MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 17

0. Administrivia

e Don’t miss lecture tomorrow! Really.
e PS #4 is due today (in section or, for Sandia, 36-115, for Hooman, 36-117).
e PS #5 is due on March 31st (not during spring break)

1. Functions Aren’t Functions Anymore

Up until now, every time we called a procedure with the same arguments, we got the same value back.
For example, if (foo 7) returned 12, then every time we called (foo 7) we would get back 12. Consider
the example below. Draw the box and pointer diagram and evaluate the following expressions.

(define count (list 0)) (counter) => 1
(define (counter) (counter) = 2
(set-car! count (+ (car count) 1)) (counter) = 3

(car count))

Notice that we’re in danger if someone else is using the variable count. We'll step on each other’s feet.
How can we prevent this from happening?

(define counter

)
We’ll see more tomorrow in lecture on how and why this technique of local state works.

2. Buffers

Write a function called buffer that takes one argument x and at each call, it returns the argument of
the previous call to buffer. For example:

(buffer 1) = #f (define buffer
(buffer 7) =1

(buffer ’x) =7

(buffer ’(2 5)) = x

(buffer +) = (25)

3. Remembering Values

Write a function called seen? that takes one argument and returns #t only if that function has been
called before with that argument. Assume you have the function element? that takes an object and a
list, and returns #t if the object is in the list.

(seen? 1) = #f (define seen?
(seen? ’x) = #f
(seen? 1) = #t
(seen? 'y) —> #f
(seen? ’x) = #t
(seen? ’y) = #t

2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 17

4. List Mutation — Rings
Rings are circular structures similar to lists. If we define a M

ring r, (define r (make-ring ’(1 2 3 4))), the following is true: =[Gy []
(nth 0 1) ¢ ¢ ¢ ¢
=1 1 2 3 4
(nth 1 r)
=2 m
|] | _| |]
(nth 4 1) l| \ l‘| | |l| \ l|
=1 1 2 3 4

Write the function make-ring! that takes a list and makes a ring out of it. Hint: It might be helpful to
write a helper function called 1ast-pair.

(define (make-ring! ring-list)

)
Write the procedure rotate-left that takes a ring and returns a ring that has been rotated one to the

right.

(define (rotate-left ring) (define r1 (rotate-left r))
(nth O r1)
) = 2

We can also rotate a ring to the right. Rotating to the right is harder than rotating to the left. Define
a procedure ring-length that will tell us the length of the ring (which is the length of the original list).
Hint: remember eq?

(define (ring-length ring)

)
Now write the procedure rotate-right. If you're tired of writing helper procedures, you can use
repeated.
(define (rotate-right ring) (define r2 (rotate-right r))
(nth 0 r1)
= 4
)

5. Append!

Recall the function append that takes two lists and returns a list of the two appended. Recall that to
do this, we made a copy of the first list and cons’d it onto the second. Now that we had side effects,
we can append two lists without creating a copy of one of them. Assuming you have the function
last-pair that we wrote above, write the function append!.

(define (append! x y)

