1.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 10

Generic Operations

Type Abstraction

Rationals and Integers

(define (attach-type type contents)
(cons type contents))

(define (type datum)
(if (pair? datum)
(car datum)
(error "Bad Datum")))

(define (contents datum)
(if (pair? datum)
(cdr datum)
(error "Bad Datum’’)))

(define (make-rat n d)
(attach-type ’rat (cons n d)))

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (mul-rat x y)
(make-rat (MUL (numer x) (numer y))
(MUL (denom x) (denom y))))

(define (make-int n) (attach-type ’int n))
(define (mul-int nl1 n2)
(make-int (* nl n2)))

Dispatch Method

Table Method

2.

(define (MUL x y)
(cond ((and (rat? x) (rat? y))
(mul-rat (contents x) (contents y)))
((and (int? x) (int? y))
(mul-int (contents x) (contents y)))
(else (error "No method avail."))))

An Example

(define (apply-generic op . args)
(let ((type-tags (map type args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(error "No method available")))))

(define (MUL x y) (apply-generic ’mul x y))
(put ’mul ’(rat rat) mul-rat)
(put ’mul ’(int int) mul-int)

Let’s walk through the evaluation of (mul x y) with the tree structures below. Notice the pattern:

1
2
3
4

. Find the correct procedure based on type.
. Strip off the tag to get to the data.

. Call the procedure with the data arguments (maybe recursively calling “smart procedures”).

. Attach the tag to the result.

2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 10

3. Comments on Generic Operations

1. Adding New Types and Operators

e How would we add a new type (say polynomials)?

e How would we add a new operator (say divide)?

2. There are three main ways of dealing with | I

operations on these different types:

e Dumb: Implement each box separately, and be sure
to use the right procedure.

e Type Dispatch: Make “Smart Procedures” from
the Columns.

e Object Oriented: Make “Smart Data” from the

MUL | ADD | SUB
rat mul-rat add-rat sub-rat
int mul-int add-int sub-int
complex || mul-complex | add-complex | sub-complex
poly mul-poly add-poly sub-poly
sets set—-xsect set—-union set-sub

Rows.

4. Representing Sets

A set is a mathematical object defined as a collection of unique objects (i.e. an element appears at most
once in a set). To model sets, we need to build an implementation that supports several operations.
Build an implementation for sets of symbols, using unordered lists as the basic representation. Try to

use map, filter, and accumulate where appropriate.

e element? takes as input an element and a set
and returns true if the element is in the set.

(define (element? x s)

)
e adjoin takes as input an element and a set and
returns a new set with that element added.

(define (adjoin x s)

)
e union takes as input two sets and returns a
new set will all elements from both sets.

(define (union s t)

)

e intersection takes as input two sets and re-
turns a new set containing any element contained
in both of the input sets.

(define (intersection s t)

)

e set- takes as input two sets and returns a new
set containing all elements of the first set that
are not in the second set

(define (set- s t)

What are the orders of growth of these functions in

time and space?

Some of these operations are very expensive? Is there

any way that we can do better than this?

Time | Space
element? o() | ©()
adjoin O() | ()
union o()| ()
intersection | ©()| O()
set- o()| ()

