MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Friday, February 19

1. Abstraction using Higher Order Procedures

Let’s take a look at using abstraction on common patterns.

(x 2 5) (x 3 2)
(x 2 8) (*x 3 17)

(x 2 54) (x 34.1)
(define double (define triple
(lambda (x) (lambda (x)
(* 2 x))) (* 3 x)))

(define make-mult
(lambda (n)
(lambda (%)
(* n x))))

3. Higher Order Procedures

Write a function swap that takes a function £, and returns a function, that takes two arguments, and
returns £ with the variables swapped: (f x y) == ((swap f) y x) For example, ((swap -) 4 5) = 1.

(define swap

)

2. Composing Procedures

Now try to write the function compose that takes two functions, £ and g, and returns a function, that
takes one argument, and composes £ and g on that argument.

(define compose

)
Let’s trace through the evaluation of the following expression:

((compose double cube) 3)
({8 | @ (& (g)| double cube) 3)

((X (0 (double (cube x)))| 3)
(double (cube 3))
54

Notice that there’s no magic here. We just used the same rules for evaluation that we’ve been using
all along — the substitution model!

Using compose, define the function “5/2 which takes a number x and computes z5/2,

(define ~5/2)

2 6.001, Spring Semester, 1999—Recitation — Friday, February 19

5. Repeated Composition of Procedures

We saw how to compose two procedures to produce another procedure. For example, we can define
the following.

(define fourth-power (compose square square))
(define eight-power (compose square (compose square square)))
. and so on ...

Let’s write a (very strange) function called repeated that takes a function £ and an integer n, and
composes f, n times. For example:

(define fourth-power (repeated square 2))
(define eight-power (repeated square 3))
. and so on ...

(define (repeated proc n)

)
Let’s look at a simple example:

(define fourth-power (repeated square 2))

6. Iterative Repeated

Guess what.. Now that we’ve written the recursive version of repeated, let’s write the iterative
version.

(define (repeated proc n)

)
7. More Higher-Order Procedures

Write a function snoc that takes two arguments a and b and returns a function, that when called with
#t returns a and when called with #f returns b.
(define snoc What do we have once we define the following?

(define (rac x) (x #t))
(define (rdc x) (x #f))

Here’s an even more elegant (albeit more obscure) way of doing the same thing. Can you figure out
how this is working?
(define snoc (lambda (x y) (lambda (£f) (f x y))))

(define rac (lambda (p) (p (lambda (a b) a))))
(define rdc (lambda (p) (p (lambda (a b) b))))

