MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Wednesday, April 7

1. Concurrency
Give all possible values of x that can result from executing the following:

(define x 10)

c A B
AN A~
(parallel-execute (lambda () (set! x (¥ " x x D))
(lambda () (set! x (* x b X J)N)
G D E F

; Possible Values:

Which of these possibilities remain if we instead use serialized procedures:

(define x 10)

(define s (make-serializer))

B
=

x D))

(s (lambda () (éfEL x (*
G

NP

~ = /.f.\
(parallel-execute (s (lambda () (set! x (*+ " x
X

D E F

; Possible Values:

2. More Concurrency: Bank Accounts

In class yesterday, we saw how we can use serializers to make account balances more safe for de-
posits and withdrawals. Consider the following procedure for making an account. We can define the
procedure get-balance and a simple deposit procedure.

(define (make-account balance) (define (get-balance acct)
(define (deposit amount) (acct ’balance))
(set! balance (+ balance amount))
balance) (define (deposit acct amount)
(let ((serializer (make-serializer))) (let ((d (acct ’deposit)))
(define (dispatch m) (4 amount)))
(cond ((eq? m ’deposit) deposit)
((eq? m ’balance) balance) (set a (make-account 100))
((eq? m ’serializer) serializer)))
dispatch))

Notice that this deposit procedure is not safe because we do not use the serializer. For example,
(parallel-execute (lambda () (deposit a 20)) (lambda () (deposit a 30)))

could fail. How can we redefine the deposit procedure to make it safe if multiple deposits happen
concurrently?

(define (deposit acct amount)

)

Do we need to redefine get-balance in the same way? Why or why not?
=



2 6.001, Spring Semester, 1999—Recitation — Wednesday, April 7

3. Exchanging Accounts
Now, consider the process of exchanging the amount of money in two accounts. For example,

(define a (make-account 100))
(define b (make—account 50))
(exchange a b)

(get-balance a) ==> 50
(get-balance b) ==> 100

Below is an exchange procedure that does not serialize. Using exchange, we can now write a serialized
exchange that applies the serializers from both accounts before making the exchange:

(define (exchange al a2) (define (serialized-exchange al a2)
(let ((diff (- (al ’balance) (let ((s1 (al ’serializer))
(a2 ’balance)))) (s2 (a2 ’serializer)))
((al ’deposit) (- diff))
((a2 ’deposit) diff))) ))

Does this fix everything? Not quite. This could make things worse! Now we have the concept of
deadlock. One way of fixing deadlock is to give each serializer a unique id and insist every process
acquire serializers in order of the unique ids.

Imagine that we’ve changed make-serializer so that it makes a serializer with a unique id, as show
below, left. How could we change serialized-exchange to prevent deadlock?

(define s (make-serializer)) (define (serialized-exchange al a2)
(define t (make-serializer)) (let ((s1 (al ’serializer))
(s proc) ==> <serialized proc> (s2 (a2 ’serializer)))

(s ’id) ==> 1
(t ’id) ==> 2

4. Unique Ids ?

Let’s try to add unique ids to our serializers. First, let’s write a function called tag-proc that takes
a procedure and returns a procedure that is tagged with a unique id. See the examples on the right.

(define tag-proc (define f (tag-proc sqrt))
(define g (tag-proc sqrt))
(define h (tag-proc cube))
(f ’id) = 1 (unique id is 1)
(g ’id) = 2 (unique id is 2)
(h ’id) = 3 (unique id is 3)

(f 25) — 5
(g 81) =9
(h3) = 27

)

How can we change our make-serializer procedure so that each serializer that is generated has a
unique id? (Where do we put the call to tag-proc?)

(define (make-serializer)
(let ((mutex (make-mutex)))

(lambda (p)
(define (serialized-p . args)

)

serialized-p))))



