MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring Semester, 1999

Recitation — Friday, April 16

1. Streams

In lecture yesterday, we looked at a simple implementation of streams which used two new special
forms:

® (delay x) which returns a promise and is equivalent to (lambda () x)
® (cons-stream a b) which is equivalent to (cons a (delay b))

and a few data abstrations:

(define (force obj) (obj)) (define (stream-car stream) (car stream))

(define (stream-cdr stream) (force (cdr stream)))
Using these basic functions, we can build infinite streams. For example:
(define ones (cons-stream 1 ones)) (define twos (cons-stream 2 twos))

Here’s another way we can define twos using stream-map a very useful function that works like map,
except on streams:

(define twos
(stream-map + ones ones))

2. Warm Up

Write a procedure powers-of-2-from which takes a power of 2 (n) and returns the stream n, n*2, (n*2)*2,

((n*2)*2)*2, ...
(define (powers-of-2-from n)
)
Define a stream of the whole numbers N = {0, 1, 2, 3 ...} using ones
(define whole
)
3. Taylor Series

We can represent an infinite Taylor Series as a stream. The series f(z) = (apz +a17 +azx? +azz’+...)
can simply be represented as the stream of numbers (ag a1 a2 a3 ...).

Recall that (for —1 <z < 1), f(z) = = =1+a+2?+ 2% +.... What series could we use to
represent this series?

For example, recall that e = 14z + 5;—? + g—? + % + Using stream-map, fact (factorial), and
whole, define the stream corresponding to this series.

(define e"x

2 6.001, Spring Semester, 1999—Recitation — Friday, April 16

4. Evaluating a Series

Now say we want to evaluate e* for some x. Write a function eval-series that takes a series s, a
value x, and the number of terms to use n, and evaluates the series.

(define (eval-series s x n)

)
Now we can evaluate our series: (eval-series e”x -0.5 100) ; value .6065306597126333

5. More Stream Tools
Write the function interleave that takes two infinite streams and interleaves them. For example

(define all-ints
(cons-stream O (interleave integers (stream-map - integers))))

This would be the infinite stream (0 1-12-23-34-4...)

(define (interleave s t)

)
6. Cosine Series
For example, recall that cos(z) =1 — ‘g—? + % — %—? + How could we create this stream using the
e”x stream we already created? (What stream could we create that we could multiply with e~x7)
€ = 1 4w 4y 4y R Ah g e
cos(z) = 1 +0 —%L 40 +% 40 L ...

How could we define the cosine stream in this way using ones and zeros and interleave twice?

(define cos-x

)
7. All Pairs

What about the set of all pairs of positive integers: {(x,y) | =,y € PositiveIntegers}? How can we
capture this infinite-way infinite sequence into a stream? Let’s define a procedure pairs that takes
two infinite streams and returns a stream of all possible pairs of elements of the two streams.

1 2 3 4 5

(define (pairs s t)

Ok W N =
= B R
S~ SN SN SN S

AR W=
SRERERERE
S S SN S S

ORI~
— = =

SO A W N
P et e
S S SN S S
P e e
SN
RN N N N
S~ S SN S
P e et
N TN N N N

))

