MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Friday, February 26

1. Warm Up

Write a function max-err that takes a list of lists of numbers and computes the sqrt of the maximum
of the sum of the squares of the sublists. For example,

(define data (list (list -1 2) (list 0 -4 3) (Qist 1 -1 -2))) ==> ((-12) (0-43) (1-1-2))
(max-err data) ==> 5 (because /02 +(—4)2+32 =5 > 4/(—1)2+4 22 and \/12 + (=124 (-2)»
(define (max-err data)
(sqrt
(accumulate max 0
(map
(lambda (trial)
(accumulate + 0O
(map square trial)))
data)))

)
2. Uniqueness

Say we have a list of numbers, and we want to get back a list where each number in the original list
appears exactly once. For example,

(define x (list 1 223 15 4 3 4))

(unique x) ==> (1 2 3 5 4)
Let’s write the function unique to do this. But first, write the function remove that removes all
instances of an element from a list. (e.g. (remove 3 (list 1 3 2 3 4 3)) ==> (1 2 4) ).

(define (remove elt seq)
(filter (lambda (x) (not (= x elt))) seq)
)
Now write unique, using remove. When writing unique, first think in English (or langunage of choice)

about how you’d do this, then translate to Scheme.

(define (unique seq)
(if (null? seq)
nil
(cons (car seq)
(unique (remove (car seq) (cdr seq)))))

)
3. All Pairs

Write the function all-pairs that takes a list and returns a list of all pairs of the elements in the list.
For example, (all-pairs (list 1 2 3 4)) ==> ((1 2) (1 3) (1 4) (23) (24) (34))

Again, first think about how you’d do this, and then translate into Scheme. Maybe start with trying
to just get the pairs ((1 2) (1 3) (1 4)), and then build up from there.

(define (all-pairs s)
(if (null? s)
nil
(append (map (lambda (x) (list (car s) x)) (cdr s))
(all-pairs (cdr s))))



2 6.001, Spring Semester, 1999—Recitation — Friday, February 26

4. Deep Reverse

So far, we’'ve been working on lists, while we've ignored the elements of the list. What does the
following return? (reverse (list 1 (list 2 3) (list 4 5 6)))

Write a function deep-reverse that when called on the above tree will reverse all the elements.
(deep-reverse (list 1 (1list 2 3) (list 4 5 6))) ==> ((6 5 4) (3 2) 1)

(define (deep-reverse x)
(define (aux x ans)
(cond ((null? x) ans)
((not (pair? x)) x)
(else (aux (cdr x) (cons (deep-reverse (car x)) amns)))))
(aux x nil)

)
Now write deep-reverse using map (hint: you can use reverse)...

(define (deep-reverse x)
(if (not (pair? x))
x
(map deep-reverse (reverse x)))

)
5. Flatten

Write the function flatten that takes a tree structure and returns a flat list of the leaves of the tree.
For example (fringe (list 1 (list 2) 3)) ==> (1 2 3)

(define (flatten x)
(cond ((null? x) nil)
((not (pair? x)) (list x))
(else (append (flatten (car x))
(flatten (cdr x)))))
)

Now try writing flatten using map and accumulate.

(define (flatten x)
(if (not (pair? x))
(list x)
(accumulate append nil (map flatten x)))
)

6. Occurrences

Write the function occurrences that takes a number and a tree and counts the number of times that

number appears in the tree. For example, (define tree (list 1 2 (list (list 3 1) (list 1 2) 1)))
(occurrences 1 tree) ==> 4
(define (occurrences elt tree)
(cond ((null? tree) 0)
((not (pair? tree)) (if (= elt tree) 1 0))
(else (+ (occurrences elt (car tree))
(occurrences elt (cdr tree)))))

)
Now write occurrences using map and accumulate..

(define (occurrences elt tree)
(define (helper subtree)
(cond ((pair? subtree) (occurrences elt subtree))
((= subtree elt) 1)
(else 0)))
(accumulate + 0 (map helper tree))

)



