n 1)))
)
Write the function length that takes a list x and returns the length of the list. Is your function

iterative or recursive? Write the other one too!

(define (length x) (define (length x)
(if (null? x) (define (iter x n)
0 (if (null? x) n
(+ 1 (length (cdr x)))) (iter (cdr x) (+ n 1))))
) (iter x 0)



2 6.001, Spring Semester, 1999—Recitation — Wednesday, February 17

4. Recursive Append

Consider the procedure append that takes two lists and returns a list that results from appending the
second to the first.

(define (append a b)
(if (null? a)
b
(cons (car a) (append (cdr a) b))))

Draw the box and pointer diagrams for (append (1ist 1 2) (list 3 4 5)). Notice that the second
list is never looked at!

5. Copy

Consider the procedure copy which takes a list and returns a copy of the list. How do each of the
following differ?

(define (copy-ident x) x)

(define (copy-recurse x)
(if (null? x)
nil
(cons (car x) (copy-recurse (cdr x)))))

Notice that copy-recurse is a recursive process. Let’s write an iterative copy:
Warning: the below is not copy!

(define (*copy-iter* x)
(define (aux x ans)
(if (null? x)
ans
(aux (cdr x) (cons (car x) ams))))
(aux x nil)

)

The above is not copy. Actually, it’s reverse! Now let’s define copy using reverse:

(define (copy-iter x) (reverse (reverse x)))

6. Iterative Append

Given what we learned about iterative vs. recursive processes operating on lists, write an iterative
version of append.

(define (append a b)
(define (aux x ans)
(if (null? x)
ans
(aux (cdr x) (cons (car x) amns))))
(aux (reverse a) b)

)
7. One More Function for Lists

Write the function 1range that takes a list x and two integers a and b, and returns a list of the a’th
though the b’th elements of x. e.g. (lrange (1ist 0 1 2 3 4) 1 3) = (1 2 3).
1 know we’re not going to get to this in class... Try it, and the answer will be on the web.



6.001, Spring Semester, 1999—Recitation — Wednesday, February 17

(define (lrange x a b)
(define (n-cdrs x n)
(if (=n 0)
X
(n-cdrs (cdr x) (- n 1))))
(define (partial-copy x n)
(if (=n 0)
nil
(cons (car x) (partial-copy (cdr x) (- n 1)))))
(partial-copy (n-cdrs x a) (+ (- b a) 1))



