MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, March 31

1. Environment WHAT?

I barely remember the week before spring break. Let’s start with an environment diagram warmup:
(define f
(lambda (x)
(lambda (y)
(set! x (+ x y))
x)))
(define g (f 4))
(g 3)

2. Counting Fibs

Recall the function £ib-1 that takes an integer n and computes the n’th Fibonacci number.

(define fib-1 5
(lambda (n) 45/ T
(cond ((=n 0) 0) //)i\\
(=n1) 1) 1
(else /i\ /}i /%\
(+ (£ib-1 (- n 1)) 11010
(fib-1 (- n 2))))))) /i

What is the Order of Growth in Time for the procedure £ib-17 This is a tough one to figure out.
Maybe this tree will help. Consider the number of recursive calls to £ib-1 when the following is
evaluated: (fib-1 5)

What if we want to see exactly how many times fib-1 is being called? Recall the function make-count-proc
from last section. How can we use make-count-proc to define fib-2 that will keep a count of the
number of recursive calls?

(define make-count-proc (define fib-2
(lambda (f) (make-count-proc
(let ((count 0)) (lambda (n)
(lambda (x) (cond ((=n 0) 0)
(cond ((eq? x ’count) count) (=n 1) 1)
((eq? x ’reset) (else (+ (fib-2 (- n 1))
(set! count 0) (fib-2 (- n 2)))))
0) )
(else
(set! count (+ count 1)) (fib-2 5) => 5

(£ x))))))
(fib-2 ’count) => 15
Take a look at these calls to fib-2:

(fib-2 ’reset) ==> (
(fib-2 30) ==> 832040
(fib-2 ’count) ==> 2692537

That’s pretty ineflicient! We're recursively calling £ib-2 over and over again with the same argument
and keep computing things we’ve already computed before. How can we fix this?



2 6.001, Spring Semester, 1999—Recitation — Wednesday, March 31

3. Memoizing

Recall that the procedure make-count-proc takes in a procedure and returns a very similar procedure
(from the caller’s point of view), but this new procedure keeps some local state around and does
something else each time it is called.

Consider the procedure memoize that takes in a procedure of one argument and returns a procedure
that keeps track of the all previously computed values. If a value passed in was passed in before, the
procedure simply returns the saved value. Write the procedure memoize:

(define memoize
(lambda (g)
(let ((table ’()))
(lambda (y)
(let ((result (assoc y table)))
(if (pair? result)
(cadr result)
(let ((result (g y)))
(set! table (cons (list y result) table))
result))))))
)

Now define fib-3 that uses memoization and a counter.

(define fib-3 /////5\\\\\
(make-count-proc :

(memoize A ©
(lambda (n) 3 @)
(cond ((= n 0) 0) ‘
((=n1) 1) /é CD
(else
(+ (£ib-3 (- n 1)) 10

(£fib-3 (= n 2)))))))) )

What is the Order of Growth in Time of fib-37

(fib-3 ’count) ==> 0
(fib-3 30) ==> 832040
(£fib-3 ’count) ==> 59

Challenge: Draw the Environment Diagram for the definition of £ib-3 (above) and then for the
expression (fib-3 3).




