MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 1

1. Some of the Important Things to Know

Rules for Evaluation (substitution model) — when in doubt stop thinking!
Rules for Special Forms

Iteration vs. Recursion

Pairs, Lists, and Trees (defining, manipulating, contracts, abstractions)
Higher Order Procedures (procedures returning procedures)

Abstraction of List Operations (map, accumulate, and filter.

2. Tricky Stuff

What are the values of the following expressions:

(if 012 = (define x 5)

(define y 6)

(define (my-if pred conseq alt) (let ((x 7)

(if (zero? pred) alt conseq)) (y x))
+xy) =

(my-if 0 1 2) =
((lambda (x y) ((y 6) x)) 4

(define (factorial n) (lambda (w) (lambda (z) (x 2 z)))) =
(my-if n
(* n (factorial (- n 1))) (list 1 (1list 2 list 3) 4)
1)) =
(fact 5) = ((if + - %) 4 3) =

3. Writing Some Procedures
Write the following procedures:

The procedure count-pairs that counts the | The procedure copy-some that copies the first n
number of cons pairs in a tree structure. elements of a list
(count-pairs (list 2 (list 3 4) (list 5))) =6 (copy-some 3 (list 1 2 3 4 5)) =>(1 2 3)

(define (count-pairs tree) (define (copy-some n 1lst)

4. Order of Growth

What’s the order of growth of the procedure copy-some above? O(). Consider the following procedure
to copy the last n elements of a list. What is the order of growth of last-n? ©().

(define (last-k k 1lst)
(if (= (length 1st) k)
1st
(last-k k (cdr 1st))))

2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 1

5. Defining a New List Abstraction

Notice that it can take a long time to find the length of one of our list structures. Say we want to
define a new sequence abstraction, similar to lists, but that can return the length in constant time.
Here’s the contract:

(head (attach x seq)) == x

(tail (attach x seq)) == seq
(seq-empty? empty-seq) == #t
(seq-empty? (attach x seq)) == #f

. . Seq
(seq-length seq) == the length in O(1) time. ‘\f% | | L/ﬂ
How can we do this? Let’s define a sequence as
show to the right. The list (1 3 5) would be LJ_H LJ_H Lj_l_[
represented as a list of pairs. The cars are the

elements of the list, and the cdrs are the lengths 13 32 51
of the lists. Fill in the blanks below to complete
the abstraction.

(define empty-seq nil) (define (list->seq 1lst)
(define seq-empty? null?)

(define (head seq))
(define (tail seq))

(define (seq-length seq)

(if (seq-empty? seq))
0
) (define (seq->list seq)
(define (attach x seq))
)
-G
How about another way? Here a sequence is a S 1
pair of two things. The car is the original list, [y]
and the cdr stores the lengths of the list. Fill in ——{r [[
the blanks below to complete the abstraction. i i i

(define empty-seq (cons nil nil))

(define (seq-empty? seq) (null? (car seq)))
(define (list->seq 1lst)
(define (head seq))
(define (tail seq))

(define (seq-length seq)
(if (seq-empty? seq)

0)

))

(define (seq->list seq)

(define (attach x seq)

)

Notice that with either of these abstractions, lists behave in the same way as they did before, except
that the length of a list can be computed in constant time. We traded time for space.

